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An expansion of guided free-electron laser radiation is presented in terms of eigenmodes of a

transversely varying dielectric waveguide. For a particular quadratic distribution of the refractive index,

the constituent eigenmode expansion basis is equivalent to a free-space paraxial basis evaluated at the

mode waist, which facilitates investigations of guided coupling to naturally diffracting Gaussian modes

over many Rayleigh lengths. A set of coupled differential equations is derived for the slowly varying field

mode amplitude coefficients and the longitudinal electron density bunching in the cold-beam fluid

approximation. Preliminary results calculated in this formulation show that selective amplification of

dominant higher-order modes, particularly azimuthal modes, can be achieved by seeding with higher-

order spatial modes and by selective density pre-bunching of the electron beam.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

High-gain free-electron lasers (FELs) exhibit radiation gain-
guiding, a well-known phenomena that occurs during light amplifi-
cation when the coherent interaction between the source electron
beam (e-beam) and the electromagnetic (EM) field introduces an
inward curvature in the phase front of the light, refracting it back
towards the lasing core of the e-beam [1–3]. The e-beam behaves like
an optical guide for the EM field, which eventually settles into a self-
similar eigenmode of the FEL system (supermode) that propagates
with a fixed transverse profile and spot size [4,5].

Guided modes have been previously explored analytically by
direct derivation of the eigenmode equations from the coupled
Maxwell–Vlasov equations [4,6–9], and through expansions of the
FEL signal fields in terms of step-index fiber modes [3],
eigenmodes of a hollow conducting-boundary waveguide [5],
and free-space paraxial waves [10,11]. Since, in an FEL, the e-beam
operates simultaneously as an optical source and as a guiding
structure, an EM mode description of the FEL light permits
investigation of the guiding characteristics, amplification and
coupling of individual EM modes to the e-beam. In the case of an
FEL that lacks an external waveguide structure (beyond the
e-beam), it is natural to explore the coupling to the ubiquitous
Hermite–Gaussian (HG) or Laguerre–Gaussian (LG) modes that
describe free-space wave propagation in the paraxial limit.
However, since these modes naturally diffract, we show that the
ll rights reserved.

emsing).
propagation and gain-guiding of these modes over many Rayleigh
lengths in an FEL interaction can be better investigated by an
expansion of the radiation field in terms of guided eigenmodes of
a quadratic index medium (QIM). These modes are described by
an eigenmode basis that is equivalent to the free-space paraxial
mode basis evaluated at the waist [12]. This connection to free-
space modes is useful for characterizing the propagating radiation
fields emitted from the FEL and for understanding input radiation
coupling, as in the case of seed radiation injection. Even though
the guiding mechanism in the FEL is different than in a QIM, the
FEL modes may be very similar in spatial profile to a simple
combination of QIM eigenmodes. In such cases, the LG or HG
eigenmodes of a QIM, with slowly growing amplitude coefficients,
serve as an excellent basis set for the FEL signal field.

The coupling of higher-order spatial modes to the e-beam in an
FEL is of increasing recent interest, particularly due to the
development of high-brightness, X-ray FELs for investigations of
molecular and atomic scale processes relevant to both physics and
biology. Spatial structure in the transverse intensity distribution
of such a coherent light source can be used to reveal specific
information about a target sample. Precise combinations of
Gaussian and hollow (donut) modes have been used, for example,
in Stimulated Emission Depletion (STED) microscopy as a tool for
sub-diffraction limited fluorescence imaging [13]. Hollow modes,
in the form of higher-order azimuthal LG modes, have recently
been a topic of intense research since such modes are known to
possess orbital angular momentum (OAM) as a consequence of an
azimuthal component of the linear momentum [14]. For next-
generation X-ray FELs that will have the ability to probe the
structure of matter on short length and time scales, the generation

www.sciencedirect.com/science/journal/nima
www.elsevier.com/locate/nima
dx.doi.org/10.1016/j.nima.2008.04.067
mailto:ehemsing@physics.ucla.edu


ARTICLE IN PRESS

E. Hemsing et al. / Nuclear Instruments and Methods in Physics Research A 593 (2008) 98–102 99
of such modes may be relevant, since the OAM can be transferred
from the photon field to the sample material. Such interactions
using conventional laser sources have been previously shown to
drive target particles to rotate or orbit the EM beam axis, allowing
the possibility of light driven mechanical devices, or the use of
torque from photons as a exploratory tool [15]. Though most OAM
modes in the longer wavelengths can be readily generated using
optical mode-conversion elements placed in the beam path,
modern high power X-ray FELs may render such extrinsic
methods impractical due to size constraints (if optical elements
are needed with feature sizes that scale as the wavelength) or
damage constraints. For this reason, it is of interest to explore the
possibility of generating dominant OAM modes through intrinsic
coupling to the source e-beam. The coupling to these modes, as
well as to other higher-order paraxial modes, can be investigated
directly by an expansion of the high-gain FEL radiation field in
terms of guided eigenmodes of a QIM.

In this work, we present a description of guided FEL light
through an expansion of the radiation field in terms of dielectric
waveguide eigenmodes. From the general expression for the
slowly varying field amplitudes, a quadratic form is taken for the
distribution of the virtual refractive index, yielding a set of guided
LG paraxial modes as a basis for the FEL radiation. A cold-beam
approximation is used to describe the e-beam current density, and
a set of coupled excitation equations is obtained for the FEL field
amplitudes and the axial e-beam density bunching. The coupling
to higher-order modes is discussed and preliminary results are
given from calculations of radiation seeding (FEL amplifier) and
helical pre-bunching of the e-beam to generate and amplify
higher-order spatial modes.
2. Field expansion and waveguide mode excitation

In a structure of axial translational symmetry, the radiation
fields can be expanded in terms of transverse radiation modes
with amplitudes that vary only as a function of the symmetry axis,
z. Neglecting backward propagating waves and approximating the
fields as dominantly transverse, the radiation field expansion in
terms of waveguide modes is

~E?ðrÞ ¼
X

q

CqðzÞ ~E?qðr?Þe
ikzqz (1)

and similarly for the magnetic field ~H?q ¼ ð1=ZqÞêz � ~E?q, where

kzq is the qth mode axial wavenumber, and Zq ¼ ðk=kzqÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
m0=�0

p
for

TE modes. The modes form a complete orthogonal set and are
normalized to the mode power

Pqdq;q0 ¼
1

2
Re

ZZ
½ ~E?qðr?Þ � ~H �

?q0 ðr?Þ� � êz d2r. (2)

The expansion mode ~E?q is an eigenmode of a dielectric medium

with transverse variation in the refractive index nðr?Þ. Assuming

rn2
5k, the eigenmode equation is

r2
?
~E?qðr?Þ þ ½nðr?Þ

2k2
� k2

zq�
~E?qðr?Þ ¼ 0 (3)

where k ¼ o=c. With Eqs. (1) and (3) the excitation equation for
the mode q in the presence of a source current is given by

d
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4Pq
e�ikzqz
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Cq0 ðzÞe

�iDkzqq0 zkd
q;q0 (4)

where

kd
q;q0 ¼

o�0
4Pq

ZZ
½nðr?Þ

2
� 1� ~E?q0 �

~E�?q d2r (5)
and Dkzqq0 ¼ kzq � kzq0 is the difference between the axial wave-

numbers of the modes q and q0. The term kd
q;q0 characterizes the

mode overlap in the dielectric and represents the virtual
polarization currents and charges that must be subtracted when
using eigenmodes of a dielectric waveguide, since here no such
structure exists in the physical system.
3. E-beam fluid model and coupled excitation equations

A linear plasma fluid model for a cold e-beam (negligible
energy spread) can be used to describe the signal excitation in an
FEL interaction [5]. A relativistic e-beam in an FEL experiences
transverse oscillations driven by the interaction with the periodic
structure. This motion drives an axial ponderomotive force that
modulates the axial electron velocity such that, to first-order, the
axial velocity of a cold beam within a static undulator can be
expanded as vzðr; tÞ ¼ vz0 þ Re½~vz1ðrÞe

�iot� where vz0 ¼ bzc is the
d.c. component and ~vz1 is the perturbation oscillating at signal
frequency o. Longitudinal variations in the velocity, like those
found in planar undulator systems, are ignored for the moment.
The velocity modulation ~vz1 develops a density bunching
modulation that is similarly described in a linear model as nðr; tÞ ¼
n0f ðr?Þ þ Re½ ~n1ðrÞe

�iot� where n0 is the on-axis electron density
and f ðr?Þ is the transverse density profile of the e-beam. The a.c.
component of the longitudinal current density results from both
the axial velocity and density perturbations and is
~JzðrÞ ¼ �e½n0f ðr?Þ~vz1ðrÞ þ vz0 ~n1ðrÞ�. If the transverse divergence of
the current perturbation is assumed small r? � ~J?5q~Jz=qz,
the continuity equation can be written as d~Jz=dz ¼ �ioe ~n1ðrÞ.
The transverse component of the current density that excites the
signal wave is written in terms of the density perturbation as

~J
?
ðrÞ ¼ �1

2e ~n1ðrÞ~v?we�ikwz (6)

where ~v?w is the transverse velocity vector and kw is the axial
wavenumber of the periodic undulator lattice.

From the expressions for the current density and the
relativistic force equation for the axial velocity perturbation, the
density bunching can be expressed as a second-order differential
equation [5]. It is useful to define the density bunching parameter

~iqðzÞ ¼
e

8Pq
e�iðo=vz0Þz

ZZ
~n1ðrÞ~v?w �

~E �?qðr?Þd
2r. (7)

By combining the density modulation equation from Ref. [5] with
Eqs. (4) and (7) we obtain a coupled form for the mode excitation
evolution equations:

d

dz
CqðzÞ ¼ ~iqðzÞe

iyqz � i
X

q0
kd

q;q0Cq0 ðzÞe
�iDkz;qq0 z

d2

dz2
þ y2

pr

" #
~iqðzÞ ¼ i

X
q0

Qq;q0Cq0 ðzÞe
�iyq0 z (8)

where yq ¼ o=vz0 � ðkzq þ kwÞ is the characteristic detuning para-
meter for a given mode. The coupling between the e-beam and the
FEL radiation field is given by the parameter Qq;q0 ¼ y2

pkq;q0 in
Eq. (8) where yp ¼ ðe2n0=gg2

z �0mev2
z0Þ

1=2 is the longitudinal plasma
wavenumber of a uniformly distributed e-beam profile used in a
1D model. The e-beam mode-coupling coefficient kq;q0 is

kq;q0 ¼
�0ðkzq0 þ kwÞ

8Pq

ZZ
f ðr?Þ ~Epm;q0 ~v?w �

~E �?q d2r. (9)

The polarization of the radiation field and the transverse
electron motion in the undulator are assumed to be in the same
direction (in FEL seeding scenarios this may not be a given). The
axial ponderomotive field is ~Epm;qðr?Þ ¼ 1

2 ½
~v?q �

~B �?w þ ~v
�
?w �

~B?q� � êz where ~v?q is the transverse electron velocity due to the
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Lorentz force of the qth mode of the signal field, ~B?w is the
transverse magnetic field of the undulator and ~B?q ¼ m0

~H?q. The
term JJ ¼ ½J0ðaÞ � J1ðaÞ�

2 can be included in the coupling parameter
kq;q0 for a strong planar undulator (JJ ¼ 1 for a helical undulator
geometry), where J0 and J1 are the first- and second-order Bessel
functions and a ¼ K2=ð4þ 2K2

Þ where K ¼ ej ~B?wj=mckw is the

undulator parameter. The relativistic factor is g ¼ gz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2=2

q
with g2

z ¼ 1=ð1� b2
z Þ.

The effects of longitudinal space charge in the beam are
consolidated into the finite-width beam parameter ypr ¼ r̄yp,
which assumes a single plasma mode. The plasma reduction
factor satisfies jr̄jp1, and can be calculated numerically for a
specific e-beam geometry [10]. In the limit that the e-beam radius
is large compared to the bunching wavelength, lgz5r0, one can
make the approximation r̄ ’ 1.

The first equation in Eqs. (8) describes the excitation of the
mode amplitude Cq due to the density perturbation and
transverse wiggling motion of the electrons throughout the FEL
interaction. The second equation in Eqs. (8) describes the
evolution of the modal density bunching ~iq through the e-beam
coupling to the expansion modes.

The initial conditions for Eqs. (8) specify the operating
characteristic of the FEL. For example, when operating as a
single-pass amplifier (seeded FEL) there is negligible initial
density and velocity modulation ~iqð0Þ;d~iqðzÞ=dzjz¼0 ¼ 0 and the
initial seed field is non-zero Cqð0Þa0. Alternately, for a self-
amplified spontaneous emission FEL (SASE), the amplified shot
noise can be related to the pre-bunching conditions
~iqð0Þa0;d~iqðzÞ=dzjz¼0 ¼ 0 and the input signal field vanishes
Cqð0Þ ¼ 0.
4. LG mode expansion

The choice of the refractive index nðr?Þ in Eq. (3) determines
the form of the basis expansion used in the excitation equations
(8). For example, a step-profile optical fiber model yields Bessel
and Hankel functions for the field inside and outside, respectively,
[3]. For a continuous, weakly guiding QIM of the form
n2ðrÞ ¼ n2

0 � ðr=zRÞ
2, where zR ¼ kw2

0=2 is the Rayleigh length and
w0 is the characteristic waist size of the fundamental mode, the
expansion basis consists of a complete orthogonal set of LG
functions [16–18]. Since LG modes also occur as solutions to the
cylindrical paraxial wave equation, this choice for the refractive
index identifies the desired connection between the guided mode
expansion and a description of the FEL system using paraxial,
diffracting modes of free-space [12].

LG modes provide a convenient working basis to model the FEL
radiation for geometries that are largely axisymmetric over the
interaction length. The complete LG mode basis can also be
readily transformed into a basis of HG functions, suitable for
rectilinear geometries. The LG modes have the form

~E?;p;lðr;fÞ / e�ilfe�r2=w2
0

r
ffiffiffi
2
p

w0

 !jlj
Ljljp

2r2

w2
0

 !
(10)

where Ll
p is an associated Laguerre polynomial. The mode index q

takes on two values ðp; lÞ corresponding to the radial and
azimuthal mode indices, respectively. The axial wavenumber
associated with each mode kzq ¼ kz;p;l is given by

k2
z;p;l ¼ k2n2

0 �
4

w2
0

ð2pþ lþ 1Þ. (11)

The refractive index on axis of the virtual dielectric can be taken
as n2

0 ’ 1. The expansion waist size w0 is arbitrary, but can be
chosen to be on the order of the transverse e-beam size r0 to
facilitate efficiency in modeling the beam evolution with only a
finite number of expansion modes.

It is noted that the LG modes of Eq. (10), as well as those of a
free-space paraxial system, possess an axial field component for
both the electric and magnetic fields. The magnitude of each
respective axial field component is on the order of l=w0 relative to
the principle transverse component, and can be suitably
neglected, validating the approximation made in deriving the
amplitude evolution equation for transverse fields in Eq. (4) [19].
5. OAM mode amplification in a cold beam

The coupling of the e-beam to azimuthal modes can be shown
by inspection of Eq. (9) if the coupling coefficient kp;l;p0 ;l0 yields a
non-zero value for modes with jlj40. In general, a transverse e-
beam distribution given by the real function f ðr?Þ will couple to
both þl and �l modes equally. The resulting signal field may have
azimuthal structure, but will not possess a net value of OAM.
Generation of a dominant OAM mode can occur if a preferential
geometric chirality is intrinsic to the system. Such is the case if,
for example, either the seed laser contains OAM or if the e-beam
has a strong helical perturbation along the longitudinal axis that
will excite a helical phase structure in the radiation field.

It is noted that, in the LG mode description, since each photon
generated by the e-beam with azimuthal mode number l has l_
units of OAM, the source e-beam will experience an opposing
torque. This small effect on the transverse velocity can be included
in the expression for the transverse current through the term ~v?q.
It is typically small compared to the transverse velocity due to the
undulator (j~v?q=~v?wj�j ~B?q=2g2

z
~B?wj) and is presently neglected.

Amplification of a pure OAM input mode (OAM seeding with
SASE effects turned off) can be examined with the injection of a
ls40 LG mode at the undulator entrance. The mode couples to the
e-beam at the characteristic mode detuning value y ¼ yps ;ls

þ

kz;ps ;ls
� kz. The calculated evolution of both the radiation spot size

and the differential power gain for three LG seed modes is shown
in Fig. 1. Input parameters from the Visible to Infrared SASE or
Seeded Amplifier (VISA) FEL at Brookhaven National Laboratory
are used in the calculations [21–23]. The VISA FEL is ideal for
investigations of LG mode amplification since it has previously
produced both hollow and spiral transverse EM intensity
patterns that are suggestive of single or multiple interfering
OAM modes [24].

A Gaussian transverse e-beam density distribution,
f ðrÞ ¼ expð�r2=r2

0Þ, is assumed. Results indicate a decrease in the
differential power gain for an increase in the azimuthal mode
number of the seed field mode. This is attributed to the reduction
in the effective coupling between the e-beam and the field for
increasing l values, as given by Eq. (9), since the radial profile of
modes with jlja0 vanishes on axis. It is interesting to note that, in
the cold-beam approximation with a axisymmetric Gaussian
density distribution, there is no cross-coupling between modes
where lal0 in Eq. (9). As a result, the azimuthal mode number of
the input beam is preserved and the characteristic spot size of the
FEL supermode varies accordingly.

Generation of coherent OAM light without a seed field input
can be investigated using a dominant helical density perturbation
on the e-beam. The density term in Eq. (7) can be written as a sum
over helical perturbations on the Gaussian e-beam,

~n1 ¼ n0e�r2=r2
0

X
l

~�le
�ilf (12)

where the perturbation amplitudes satisfy j~�lj51. Non-zero values
for ~�0 identify a pre-bunching perturbation at the fundamental
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that can be related to a SASE startup scenario. Fig. 2 shows the
transverse intensity and phase at the undulator exit for a solution
of the excitation equations with an initial density perturbation of
~�0 ¼ 10�5 and ~�1 ¼ 10�1 for the VISA FEL. The relative magnitude
of each amplitude is determined by iteration, such that the
higher-order hollow mode becomes visibly dominant in the
transverse intensity profile. It is particularly clear from the phase
that the structure is that of a dominant ðp; lÞ ¼ ð0;1Þ LG mode, and
that the field is gain-guided from the appearance of inward
curvature near the axis.

These results suggest that, since an initial bunching perturba-
tion at the fundamental mode typically dominates the interaction,
amplification of a dominant azimuthal mode requires a dominant
azimuthal excitation at startup. We have shown that this can be
achieved either by injection of an OAM seed mode with the
appropriate intensity amplitude (if available at the operating
frequency), or by introduction of the appropriate spatial perturba-
tion that is not azimuthally symmetric to the injected beam. The
magnitude of these respective initial conditions provides a
guideline for required parameters needed to obtain OAM modes
in the presence of SASE, and will be explored further in future
work.
6. Conclusions

An expansion of the EM field of a high-gain FEL in terms of
the eigenmodes of a weakly guiding virtual dielectric is shown.
A quadratic dependence on the transverse refractive index yields
guided LG eigenmodes of the paraxial wave equation, facilitating a
description of FEL mode coupling to naturally occurring radiation
fields. The amplification of higher-order LG modes with OAM is
briefly investigated in this formalism and is suggested as a novel
exploratory tool for future FEL light sources. Preliminary results
show high-gain of a dominant OAM mode can be achieved in a
cold beam either by OAM seeding or with a helical density
perturbation in the e-beam.
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