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a b s t r a c t

We present the general linear transfer matrix of FEL in the collective regime in terms of a single-mode

radiation field amplitude and e-beam current and velocity modulation parameters. The formulation is

useful to account for composite configurations of the FEL, including non-radiating sections, and is

employed to demonstrate the possibility to control the SASE radiation power (including its substantial

reduction for facilitating coherent emission with seed radiation amplification) by varying the space-

charge parameter in a drift section.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

A general description of the FEL as a linear response problem is
possible after modal expansion of the coupled Maxwell-plasma
equations [1–5]. In the one-dimensional limit and in the case of
single radiation and plasma-mode excitation, it is possible to
obtain explicit analytical expressions for the transfer matrix in the
frequency regime in terms of the small signal variables of the
single-mode FEL problem: the radiation-mode amplitude ~aqðzÞ,
the current density modulation ~JzðzÞ, and the beam velocity
modulation ~VðzÞ. Our approach thus relates to the general FEL
start-up problem, studied in numerous other works [6–8]. For
useful applications we calculate explicit expressions for all matrix
parameters, including the excitation parameters of the beam
current and velocity modulation, and also specify operating in the
practical cold-beam regime [9].

The velocity modulation noise parameters, which are often
ignored, are correlated to the beam current modulation through
the Poison equation. We contend that their inclusion in the
transfer matrix is important for proper description of the noise
amplification process in FEL when collective plasma effects in the
wiggler or in other beam transport sections are non-negligible.
The derivation of the explicit FEL linear response matrix,
presented in this article, would be useful for characterization of
coherent and incoherent radiation in various FEL configurations in
all gain regimes. In particular, it enables to explore the effect of
beam transport sections before and along the wiggler (accelera-
tion, drift-free and dispersive sections).
ll rights reserved.
2. General transfer matrix formulation

Under the small-signal assumption we can express all para-
meters of the electron fluid plasma equations as the sum of a
time-averaged part and a time-varying part—whose amplitude is
much smaller than the time-averaged part. In conformity with the
use of a small signal model, we neglect all cross-products of two
time-varying parameters (producing time-independent and sec-
ond harmonic quantities). Using such approximations, we can
write all quantities as a set of linear equations:

nðr; tÞ ¼ n0 þ
1

2
ð ~NðrÞe�iot þ c:cÞ

Vðr; tÞ ¼ V0 þ
1

2
ð ~VðrÞe�iot þ c:cÞ

jðr; tÞ ¼ �enðr; tÞVðr; tÞ ¼ J0 þ
1

2
ð~JðrÞe�iot þ c:cÞ

Eðr; tÞ ¼ E0ðrÞ þ
1

2
ð ~EðrÞe�iot þ c:cÞ

where n(r,t), V(r,t), j(r,t), and E(r,t) are the beam density, the beam
velocity, the beam current, and electric field, respectively.

It is convenient to use the frequency domain in order to
find the radiative emission from devices employing e-beams.
We use a formulation in which the traveling wave spectral
radiation fields are expanded in terms of a complete set of
transverse modes q (the beam propagation is entirely in the z-
direction):

Eradðz; tÞ ¼ Re
X

q

~aqðz;oÞ ~Eq?ðr?Þe
�iot

" #
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where ~aq and ~Eq? are the fast-varying amplitude and the
transversal profile of an electromagnetic mode q, respectively.
The mode amplitudes ~aqðzÞ may grow along the wiggler interac-
tion length in accordance to the mode excitation equation:

d

dz
� ikqz

� �
~aqðzÞ ¼

�1

4Pq
e�ikqzz

ZZ
~Jðx; y; zÞ � ~Eqðx; yÞdx dy (1)

where Pq ¼ �
1
2Re
RR ~Eq �

~H
n

q � êz dx dy is the mode normalized
power, kqz is the wave number of mode q, and ~J is the bunching
current component at frequency oU The current modulation (~J) is
phase matched to the radiation wave ( ~aq) and must be calculated
self-consistently from the electron force equations. With these
definitions, the power in mode q is given by j ~aqj

2Pq.
In this work we do not treat average particle acceleration or

deceleration, and the time-independent part of the electric field is
null. Therefore, the force equation for relativistic motion and the
continuity equation only have a time-dependent part:

mg0g
2
0z �ioþ V0z

d

dz

� �
� ~VðzÞ ¼ �e ~EpmðzÞ � e ~EscðzÞ (2.1)

êz �
d~J

dz
¼ �ioe ~NðzÞ (2.2)

where m is the electron mass, g0 is the electron Lorenz factor,
g0z ¼ g0/(1+a2

w/2) is the average axial Lorenz factor. The two axial
force components are the ponderomotive field [1,5]:

~EpmðzÞ ¼ ~aqðzÞEpmeikwz (3.1)

and the beam space-charge field:

div ~Esc ¼ �
e ~NðzÞ

�0
(3.2)

The linearized axial beam current density is

~JzðzÞ ¼ �eðV0z
~NðzÞ þ n0

~VðzÞÞ (4.1)

From Gauss law (Eq. (3.2)) and the continuity equation
(Eq. (2.2)), we obtain:

~EscðzÞ ¼ �
i

o�0
~JzðzÞ þ const: (4.2)

Using rot H ¼ J�ioe0E and neglecting transverse field variation
in the single mode or the one-dimension approximation
(d/dx ¼ d/dy ¼ 0), there is no z-component of rot H and the
constant has been set zero.

The force equation (Eq. (2.1)), the excitation equation (Eq. (1))
and the continuity equation (Eq. (2.2)) (with field definitions
(Eqs. (3.1) and (4.1))) constitute a self-consistent set of linear
differential equations. By using Laplace transform, these
differential equations are converted from real space (Z) to linear
algebraic equations in Laplace space (s). After some algebraic
transformations we obtain the known expression for the electro-
magnetic amplitude [1] and the corresponding expressions for the
beam dynamic parameters, which may be written in the matrix
form:

~aqðsþ ikqzÞ

~̂Jðsþ ikqz þ ikwÞ

~̂Vðsþ ikqz þ ikwÞ

0
BBBB@

1
CCCCA ¼

1

DðsÞ

ðs� iyÞ2 þ y2
p

ffiffiffiffiffiffiffi
Spb

Pq

s
ðs� iyÞ

J0

�i

ffiffiffiffiffiffiffi
Spb

Pq

s
o

V2
0z

�iQJ0

ffiffiffiffiffiffiffi
Pq

Spb

s
sðs� iyÞ �iJ0

o

V2
0z

s

�Q
V2

0z

o

ffiffiffiffiffiffiffi
Pq

Spb

s
ðs� iyÞ �

iy2
pV2

0z

J0o
s sðs� iyÞ

2
6666666666664

3
7777777777775

�

~aqð0Þ

~Jð0Þ

~Vð0Þ

0
BB@

1
CCA
where Spb ¼ ðI
2
b

ffiffiffiffiffiffiffi
m=�

p
=32Þðaw=gbzÞ

2
ð1=AemÞ, Ib ¼ J0Ae is the total

beam current, y ¼ (o/V0z)�kqz�kw is the detuning parameter,
yp ¼ ð�e=gzV0zÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0=�0mg

p
Þ is the relativistic longitudinal plasma

wavenumber, D(s) ¼ s((s�iy)2+yp
2)�iQ—FEL dispersion function

(Pierce equation) and Q is the gain factor.
The inverse Laplace transform of the general transfer matrix

(Eq. (5)) may be calculated by a standard procedure for a
polynomial fraction: the method of residues. Let Sj (j ¼ 1,y,3)
be the roots of the FEL dispersion function. Finally, the transfer
matrix can be derived in real space as

~aqðzÞ

~JðzÞ
~VðzÞ

0
B@

1
CA ¼ e�ikqzz

HEE HEJ HEV

HJE HJJ HJV

HVE HVJ HVV

2
64

3
75

~aqð0Þ

~Jð0Þ
~Vð0Þ

0
B@

1
CA (6)

where

HEE
ðoÞ ¼

X3

j¼1

Res
ðs� iyÞ2 þ y2

p

DðsÞ

 !
eSjz

HEJ
ðoÞ ¼

1

J0

ffiffiffiffiffiffiffi
Spb

Pq

s X3

j¼1

Res
s� iy
DðsÞ

� �
eSjz

HEV
ðoÞ ¼

�io

V2
0z

ffiffiffiffiffiffiffi
Spb

Pq

s X3

j¼1

Res
1

DðsÞ

� �
eSjz

HJE
ðoÞ ¼ �iQJ0

ffiffiffiffiffiffiffi
Pq

Ppb

s X3

j¼1

Res
1

DðsÞ

� �
eSjz�ikwz

HJJ
ðoÞ ¼

X3

j¼1

Res
sðs� iyÞ
DðsÞ

� �
eSjz�ikwz

HJV
ðoÞ ¼ �iJ0

o

V2
0z

X3

j¼1

Res
s

DðsÞ

� �
eSjz�ikwz

HVE
ðoÞ ¼ �

iQV2
0z

o

ffiffiffiffiffiffiffi
Pq

Ppb

s X3

j¼1

Res
s� iy
DðsÞ

� �
eSjz�ikwz

HVJ
ðoÞ ¼ �

iy2
pV2

0z

J0o

X3

j¼1

Res
s

DðsÞ

� �
eSjz�ikwz

HVV
ðoÞ ¼

X3

j¼1

Res
sðs� iyÞ
DðsÞ

� �
eSjz�ikwz.

3. Drift-free propagation

Evidently, in free space there is no coupling between the beam
current and an electromagnetic wave. So the ponderomotive force
in the force equation (Eq. (2.1)) is equal to zero and the axial
Lorenz factor (gz) can be replaced by the classic Lorenz factor (g0).
The set of differential equations for the e-beam propagation in a
drift-free section is then given by

mg3
0 �ioþ V0

d

dz

� �
� ~VðzÞ ¼ �e ~EscðzÞ

êz �
d~J

dz
¼ �ioe ~NðzÞ

~EscðzÞ ¼ �
i

o�0
~JðzÞ
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In the Laplace space:

~̂JðsÞ ¼
ðs� ðio=V0ÞÞ

~Jð0Þ � J0ðio=V2
0Þ
~Vð0Þ

ðs� ðio=V0ÞÞ
2
þ y2

pd

~̂VðsÞ ¼
ðs� ðio=V0ÞÞ

~Vð0Þ þ ðy2
pd

V2
0=ioJ0Þ

~Jð0Þ

ðs� ðio=V0ÞÞ
2
þ y2

pd

where ypd
¼ ð�e=gV0Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0=�0mg

p
Þ is the plasma wavenumber in

free space.
Finally, the transfer matrix for the free-drift propagation region

can be derived in real space as

~aqðLdÞ

~JðLdÞ

~VðLdÞ

0
BB@

1
CCA ¼ eijB

tReiðjR�jBÞ 0 0

0 cosðypd
LdÞ �

iJ0o
V2

0ypd

sinðypd
LdÞ

0
ypd

V2
0z

ioJ0
sinðypd

LdÞ cosðypd
LdÞ

2
666664

3
777775

�

~aqð0Þ

~Jð0Þ

~Vð0Þ

0
BB@

1
CCA (7)

where jR is the accumulated optical phase of the radiation mode
in the drift section and jB ¼ Ldo/V0. Drift sections are present in
many FEL system designs before and between wiggler sections. In
this form we save the EM-wave transfer factor (tR). It may contain
phase-shift and amplitude decay of the EM-signal in the optical
beam propagation path. If the radiation beam is not re-injected to
the wiggler after the drift-free region, tR is simply set to be zero.

In this paper we also use drift sections as a model for magnetic
dispersion sections which have form similar to Eq. (7) in the
space-charge regime.
Table 1
XUV-FEL parameters

Energy 750 MeV

Bunch charge 1 nC

RMS bunch duration 266 fs

e-Beam radius 77mm

Undulator parameters

Length of wiggler 1 2 m

Length of wiggler 2 10 m

Wiggler parameter aw 1

Period 45 mm

10-1

100

P
to

t, 
a.

u.
4. Application to SASE noise reduction in FEL

While SASE FEL is based on amplification of shot-noise, in a
coherently seeded FEL, SASE radiation is a noise source that
compromises the coherence of the FEL. To obtain coherence in a
seeded or pre-bunched FEL, the amplified coherent power should
exceed the SASE power considerably. In order to achieve this goal
it is desirable to reduce the SASE power as much as possible. We
employ the transfer matrix formulation to demonstrate reduction
of the SASE noise by proper adjustment of the propagation length
of plasma wave excitations in a drift region positioned after a
short wiggler section and preceding the long wiggler of the FEL
(Fig. 1). The total transfer matrix of a system like this is given by

Ĥ
tot
¼ Ĥ

wig2
� Ĥ

d
� Ĥ

wig1

where Ĥ
wig1

and Ĥ
wig2

are defined by Eq. (6) with z ¼ Lw1 and Lw2,

respectively, and Ĥ
d

is defined by Eq. (7).

To use the transfer matrix formulation for incoherent signal,
we need to interpret the frequency domain parameters as Fourier
components, namely

Eradðz; tÞ ¼
1

2p

Z 1
�1

X
q

~aqðz;oÞ ~Eq?ðr?Þe
�iot

" #
do.

In this case, the radiation field amplitude is varying over a
range of frequencies, and it needs to be described in terms of
Wiggler 1 Wiggler 2Drift Section

Fig. 1. Scheme of a High Gain FEL with an incorporated drift-free section.
spectral power:

dP

do
¼

2Pq

p
hj ~aqðo; LÞj2iT

T

Here T is an averaging time over which the beam statistics
remains stationary.

As an input excitation for SASE FEL we use current shot-noise.
For simplicity of the model we assume pure current shot-noise at
the entrance to the first wiggler and neglect any other input noise:

dPðJÞðo; LÞ
do

¼
2Pq

p
jHEJ

totðoÞj
2 hj
~Ið0;oÞj2i

TA2
e

where ~Ið0;oÞ ¼ ~Jð0;oÞAeand [10]

hjIð0;oÞj2i
T

¼ eIb

The total SASE power is then calculated as

Ptot ¼

Z
dP

do
do ¼

2Pq

pAe
eIb

Z
jHEJ

totðoÞj
2 do
5. Numerical example

We employ the formulation above to calculate the SASE
radiation spectral power and total power at the end of the second
wiggler of the High Gain FEL configuration as shown in Fig. 1. For
the beam and wiggler parameters we assume exemplary values
based on the 4GLS FEL design [11] (see Table 1). For simplicity we
assume that single-mode optical guiding is maintained along the
0 0.25 0.5 0.75 1
10-2

θpv*Ld/2π

Fig. 2. Total radiated power after the second wiggler section as function of the

normalized drift length.
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Fig. 3. Spectral power radiation for zero length of drift section (solid curve) and in

minimum shot-noise radiation (dashed curve).
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entire system, the mode cross-section area is equal to the beam
area (Aem ¼ Ae), and TR ¼ 0.

Fig. 2 displays in a logarithmic scale the significant control of the
SASE noise level that can be exercised by varying the length of the
drift-free region Ld. An effect of 100 times decrease in the SASE
power is attained when the plasma oscillation phase is yPd

LdEp/2
for which the current shot-noise nearly vanishes at the end of the
drift sections (see element HJJ

d in Eq. (7)). For the parameters of Table
1 this happens for Ld�12 m. In practice this can be accomplished
with a dispersive magnet section of much shorter length.
Fig. 3 shows comparatively the SASE radiation spectral power
for the cases of zero-drift region length (solid curve) and
maximum noise reduction point (dashed curve). It is seen that
the SASE spectrum remains similar in shape but reduced in
amplitude by a big factor.
6. Conclusions

A general linear transfer matrix formulation for FEL is
presented in the collective regime. This is employed to calculate
the SASE emission in an FEL configuration that incorporates a drift
section of controlled length. The numerical computation indicates
that it is possible to control the SASE emission level, and decrease
it by orders of magnitude due to space charge wave effects. It is
suggested that this concept can be adopted for enhancing the
coherence of future seeded coherent FELs.
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