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Generation of electron Airy beams
Noa Voloch-Bloch1, Yossi Lereah1, Yigal Lilach1, Avraham Gover1 & Ady Arie1

Within the framework of quantum mechanics, a unique particle
wave packet exists1 in the form of the Airy function2,3. Its counter-
intuitive properties are revealed as it propagates in time or space:
the quantum probability wave packet preserves its shape despite
dispersion or diffraction and propagates along a parabolic caustic
trajectory, even though no force is applied. This does not contra-
dict Newton’s laws of motion, because the wave packet centroid
propagates along a straight line. Nearly 30 years later, this wave
packet, known as an accelerating Airy beam, was realized4 in the
optical domain; later it was generalized to an orthogonal and com-
plete family of beams5 that propagate along parabolic trajectories,
as well as to beams that propagate along arbitrary convex trajec-
tories6. Here we report the experimental generation and obser-
vation of the Airy beams of free electrons. These electron Airy
beams were generated by diffraction of electrons through a nano-
scale hologram7–9, which imprinted on the electrons’ wavefunction
a cubic phase modulation in the transverse plane. The highest-
intensity lobes of the generated beams indeed followed parabolic
trajectories. We directly observed a non-spreading electron wave-
function that self-heals10, restoring its original shape after passing
an obstacle. This holographic generation of electron Airy beams
opens up new avenues for steering electronic wave packets like
their photonic counterparts, because the wave packets can be
imprinted with arbitrary shapes5 or trajectories6.

Curved light is an intriguing caustic phenomenon2 common in
nature and in everyday life; examples range from rainbows3 to the
bright light patterns that appear on the sea floor when sun shines on
rippling water waves2. Caustics, already studied in the nineteenth
century, led George Biddell Airy to discover the Airy function3.
When the quantum mechanical probability density of a particle is
imposed with the initial shape of an Airy function, the regions of
maximum probability, that is, the intensity peaks of the Airy function,
preserve their shape11 and stay localized around parabolic trajectories
in space, similar to that of a freely propagating projectile experiencing
a transverse accelerating force. As already pointed out, this accelerat-
ing Airy wave packet1 does not contradict Ehrenfest’s theorem
(embodying Newton’s second law of motion), as the wave packet
centroid travels along a straight path. The evolution of a light beam
in space corresponds to the paraxial Helmholtz equation, which re-
sembles the Schrödinger equation. This analogy led to the discovery
and the experimental realization of the optical Airy beams4. The intri-
guing propagation dynamics of Airy beams is a caustic wave pheno-
menon that can be understood by ray analysis: the wave packet is
composed of a family of rays that coalesce along a curved boundary12.
The local angular momentum of Airy beams changes as they propa-
gate, but the total momentum and energy are conserved13. Various
applications followed the discovery of optical Airy beams, including
microparticle manipulation14, generation of plasma channels in air
and water15, surface Airy plasmons16–18 and applications in lasers19,20

and in nonlinear optics21. All of these rely on the Airy form of the wave
packet of photons.

The spatial evolution of the envelope, Y , of an electron’s wave-
function can be expressed using the paraxial Helmholtz equation
(Supplementary Information, section 1):

+2
\z2ikB

L
Lz

� �
Y~0

where +2
\~L2=Lx2zL2=Ly2 is the transverse derivative and kB~

p=B~2p=lB is the de Broglie wavenumber of the electron (B,
Planck’s constant divided by 2p). This equation has the same form
as that of the Schrödinger equation. However, rather than describing
the time evolution of the electron’s wavefunction, it describes the
wavefunction’s evolution as it propagates in space. This is another
manifestation of the analogy, widely used in optics, between beam
diffraction in space and pulse dispersion in time. When the initial
wavefunction of the electron is an Airy function (Ai), Y(x,y,z~0)~
Ai(x=x0)Ai(y=y0), where x0 and y0 are characteristic length scales, the
general solution for the wave packet is1,10,14

Y(x,y,z)~Ai
x
x0

{
z2

4k2
Bx4

0

� �
Ai

y
y0

{
z2

4k2
By4

0

� �

|exp i
xz

2kBx3
0
{i

z3

12k3
Bx6

0

� �

|exp i
yz

2kBy3
0
{i

z3

12k3
By6

0

� �
ð1Þ

It is then clear from equation (1) that jY j2 preserves its shape and
follows a parabolic trajectory. The parabolic trajectory is described by22

x(z)~z2=4k2
Bx3

0, y(z)~z2=4k2
By3

0. The ideal Airy beam carries an infi-
nite amount of energy, whereas in practice the Airy beam is truncated,
having a finite energy. The finite Airy beam is obtained by multiplying
the Airy function with an exponential or Gaussian window4. Never-
theless, over a finite distance, the finite Airy beam has all the special
characteristics of the infinite Airy beam such as slow diffraction,
curved trajectory and self-healing.

In optics, finite Airy beams were experimentally obtained by passing
a Gaussian beam through a phase mask imprinting a cubic phase
modulation in the transverse direction4, and then doing an optical
Fourier transform (the Fourier transform of a function having a cubic
phase modulation results in an Airy function). Here we use electrons
instead of photons. These electrons pass through a hologram that
adds a transverse cubic phase, exp(iQ(x,y))~exp(icxx3)exp(icyy3), to
the wavefunction. Our hologram design method was to construct a
binary diffraction grating with the following shape23,24:

h(x,y)~
1
2

h0(sgnfcos½2px=Lzcxx3zcyy3�zDcyclegz1)

In this way, a cubic phase is imposed on a carrier frequency. The carrier
period is L, h0 is the ridge height of the binary phase mask and Dcycle is
an arbitrary duty cycle factor. When electrons (or light) diffract from
the binary structure, it decomposes into different diffraction orders;
the complex amplitude of the mth-order diffracted beam is propor-
tional to exp(imw(x,y)). In the special case of a cubic phase modulation,
each diffraction order is superimposed with a different cubic phase and
so has an amplitude proportional to exp(im(cxx3zcyy3)). Each order
therefore propagates along a different parabolic trajectory with a quad-
ratic coefficient proportional to 1=m (Supplementary Information,
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section 2). We name this diffraction pattern the ‘Airy lattice’ (Figs 1
and 2). The general parametric equations of the trajectories of order
m are
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where G~2p=L is the reciprocal lattice vector of the transmission
hologram and f is the focal length of the lens. Note that the y trajec-
tories include only a quadratic term, whereas the x trajectories contain
both a quadratic term and a linear term, owing to the modulation of the
carrier frequency. The Airy lattice is a novel type of lattice that diffracts
but does not spread. Although each order diffracts in a different dir-
ection, each order stays localized and anomalously bends.

In our experiment, we use a field-emission-gun transmission elec-
tron microscope (FEG-TEM), operating at 200 keV. The de Broglie
wavelength, including relativistic correction in this case, is approxi-
mately 2.5 pm. Therefore, to generate the inner structure of Airy beams
as well as the spatial separation of different orders, we used nanoscale
holograms (Supplementary Information, section 3). The micrographs
of these nanoscale holograms are shown in Fig. 3b, c. The Fourier
transform of the modulated wavefunction is done using a set of

magnetic lenses, so that an electron Airy beam is obtained in the back
focal plane of the FEG-TEM. This method is analogous to the method
used to generate optical Airy beams4, the only difference being that we
manipulate electrons rather than photons. Some of the results from the
Airy profiles are shown in Fig. 3d and Fig. 3e. Because the measure-
ment plane is located at a fixed position in our FEG-TEM, we varied
the focal lengths of the magnetic lenses to observe the formation and
evolution of the electron Airy wave packet in space (Fig. 3a). The
experiment details are given in Supplementary Information, section 4.

In the first experiment, we explored the parabolic trajectories of
electron Airy beams (Fig. 1). We recorded profiles using an electron
beam with a relatively large area (100mm 3 100mm). Figure 1a shows
the numerical (simulated using the beam propagation numerical
method21) and the experimental transverse profiles of the diffracted
electrons at several propagation distances behind the Fourier plane.
The viewed diffracting orders are 11, 21, 12 and 22. As seen, Airy
orders 11 and 21 anomalously converge in x and eventually collide,
unlike the normal diffraction of Bragg peaks, which linearly diverge. As
expected, the orders diverge in y. Unlike orders 11 and 21, orders 12
and 22 are almost constant in x and only slightly diverge in y. We
traced the trajectories of the highest intensity lobe, of orders 11 and
12. The projections of the deflections of the orders into the x–z and
y–z planes are shown in Fig. 1b. The values of x(z) and y(z) are given by
pixel numbers, multiplied by 25mm per pixel. The measured parabolic
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Figure 1 | Exploring the propagation dynamics of the Airy lattice.
a, Comparison of micrographs of the transverse (x, y) profiles of the Airy lattice
with simulation results, revealing the propagation dynamics of orders 11, 21,
12 and 22. b, The simulated trajectories of multiple Airy orders projected into
the x–z plane versus the experimental results for orders 11 and 12 (y–z plane

also shown). The error bars indicate the range of the estimated systematic error
in the measurements. c, Propagation of the Airy lattice. d, Experimental
micrograph revealing the first five Airy orders. e, The deflection in y of each
order m is proportional to 1/m.
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trajectories are in the shape given by the analytical trajectories in
equation (2). We note that the summation of the deflection of the
carrier and the deflection in x is equal to the deflection in y. Also,
the transverse linear coefficient increases by a factor of m, whereas
the quadratic term decreases by a factor of 1/m. This is why Airy beams
of high order have almost linear trajectories like the Bragg peaks. This
also explains the experimental results and the differences in propaga-
tion between orders 1 and 21 (which eventually collide in x) and
orders 2 and 22. The fitting coefficients for the experimental results
are presented in Table 1.

Another way to find the quadratic coefficient of the parabolic tra-
jectory is by using only a single-profile picture at a fixed distance, z,
from the Fourier plane (Fig. 1c–e). A single-profile picture reveals
several Airy orders. Each Airy order diffracts with a different parabolic
trajectory, having a different quadratic coefficient which is propor-
tional to 1/m. The deflection in y of each order in a single propagation
plane (z has a fixed value) is Dy~C1=m, where C1 is a quadratic
coefficient. This causes the Airy lattice to change its proportions.
The diffraction orders that were located equidistantly in the Fourier
plane, z 5 0, diverge non-uniformly, and their proportions are not
maintained (Fig. 1c and Supplementary Information, section 2). This
is another demonstration of the parabolic propagation dynamics,
which have been verified experimentally (Fig. 1d). The fitting curve

of the experimental results presented in Fig. 1e is Dy~193:7=m,
matching the theoretical prediction. Detailed explanation of the para-
bolic trajectories measurement is given in Supplementary Informa-
tion, sections 2 and 5. The collision between Airy beams represents a
new way of interfering electron beams. The electron beam is separated
into two diffraction orders, but these beams re-merge owing to their
opposite directions (Fig. 1a, b). The measured deflection in x and y was
2.5 mm over an effective distance of 150 m.

We compared the electrons diffracting from an Airy grating with
the electrons diffracting from a reference periodic Bragg grating. We
simulated the evolution of electrons (Fig. 2a) diffracted from a periodic
Bragg grating and from an Airy grating with the same carrier period.
(Only in this case did we use different input beam areas for Airy and
Bragg lattices, to visualize the trajectories.) As expected, the diffraction
from a Bragg lattice is linear and outward; however, the diffraction
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Figure 2 | Comparison between electrons diffracting from an Airy grating
and the electrons diffracting from a reference periodic Bragg grating. a, The
diffraction from a Bragg lattice is normally outward at an angle9 am~mlB=L.
b, The diffraction from an Airy grating is anomalous because the lattice peaks
are curved inward. c–h, Experimental profile micrographs of different
propagation planes. Notice that the zeroth order looks the same in both the Airy
lattice and the Bragg lattice. The Airy orders are very localized and maintain
high intensities compared with the Bragg orders.
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Figure 3 | Holographic generation of an electron Airy beam. a, An electron
beam is transmitted through a nanofabricated hologram, with a cubic phase
modulation. It is then focused by a magnetic lens. The Airy wave packet is
formed at the back focal plane and recorded as it propagates. The electron Airy
beam is a shape-preserving beam that evolves along a curved trajectory. It also
self-heals after encountering obstacles. b, c, TEM micrographs of the nanoscale
holograms: two-dimensional Airy on a spatial carrier frequency (b); two-
dimensional Airy without a carrier (c). d, e, Experimental wave packet
micrographs of two-dimensional (d) and one-dimensional (e) electron Airy
beams.

Table 1 | Quadratic fit results
Coefficient C1 (m21) C2 C3 (m)

m 5 1 Dx 21.022e27 6 1.51e29 7.141e26 6 2.7e27 1.43e23 6 4e25

Dy 1.022e27 6 1.51e29 0 21.41e24 6 2e25

m 5 2 Dx 24.869e28 6 1.02e29 1.312e25 6 2.7e27 2.68e23 6 3.75e25

Dy 4.869e28 6 1.02e29 0 28.59e25 6 1.42e25

Fits to Dx, Dy 5 C1z2 1 C2z 1 C3 and 95% confidence intervals calculated from trough curve fitting.
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from the Airy lattice is anomalously bent (inwards for low-index dif-
fraction orders). In the second experiment, we recorded profiles
(Fig. 2) using a relatively narrow input beam area (10mm 3 10mm),
letting the zero-order diffraction peak spread out to enable visualiza-
tion of the difference between the evolution of spreading Bragg peaks
and that of the shape-preserving Airy lattice peaks. The zeroth order of
the Airy lattice is the only one that is not imprinted with a cubic phase;
thus, it spreads in the normal manner. The zeroth order appears as a
large circular spot in the middle of the frame. We can also see diffrac-
tion orders 11, 21, 12 and 22. At an effective distance of 100 m, the
diffraction patterns from the Bragg lattice (as well as from the zeroth
order of the Airy lattice) spread out linearly, become very large and
decay in intensity. However, for m= 0 the curved Airy peaks stay
confined to a very small area and maintain their high intensity. This
difference is emphasized when calculating the full-widths at half-
maximum (FWHMs) of the diffracted orders (Table 2).

We also measured the self-healing properties of electron Airy beams
(Fig. 4). For this purpose, we used a glass wire placed in the diffraction
plane. This wire is conventionally used as a bi-prism in electron holo-
graphy25, but in our case it was used simply to block parts of the beam.
Increasing the current of the objective lens raised the Airy beam above
the wire. Then we adjusted the wire to block Airy orders 21 and 11
simultaneously. We blocked the different orders in a slightly different
manner. We then gradually increased the current of the diffraction
lens and observed self-healing of the two orders10. The wave packets
reconstructed their shapes after passing the blocking wire. As shown,
the two orders self-healed differently. Order 1 self-healed faster than
order 21. We also simulated the self-healing process and the numeri-
cal results are in a good agreement with the experimental results.

We have experimentally observed a non-spreading electron Airy
wave packet whose highest-intensity quantum probability peaks bend
in the absence of an external force. Our technique for generating
electron Airy beams is analogous to the optical method4, but makes
use of recent advances in electron beam shaping7 and nanoscale holo-
gram fabrication techniques8,9. We measured the wave packet trajec-
tories in two different ways. Our method of holographically generating

electron Airy beams suggests a general means of manipulating parti-
cles’ wave packet trajectories by engineering their initial probability
density wave functions. Our experimental results include demonstra-
tion of electron wave packet trajectories that show shape and size
preservation over an effective length of more than 100 m. Such non-
spreading Airy electron wave packets may be useful in improving the
resolution properties of TEM imaging, because they have an extremely
large depth of focus. Furthermore, we have shown that these electron
wave packets self-heal and reconstruct their original shape after pas-
sing an obstacle. An interesting feature of these beams is that different
diffraction orders with quadratic terms of opposite sign can be merged
and possibly used as a new type of electron wave interferometer. The
holographic generation of Airy electron beams can be generalized
because recent studies have shown that optical Airy beams can be
designed with arbitrary spatial shapes5 and can propagate along arbit-
rary trajectories6. It may also be possible to use these beams to study
electron spin–orbit interaction effects in the relativistic regime, simi-
larly to recent studies of electron vortices26. Finally, there may be other
ways of manipulating and shaping the trajectories and the self-healing
properties of Airy beams, based on the ability to externally influence
electrons using magnetic or electric potentials27.

METHODS SUMMARY
Our analytical method of designing nanoscale holograms for electrons, imposed
with any phase, is described in Supplementary Information, section 2. Our tech-
nique for determining the propagation dynamics of an electron beam, which we
showed can be modelled numerically, is reported in Supplementary Information,
section 5. We also developed a way of imaging electron wave packets with high
magnification (Supplementary Information, section 4) and a way of manufactur-
ing holographic masks for electrons with high writing resolution (Supplementary
Information, section 3).
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