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Abstract. The field of radiation emission from electron beams is reviewed with special
reference to work related to free-electron lasers. Different schemes of interaction in periodic
structures, electromagnetic slow-wave structures, and in transverse confining force are
distinguished. Various effects and devices such as traveling wave amplifiers, Smith-Purcell
radiators, Cerenkov and bremsstrahlung-free electron lasers, cyclotron resonance masers,
coherent bremsstrahlung and channeling radiation are discussed and the differences and
relations among them are explained. A simple comprehensive model is developed to describe
electron-beam interaction with an clectromagnetic wave in periodic electromagnetic
structures. The model is general enough to describe both collective and single-electron modes
of interaction and quantum mechanical, classical and Fermi degenerate regimes. Simplified
expressions are developed for the gain by stimulated emission of radiation and for gain
conditions of the Smith-Purcell-Cerenkov type free-electron lasers under conditions of very

thin electron beams and infinite interaction length.

PACS: 32, 42.60, 84

The present paper is concerned with the problem of
electromagnetic wave interactions with electron beams
and free electron lasers. Using a comprehensive physi-
cal point of view we will discuss the different regimes of
interactions (single-electron and collective interaction)
and explain the common features and the differences
between various effects and devices like Smith-Purcell
radiation, traveling wave amplifiers, magnetic
bremsstrahlung, free-electron lasers, Cerenkov lasers,
cyclotron resonance masers, channeling radiation and
coherent bremsstrahlung.

While we will first review briefly the present research on
free-electron lasers and discuss the above listed effects
by means ol a general qualitative model, we will
consequently embark in greater detail on the analysis of
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the special case of interactions in slow electromagnetic
wave structures (Cerenkov-Smith-Purcell free electron
lasers). The simple model used, instructively delineates
the transitions between the single-electron and col-
lective interaction regimes and between conventional
laser theory and electron tube theories of the electron
beam-electromagnetic wave interactions.

In a guantum mechanical model the first-order in-
teraction of a free electron with a radiation field
involves a radiative transition of the electron from an
initial state |i) to a final state | /). The transition rate is
proportional to the square of the matrix element of the
interaction Hamiltonian which to [irst order in the
vector potential A is
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Fig. 1. Schematic one dimensional illustration of free-electron
radiative transition. fy(k) is the electron beam distribution function

If we consider free-electron wave functions and a plane
electromagnetic wave

b
> = Vﬂp(a kv —idt/h)

|f)=%cxp(ikf-r—ié”ft/h) (2)

A(r, 1) =Algq, w)exp (igr —iwt)

we find that the matrix element in (1) is nonvanishing
only if both conditions of momentum and energy
conservation are satisfied.

88, =t 3)
ki—k,=q )

so radiative clectronic transitions can take place only
between electronic states which satisfy (3) and (4).

Radiative transitions can take place from the higher
electronic state to a lower one, emitting a photon, or
from a lower state to a higher one absorbing a photon.
Figure 1 is a one-dimensional schematic description of
radiative emission. An electronic transition takes place
from state k_, to state k_,, emitting a photon with energy
&,,,— b, =ho 5

and wave number
kp—k..=4d, (6)

where we assumed that the electromagnetic field propa-
gates in the z direction,

I the electron population at k, =k, is higher than the
population at k,=k_,

fo(k:b) > fo(k:a) LI (7)

then there will be more radiative emission transitions
than radiative absorption, and we will observe net
amplification of an electromagnetic wave due Lo stimu-
lated transitions of the interacting electrons at states
k =k, and k. =k, {see Fig. 1). This gain condition,
referred to as “the population inversion condition” is
completely equivalent to the gain condition in con-
ventional lasers. Here the populition inversion is
attained by simply accelerating the ¢lectrons so that the
peak of their distribution ko will be shifted from zero
(see Fig. 1). If ko=0 (as in thermal equilibrium of the
electron gas) only stimulated absorption can take place.
If population inversion obtains it is straightforward to
show from (3) and (4) that the group velocity of the
electron beam exceeds the phase velocity of the elec-
tromagnetic wave

V> Vs (8)

where vgzl/ha/akzzé”,‘:lk‘:ku and v, =w/q. This gain
condition will be referred to as the “Cerenkov con-
dition”. It is geometrically demonstrated in the one-
dimensional example of Fig. 1, meaning simply that the
slope of the tangent to the energy curve at k,=kq is
larger than the slope of the chord (/& —Er N
(k:b_ kzu) =w/q = vph'

In free space (v, = w/q= ¢) Egs. (3) and (4) can never be
simultaneously satisfied, and a situation where the
electron-beam group velocity exceeds the speed of light
¢, (8), cannot take place. The only solution of (3, 4) in
free space is the null solution w=4g=0. In order to
balance the conservation Eqs. (3, 4) for nonvanishing
frequencies, a perturbation must be introduced to the
electron electromagnetic wave system which will effect
either the electron wave or the electromagnetic wave, $0
that interaction between the electrons and the elec-
tromagnetic wave and possibly lasing can take place’.
We henceforward discuss three techniques to introduce
such a perturbation which also defines three kinds of
free-electron lasers.

Cerenkov-Smith-Purcell Lasers

If the electromagnetic wave propagates in matter with
index of refraction n> 1, then v, =¢/n is smaller than
the speed of light ¢ and there is no reason why the
Cerenkov condition (8) cannot be satisfied and ra-
diation gain becomes available. The satisfaction of the
conservation Egs. (3,4) becomes possible in this case by
perturbing the electromagnetic wave and increasing its
momentum ¢ =nawfc {n>> 1) so that the conservation of
momentum condition can be satisfied.

! 1f the clectron wave is being perturbed the clectron is no longer a
free electron and possibly the choice of name *free-clectron lasers”
may be somewhat disturbing. “Electron-beam lasers™ muy be & more
accurate name to describe the devices presently discussed



Interactions of Electron Beams with Electromagnetic Waves 123

Satisfaction of (8) is also possible if the electromagnetic
wave propagates in a “periodic slow wave structure”
[17, in which the eigenmodes of the electromagnetic
wave have components which propagate at phase
velocity much smalier than the speed of light.

If the periodic structure has periodicity in the z
direction with period L, then its electromagnetic
eigenmode waves have the Floguet-Bloch form

A= Y AdeyesplB,a—ion L
2
ﬁmzﬁo-}_nl%' (10)

Apparently, the components of the wave {space har-
monics) may have a phase velocity considerably lower
than the speed of light c. For example, the first-order
space harmonic (m=1) has the phase velocity
U, = /B, =0/, +2nf/L)<c and the inequality be-
comes stronger, the smaller is the period L.

We can understand that radiative transitions can take
place in a periodic structure also by noticing that
instead of the third Eq. (2) we can use (9) in {1). In free
space, we know that the matrix element vanished
because (3) would not be satisfied simultaneously with
(4). However, in the periodic structure where we use (9),
we can have a nonvanishing matrix element if we
choose the period L so that (4) is satisfied with B,
instead of ¢, so that

kl'—'kf=ﬁm (11)

instead of (4). We will call this phase matching through
the m order space harmonic of the electromagnetic
wave. Physically, it can be argued that we used the
“crystal momentum” m2n/L in order to balance the
unbalanced momentum conservation Eq. (4). This
process is illustrated in Figs. 1 and 2a.

Spontaneous emission of radiation in the visible fre-
quency regime from an electron beam propagating ina
periodic structure (optical grating) was first observed
by Smith and Purcell [2]. Also the Traveling Wave
(TW) tube amplifier is a device which is based on
electron beam interaction with electromagnetic wave
(in the microwave regime) in a periodic structure (helix,
periodic waveguide) which effects the electromagnetic
wave. In contrast to the Smith-Purcell effect the TW
tubes operate usually as stimulated emission devices.
They also operate in the collective electron interaction
regime, while the Smith-Purcell radiation is basically a
single electron interaction effect. These differences will
be explained in greater detail in the following sections.

Bremsstrahlung Lasers

It is possible to construct a periodic structure that will
effect the electrons in the electron beam instead of the
electromagnetic wave as in the previous case. The
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Fig. 2a—c. The three basic schemes of electron interaction with
electro-magnetic wave in the longitudinal direction in a periodic
structure: (a) Involving space harmonic (mth order) of the elec-
tromagnetic wave ; (b and (c} [nvolving space harmonics (i and —m
order) of the final and initial electron stales waves, respectively

periodic structure can be a magnetostatic or elec-
trostatic field which varies periodically along the direc-
tion of the beam propagation.

Just as in the previous case, the electron waves will have
the Floquet-Bloch form. Consequentiy, radiative tran-
sitions can take place due to interaction via space
harmonics of the initial or final electron state waves.
These processes are described schematically in Fig. 2b,
c. In addition to the process which involves phase
matched interaction through the m order space har-
monic of the electromagnetic wave (Fig.2a), we may
have a process which involves the m order space
harmonic of the low energy electron state (Fig. 2b) or
the —m order space harmonic of the high energy
electron state (Fig. 2¢). The lattice momentum
|G|=m2n/L which is picked up this time by the
electron waves, again helps to balance the momentum
conservation Eq. (4) and make electron radiative tran-
sitions possible.

The Cerenkov-Smith-Purcell laser can be compared
schematically with the bremsstrahlung laser by using
Feynman diagrams, which describe the same three
processes shown in Fig. 2 in terms of the [ree-space
modes {or single harmonic waves) of electron waves and
electromagnetic waves. Processes (b} and (c) of Fig. 3
correspond to the conventional Feynman diagrams for
bremsstrahlung. In (b) an electron emits a photon and
the momentum is conserved due to the elastic scattering
of the electron in its final state, picking up momentum G
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Fig. 3a—c. Feynman diagram representation of the three radiative
emission processes of Fig. 2. (a) Momentum is conserved in the
process by elastic scaltering of a photon (Cerenkov, Smith-Purcell),
(b} and (c) Momentum is conserved by elastic scattering of the
electron in the final (b) or initial (c} state (bremsstrahlung)
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Fig. 4. The Brillouin band diagram of bremsstrahlung free-clectron
laser. Transitions (b) and {¢) correspond to schemes (b) and (¢)in Fig. 2

from the periodic potential. In {(c) the electron is first
scattered and then emits a photon?. Process (a) isa
generalization of Feynman diagrams which represents
schematically the intcraction in the previously dis-
cussed Cerenkov-Smith-Purcell free electron laser. It
corresponds to process (a) in Fig. 2 and describes the
emission of a photon by the electron where in this case
the photon is being elastically scattered from a periodic
polarizable charge (P) and peaks up the missing crystal
momentum G.

Notice that in both the Cerenkov-Smith-Purcell and the
bremsstrahlung processes (Fig. 3a—c) the kinematics are
the same. In all cases, a crystal momentum G is used to
balance the momentum conservation Eq. (4). The
difference is in the dynamics. The scattering process in
schemes (b} and (c) of Fig. 3 is derived using the electron
equation (Dirac equation), while the scattering process
in scheme (a) is derived from Maxwell equations.
The laser action of a bremsstrahlung laser can be best
understood from the Brillouin diagram of the electrons
in the periodic structure (Fig. 4) which shows the
quantum states between which the laser transitions take
place. This diagram is the analog of Fig. 1 (which
describes the Cerenkov-Smith-Purcell laser). According
to this diagram the electrons injected into the periodic
structure populate bands in the Brillouin diagram
(analogously to the case of electrons in the periodic
crystal lattice) and the laser electronic transitions
correspond to interband radiative transitions,

The magnetic bremsstrahlung free-electron laser was
demonstrated by a group in Stanford [3]. The device
exhibited stimulated emission of A=10.6 um radiation
and operated with a high energy (24 MeV) linear
accelerator electron beam. Recently also a free electron
laser oscillator was reported by the same group,
operating at A=3pm wavelength [72].

The Stanford free-clectron laser is basically a single-
electron interaction device. However, we note that just
as in the case of Cerenkov-Smith-Purcell lasers, col-
lective interaction of an electron beam and an elec-
tromagnetic wave in a periodic potential structure is
also possible. This is demonstrated in the microwave
regime by the velocity jump amplifier [4] and the
Ubitron [5].

Transverse Confining Force Free-Electron Laser

In the Cerenkov-Smith-Purcell and the bremsstrahlung
free-clectron lasers, conservation of energy and
momentum {and consequently interaction) are made
possible by a perturbation which modifies the momen-

? The two Feynman diagrams of bremsstrahlung represent the two
terms of the second-order perturbation solution of Dirac equation in
terms of the scattering potential and the scattering radiation potential
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tum conservation Eq. (4). If a transverse confining
force is applied to an electron beam, it is possible to get
conservation of energy and momentum (and con-
sequently interaction between the electrons and the
electromagnetic wave) due to modification in the
energy conservation Eq. (3).
1f for the sake of simplicity we assume that the electrons
are described by the Schrodinger equation {(non-
relativistic electrons), then in the presence of a trans-
verse confining potential, the electron wave function
w(r) is described by

w9
~5$;Hﬂwnwmw%mm, (12)
where z is the electron beam propagation direction and
the confining potential V=W{r,) is only a function of
the transverse coordinates.
Consequently the electron wave function is separable to
longitudinal and transverse parts

w(r)=xr e e . (13)
and from (12)
Bk

2m

hz
[~ o+ V)= (-

Since the transverse potential is spatially confining the
electrons we will have discrete eigenvalue solution to
{14), hence

) hzkz
E=E, (K=E.)+ o _ (13)
The energy-momentum diagram will then look as n
Fig. 5. It is apparent that radiative transitions conserv-
ing energy and momentum can take place, emitting a
photon either in the forward or the backward direction.
This kind of free-electron laser is more analogous to the
conventional gas laser than the other ones. However,
instead of distinct atomic energy levels the energetic
levels are characterized by only two distinct quantum
numbers. The laser can be thus regarded as being made
of an “elongated atom” confined in the transverse
direction and virtually infinite in the longitudinal
direction. Of course, in this case the length of the atom is
larger than the radiation wavelength. Hence, the con-
ventional dipole approximation, used in the calculation
of interaction between radiation and atoms, fails, and
stronger interaction is expected.
The most familiar example of a transverse confining
force free-clectron laser is the cyclotron resonance
maser [6]. In this case, the transverse confining force is
provided by longitudinal magnetic fields, and the
energy levels between which transitions take place (see
Fig. 5) are the Landau levels [7].
Like in any laser, the condition for gain in the transverse
force free-electron laser is population inversion. This

Mm. (14

k

Fig. 5. Radiative transitions of free electrons in transversely confining
polentiat. (a) forward emission process {b) backward emission

means that the electrons should be injected into a high
energy state (e.g., m,, n, in Fig. 5) so that they acquire
transverse energy. If the longitudinal momentum
spread of the electron beam is small, they will make
narrow band transitions to a lower energy level {(e.g.
m=0 n=0), emitting radiation mostly on account of
their transverse energy. Of course, it is possible to get
also transitions between more separated levels and thus
get emission of higher frequency radiation. This is
called higher harmonic operation.

In the case of an harmonic oscillator transverse poten-
tial, which includes also the case of the non-relativistic
cyclotron resonance maser, the spacing between the
different energy curves is equal. Since the momentum of
the emitted photon is usually small compared to the
longitudinal momentum spread of the electron beam,
the transitions (z) and (b) in Fig. 5 are almost vertical.
Consequently absorptive transitions from fevel m,, n,
to level m,, n, are as probable as emissive transitions
from level m,, n, to level m=0 n=0. In this case, of
course, lasing is not possible. In the case of relativistic
electrons, the Landau levels are not equispaced which
makes operation of the electron cyclotron maser
possible.

Another very interesting effect, which would provide
radiation from an electron beam in the x-ray regime has
been recently suggested. This effect [8, 9] “channeling
radiation” operates on the same principle of emission
from electrons in a transverse confining force and is
analogous to the cyclotron resonance maser. The
radiation in this case is emitted from electrons or
positrons which channel through the crystal atomic
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planes, The transverse confining force in this case is the
crystaline field which keeps the electrons or the posi-
trons confined in the channel. Of course, the classical
Schrodinger equation (12) is not appropriate to be used
in this case. However, relativistic quantum mechanical
equations can be approximated into classical-like equa-
tions and the results are similar. The diagram of Fig. 5
thus describes the emission of x-ray radiation in the
“channeling radiation” effect as well as the emission of
microwave radiation from the cyclotron resonance
maser.

1. Review of Experimental and Analytical Methods

The field of electron beam interaction with elec-
tromagnetic waves and particularly radiative emission
from electron beams, is too wide to be covered by the
present review and we will not attempt to list the
numerous contributions to this field. We would rather
try to present the different experimental and theoretical
approaches taken in this field, putting special emphasis
on those which are directly relevant to free-electron (or
electron beam) lasers.

The two major research efforts in this field were
pursued quite independently in the disciplines of phy-
sics and electrical engincering. Many fundamental
effects involving radiative emission from clectron
beams were discovered and investigated by physicists in
the past. Some of these effects are the Cerenkov
radiation [10] (emission from electrons passing in or
near a dialectric material), bremsstrahlung [11] (emis-
sion from decelerated electrons), Smith-Purcell ra-
diation [2] (emission from electrons passing near an
optical grating) and the cyclotron resonance maser [6]
(emission from electrons in a uniform magnetic field).
The possibility of stimulated emission by some of these
effects was investigated by a number of investigators
[12-14]. Some incoherent radiative devices were also
constructed utilizing these effects [15, 16].

Important development of radiative electron beam
devices evolved in the discipline of electrical engineer-
ing from the radio electron tubes technology. This
started with the development of the klystron and the
traveling wave tube amplifier in- the nineteen forties
[17]. It was followed by the development of a spe-
cinlized analytical formalism to describe these devices
[1] and the development of many other radiative
electron tube devices like the magnetron, crossed field
tube and others [18]. The analytical methods used in
the description of these electron tube devices were often
quite different from methods used in physics to describe
different basic effects like the Cerenkov radiation
bremsstrahlung, Smith-Purcell radiation and Compton
scattering. Thus, littie was done to understand the
relation between the different, but fundamentally re-

lated effects and devices and to bridge the diflerent
analytical techniques used [19, 20, 14].

In the field of electron tubes the electron beams were
usually produced by thermal emission cathodes and
accelerated by anode voltages of the order of few KeV
to tens of KeV. Operation range was usually in the
microwave frequency regime up to millimeter wave-
lengths. The analysis of these tubes is usually done in
terms of space charge waves (longitudinal plasma
waves of the beam) [1]. This analysis fails in regimes
where the electron beam density becomes too low, when
the velocity spread is too large or when the radiation
frequency is too high [21, 22]. In these cases the devices
operate in the single-electron interaction regime and the
collective effects (the plasma space charge waves) are
negligible. The strength of the interaction is smaller in
the single-electron regime. For this reason, and also
because of some technological limitations, it was hard
to operate such devices at wavelengths shorter than
1mm [23]

The experiments involving the different physical effects
were usually done in the single-clectron interaction
regime using high energy low density electron beams
and high frequency radiation. The Smith-Purcell ex-
periment [2} was demonstrated using a 300 KeV elec-
tron beam produced by a Van der Graalff accelerator.
Radiation was measured in the visible light wavelength
region. Cerenkov radiation experiments were usually
done using very high energy electron beams (MeV to
GeV) produced by linear accelerators [12].

The recent free-electron laser experiment which was
carried out in Stanford University [3] has aroused
considerable interest in this field. This experiment used
a high energy (24 MeV) electron beam which was
produced by a linear accelerator. It demonstrated
amplification of 10.6pum wavelength radiation using
the mechanism of magnetic bremsstrahlung. This ex-
periment demonstrated for the first time amplification
of optical radiation by stimulated emission {rom accele-
rated electrons operating in the single-¢lectron in-
teraction regime. Recently this device was operated also
as an oscillator [72].

The magnetic bremsstrahlung free clectron laser was
analyzed by a number of workers using dilferent
approaches. The principle of the device is related to that
of the “Ubitron”, in which microwave radiation is
emitted from an undulated eiectron beam. Such devices
were investigated and analyzed earlier by means of
classical electron tube theory [5, 24]. Palmer [25] has
presented a classical analysis of a structure essentially
similar to the structure of Stanford’s free electron laser.
He investigated the operation ofsuch a device bothasa
laser and as a linear accelerator (in which case the laser
“operates inversely” and accelerates electrons by ab-
sorbing radiation). Madey [14] analyzed the magnetic
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bremsstrahlung frec-clectron laser using a relativistic
quantum mechanical calculation of Compton scatter-
ing. He approximated the periodic magnetostatic field
by a plane wave of zero frequency which in the
refativistic electron rest frame looks like an incoming
real photon and s scattered by it according to the rules
of Compton scattering. Sukhatme and Wolf{26] used a
similar approach in investigating the problem of stimu-
lated Compton scattering. The expression for gain
derived by them differs from Madey’s expression only
by a small numerical factor. Hopl et al. [27] have
recently published a rigorous classical analysis of this
device by solving simultaneously to first order the
coupled Boltzmann equation and Maxwell equations.
They hence proved that the effect is essentially classical.
Their expression for gain again differed from Madey’s
result only by a small factor.

Another very fruitful field of research, which is relevant
to our discussion, has evolved recently with the de-
velopment of very high intensity relativistic electron
beam machines with cold field effect cathodes [28] and
the investigation of their radiative emission. The high
current density (and correspondingly high electron
plasma density) enables one to obtain strong collective
interaction and intense radiative emission in the
microwave to submillimeter wavelength region by
- means of all of the interaction mechanisms discussed
beflore.

Short pulses of high-power microwave radiation
(10 MW) were produced from intense relativistic elec-
tron beams (40 K A, 500 KeV) generated by a cold field
effect cathode electron beam accelerator [29, 30]. The
radiation was generated by the interaction of the
electron beam with the electromagnetic wave in a slow-
wave structure (a periodically corrugated waveguide).
These devices are therefore a “gigantic version” of the
conventional traveling wave tube.

Another interesting experiment done with an intense
relativistic electron beams is the demonstration of
coherent Cerenkov radiation in the collective interac-
tion regime [31]. In this experiment about 1 MW of
microwave power was produced by the electron beam
which passed through a hollow diclectric waveguide.
Related experiments in the microwave regime were also
suggested before [32] and are different from con-
ventional Cerenkov radiation effect by involving col-
lective rather than single-electron interaction, and
allowing stimulated emission or amplified spontaneous
emission (rather than spontaneous emission). The de-
vice may be right fully regarded as a gigantic traveling
wave tube in which the dielectric waveguide is used as
a slow wave structure instead of a helix or a periodic
waveguide.

Experiments which involve microwave emission from
an intense relativistic electron beam traversing a peri-

odic magnetic field were also demonstrated [33,34].
The recent experiment of Efthimion and Schlesinger
[34] showed that the radiation wavelength dependence
on periodicity is similar to that measured by Elias et al.
[3], see (98). Thus this effect can be rightfully regarded
as the “collective interaction analogue” ol the Stanford
free-electron laser experiment. While the Stanford
experiment was presented and analyzed as stimulated
Compton scattering of a zero-frequency pump by a
single electron [ 147, its collective analog was described
as stimulated Raman scattering of a zero [requency
pump by the collective electron plasma wave of the
beam [34]). However this device is not different in
principle from the previously suggested Ubitron [5]
except that it operates in the relativistic region and that
an axial magnetic field exists along the interaction
region in addition to the periodic ficld and thus
cyclotron resonance effects take part in the interaction.
A relativistic analysis of a similar structure, including
the effect of the homogeneous axial magnetic field has
been presented by Manheimer and Ott [35].
Extensive research and considerable amount of interest
have evolved recently around the field of intense
microwave emission by electron cyclotron masers. The
early work {36, 37] used low energy (KeV 1o tens of
KeV)electron beams produced by thermionic cathodes,
and generated low levels of microwave power (1 Watt).
Russian investigators [38, 39] have improved consider-
ably the efficiency of these devices, Their versions of
cyclotron resonance masers, called gyrotrons, produced
microwave power of the order of tens of KW using low
energy (tens of KV) electron beams produced by
thermionic cathodes. They also obtained efficient oper-
ation at higher harmonic frequencies. Orders of magni-
tude increase in the output power of cyclotron re-
sonance masers has been obtained with the introduc-
tion of the intense relativistic electron beam machines.
Pulsed microwave power of the range of MW to GW
was obtained in experiments where intense relativistic
electron beams interacted with electromagnetic modes
which propagated inside a wave guide in the presence of
a uniform longitudinal magnetic field [33, 40-42].

In addition to cyclotron resonance radiation, also
stimulated Raman scattering from the intense beam
plasma wave was measured in some experiments.
Submillimeter wavelength radiation was produced by
scattering longer wavelength radiation which pro-
pagated opposite to the electron beam streaming
direction [43, 44]. In a recent experiment generation of
1 MW power at 400 pm wavelength was reported [45].
Analysis of the stimulated collective scattering process
was presented [46] and it was also shown that increased

" Raman scattering is obtained in the presence of an axial

magnetic ficld due to cyclotron resonance effects [47].
Independent theoretical work [26, 48-51] was done
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also in the single-clectron regime where the analogous
effect is stimulated Compton scattering and various
schemes for Compton lasers (or parametric amplifiers)
in the far infrared to x-ray regions were considered. The
single electron effect is, of course, much weaker than the
collective effect and should give discouragingly low
stimulated emission gain at short wavelength [48, 50].
However similarly to the Raman scattering stimulated
Compton scattering gain can also be increased by a
cyclotron resonance effect produced by a longitudinal
uniform magnetic field [51].

The coherent x-ray (on y-ray) radiative emission of an
accelerated electron in the crystal lattice is an intriguing
possibility which was investigated by a number of
investigators. Even though the experimental and
theoretical techniques used in this field of research are
quite different from those used in free-electron laser
investigations, the principles of the different possible
effects are similar and deserve discussion under the
same framework.

In addition to the channeling radiation phenomenon
[8,9]; which is based on the transverse force which is
exerted by the crystaline planes on channeling elec-
trons or positrons, one would expect electron-
electromagnetic wave interactions which are made
possible by means of the natural crystal lattice
periodicity.

Just as in artifical periodic structures, the electron and
the electromagnetic waves which propagate in the
periodic crystal are composed of Floquet-Bloch wave
space harmonics and thus can interact via the
bremsstrahlung or the Cerenkov mechanisms discussed
above {Figs. 1-4). The bremsstrahlung process called
“coherent bremsstrahlung” was investigated by a num-
ber of workers both theoretically [52-54] and experi-
mentally [55-57]. In the experiment of Walker et al.
[57], 28 MeV clectron or positron beams produced n
a linear accelerator, penetrated a Spm thick single
crystal of silicon. A coherent peak near radiation
energy of 0.5MeV was observed. The effect measured
was indeed detectable but very weak. The coherent
bremsstrahlung effect is schematically described by
diagrams (a) and {b) of Fig. 3. One would expect also
“coherent Cerenkov” interaction via scheme (¢} (in
analogy to the Smith-Purcell effect). The analysis of
electron radiative emission in the crystal via this
mechanism was hardly treated in the literatur [21].
Some further discussion of this process is presented in
Sec. 6.

Finally, it is proper to mention here the research on
semiconductor radiative devices in which the interac-
tion takes place with drifting carriers in the semicon-
ductor, which drift through artifical periodic structures
or superlattices. This field of research is quite detached
from the research on free-electron lasers. However, the

principles are similar, and gain may be obtained n
cither a Smith-Purcell-Cerenkov free-electron laser
structure (schematically described by Fig. | and dia-
gram ¢ of Fig. 2) [69] or in a bremsstrahlung laser
structure (schemes b, ¢ in Figs. 2, 4} {38].

2. Coupled-Modes Analysis of Traveling Wave
Interaction in Periodic Electromagnetic Structures

In the following sections we focus our attention on the
interaction of electron beams with electromagnetic
waves which propagate in periodic structures or other
slow-wave structures (Smith-Purcell-Cerenkov ra-
diation).

We analyze the interaction between the electromagnetic
wave and the electrons in a periodic structure using a
one-dimensional model and a coupled mode technique
[21, 69]. It is assumed that the electromagnetic mode
which travels in the structure is of the form (9), and that
an electron beam is traversing along the structure (z
direction) and is affected by the space harmonics of the
electromagnetic wave. At present we assume that the
periodic structure of infinite length affects only the
electromagnetic wave and not the electrons. The sim-
plified unified model expressions derived in this section
will then be used in the following sections to delineate
dilferent operational regimes such as collective, single-
electron, quantum-mechanical and classical regimes.
Concentrating on the z field component of one of the
space harmonics we find that the electron beam plasma
will be modulated longitudinally by an “external field”
E_(z,)=E_ (B, w)exp(i fz—iwt), where f~f,, {f is the
propagation constant of the coupled excitation, f,, is
the propagation constant of the electromagnetic space
harmonic m in the absence of interaction, given by (10)).
This “external field” corresponds to the electric field of
one of the space harmonics of the periodic structure
which is close to synchronium with the electron beam.
This will produce space charge current density J_(z,1)
=J (B, w)exp(i fz—-1wi)

J, = —iwy,(8,0)E,, (16)

where x,(§, @) is the plasma susceptibility, E, is the local
field which is experienced by the plasma: E, =E . + E,.,
where E , is the plasma space charge field and is found
using the Poisson and continuity equations

i1BE,=cfe=—iBy, B w)E.fe. (17
Hence we obtain
E: =8p(ﬁ‘ m)Ecz (ig)
1wy, (B, w)
J,=22 00 g (19)
efw)
where

sp(ﬁv w=1 +xp(ﬁi CD)/E, {20
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where ¢ is the dielectric constant of the medium
excluding the electron beam contribution.

Equation (19) is a general linear plasma response
expression which also includes the effect of plasma
oscillation: In the particular case when the external
field is £, =0, a finite current J, may exist according to
(19) only if the denominator vanishes

(B, @)= 1+ 1,(B 0)fe=0. (1)

This is the plasma dispersion relation, and its solutions
are the longitudinal plasma space charge waves.

To complete the coupled mode analysis we need, in
addition to {19), an expression for the field E,; which
would be induced in the slow wave structure by the
current J_. This dependence can be deduced from
Maxwell equations, and is approximately given by
Pierce’s equation [1]

. ﬂzﬁ,"K"‘S
Eo= =ittt 22)

wheré S is the interaction cross section area, f8,, of (10)1s
the wave number of space harmonic m (through which
the interaction takes place) when there is no coupling,
and K, is the interaction impedance [1] of the space

harmonic m, The interaction impedance

|EZHI
"o28,P

K I

I

(23)

is characteristic of the electromagnetic mode. P is the
total power in the mode.

The dispersion equation of the coupled excitation is
obtained by imposing self consistency on (19) and (22).
This yields

KmSﬁmﬁ-zm xp(ﬂ, U)) _
B—p% 1wy lBuwye L. (24)

In the limit of no coupling {K,, =0) the solutions of (24)
are §=+p, and the roots of (21). These are the
eigenmodes of the uncoupled systems: the circuit
clectromagnetic waves and the plasma waves, rc-
spectively. In the limit of small couplinyg the solutions of
(24) are close to the uncoupled modes. We can then
solve for the “electromagnetic-like” mode, using first-
order expansion of §: f=p, + Af. Assuming that (21}
has no roots near f=§,,, we gel

x;;([j’m! (IJ)

1 2
Aﬁ_ EK,,,Sﬁme'

{25)
In particular

_ 1 T {x(B,s )}
Im{B}=Im{48}= EK,nSﬁf.mm‘;m- (26)

3. Single Electron Interaction

When (21) does not have a root near f=4,. the
electromagnetic wave does not couple strongly to the
collective excitation of the electron beam plasma, The
interaction then is basically an individual free-electron
interaction. The solution of (24} is then given {to first
order) by (25), (26) and the exponential gain of the
coupled excitation is calculated by «= —2im{f}.

In order to get some quantitative estimate of the gain,
one must first derive the longitudinal plasma suspecti-
bility x,{f, ). In a quantum mechanical model the
susceptibility of a free-electron plasma is given by the
Lindhard function [597. This function is derived in the
nonrelativistic limit by solving for the plasma response
to the first-order perturbation Hamiltonian (1)
[21, 69].

1 € olk + B)— folk)

e m sy Frat e S P TR

where &, = h?k*/(2m) is the free-clectron energy, Jolk)is
the occupation number of electronic state k, B=pé,,
and n is an infinitesimal positive parameter {when
collisions are considered, n = A/t is finite, where 7 is the
collision relaxation time).
Setting in (27) p=4,, = P.¢. and n—07, we get
1 et '

Re {Xp(ﬁm’ w)}= (—2;)? BE

k- — folk
hw — (&) 5, — 1)

2

I (B )} = — @[73 ;—zf folk+ B — folk)]

m

P

SLhe — (8 g, — END k. (29)

Expression (29) vividly demonstrates the conclusions
which were derived from general considerations in the
introduction. Only transitions which conserve both
energy and momentum

&y~ &, =hew (30}
kb_kn"—wﬂm (31)

contribute to the integral in {29). Since the gain of the
electromagnetic wave a= —2Im{f} is proportional to
Im{y,}, (26), we find that only transitions between
states which fulfill (30), (31) contribute to electromag-
netic wave amplification (stimulated emission) or atten-
uation (stimulated absorption). There will be net atten-
uation of the electromagnetic wave if the population of
the lower states k  is higher than that of the higher states
k,=k, +B, (as is the case in thermal equilibrium
distribution). In the opposite case we have a situation of
population inversion and net gain may be attained.
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Fig. 6. Radiative transitions from an ¢electron beam with a shifted
Fermi sphere distribution

4G LL)

Fig. 7. The plasma dispersion function G({) for a Maxwellian
distribution and real argument {

Figure 6 is a three-dimensional illustration of the
permitted electronic transitions, satisfying (30, 31}, in
the case where the electron distribution is a shifted
Fermi sphere centered at k=kyé_ and of radius k.
Noting that g, =f,é, we find that the geometrical
location of all the pairs of electronic states which are
connected by (30), (31) are the two planes

mo f
=k, = —— — 2~
=M Ohp, 2 (32)
mw f
k.=k,= ——+—2=
z zh ﬁ ﬁm + 2 k:u+[),m' (33)

Hence in this example the geometrical meaning of the
population inversion condition is that the arca of circle
b would be larger than that of circle a. The gain
according to (26) and (29) would be proportional to the
difference between the areas of the two circles.

We find that for nonrelativistic electrons &,y —&,
=(h2B, /m)(k, + B,/2) is independent of the transverse
components k,, k,. Therefore it is possible Lo integrate
(28), (29) over these variables. We also define the
normalized one dimensional distribution function g(x)

ke=ko) o 1 K
? (T) = Gy | oW1ty (34)
where |
ny = 2n)? Ifu(k)dsk (35)
1 ,
°=Wajk:fo(k)d k (36)
i1
kif2=mkyTih* = 27)° Ej(kz v ko) folk)Pk (37

and wpz[noez/(mn)]” 2 js the plasma frequency. The
plasma dispersion function

6= | £%dx  (me>0 (38)
which in the limit Im {—0" is

Re{G)} = _’fm f—(_)i)gdx (39)
Im (G} =rg(0). (40)

Consequently, (27) to (29) can be reducéd to the simpler
form
g k5

1B )= = 5 A IG) = G 40

and in particular

s k3
1 (1B @)} = = 5 g TGN}~ 1m{GEI))
k3
=~ Fegs Lot~ o], (42)
where "
= o @3
th
= k:bk_' ko (44)
th
2w?m?
kK== (45)
A flzkm

In the case of a shifted Gaussian distribution function
the normalized distribution function is g(x)
-—-(l/ﬁ) exp(—x?). The functions

Re{GU) = ——2 | & dx (46)

]/T_[ oox_g
Im{GQ)} = [re™® (47)
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are plotted in Fig. 7, and tabulated in [60]. With these
curves and {26), (41), (42) it is possible to calculate the
electromagnetic gain a= —2Im{f} lor any specific
case. Notice that from (26), (42) it follows that
a=—21m{f} is positive (gain) only if

9(&,)>9(L,) (48)

which is the gain condition (7) in terms of the norma-
lized distribution function g({).
In the case of a shifted Fermi sphere distribution

(Fig. 6)
2 fk—ky|Skp

f0={0 ek 9)

we normalize the distribution function with k. instead
of k,,. Instead of (34) to (47) we have

kz~k0 F
() = s etk (50
A= I 9‘*” dx (Im&>0) (51)
Re (G (&)} =2 j
i
[ i —1)ln1+¢,” (52)
o _r2
lm{GF(é)}=ng,-(5)s{4“ ¢ k=l (53)
0 sl
Vb )= — ﬁ:, 5 [G4(E) — GHED] (54)
f=taho (55)
F
k. —kg
= 56
gom e (56)
2
ézgﬁ—iﬂg. (57

The functions Re {G(€)} and Im {G(£)} are plotted in
Fig. 8.

4, The Classical Limit
When f§, <k,, we obtain from (32} and (33)

mw
k:ar’:kzb ’l 18 (58)
This condition can then be written as
. M
frsqw (59)

which is the classical limit condition.

Fig. 8. The plasma dispersion function G&) for Fermi cleciron gas
(T=0}

In this limit we can replace the differences between the
functions in {41) and (42) by differentials. The ex-
pressions for the plasma susceptibility {41, 42, 54)
become

2 .
Kb0)= =5 A G (60
and particularly
" (61)
for the nondegenerate plasma; and
kz
x_n(ﬁml )= 2 ﬁFT G' (ém) (62)
Im {X_n(ﬁm’ (D)} == % kﬁFT Im {G’.F(ém)}
kz
= -3¢ o) (63)

for the degenerate (shifted Fermi sphere) distribution,
where kj is the Debye wave number

2 k3
k=222 =74 (64)
° Uﬁ: kth
w -0
Em = /ﬁm 0 {65)
Yin
h
V= = k,, {66)
h
Vg= - k, {67
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Fig. 9. The derivative of the plasma dispersion function G'({} for
Maxwellian distribution and real argument {

and kg is the Fermi-Thompson wave number

2 k3
kZ.= D %6
e s (68)
GmE a)/ﬁm _UOI (69)
Up
f;
bp= —kp . (70)

m

The functions Re {G'({)}, Im {G'({)} are plotted in Fig. 9
and are tabulated in [607].

These expressions can be used in conjunction with {26)
to compute the gain a= —21Im {#}. The population
inversion condition (48} is reduced to

g)>0 (71)

which according to (26, 61) results in positive gain.
These results can be related to the “Landau damping”
elfect [61]. Landau solved the problem in the case of
plasma in thermal equilibrium, where g'(£,) <0 so that
damping occurs. Our problem differs from Landau's
problem in two aspects: (a) We allow for a drifting
plasma so we can have ¢'({,,)>0. (b) The presence of a
periodic stow wave structure {external circuit) which
can support rotational electromagnetic wave.
Instead of obtaining the classical expression for the
susceptibility {60) by using the guantum mechanical
expression (41) in the limit (59), one may derive it
directly from the Boltzman equation which gives the
same result [62]. By using the relativistic Boltzman
equation, a relativistic modification to (60) results in
£ k3

LTI G (72)

t

where k,, and {, are still defined by (64) and (65),
respectively, but v, is defined by

h
Um = -;}-1'}'—3 k

(73)

i

instead of (66).
Yo=[1—{og/c*1 2. (74)

Consequently in the relativistic regime the imaginary
part of the susceptibility is given by
PR
n e kj

=— 2 M), 5
A necessary condition for the reduction to the classical
limit of (60-63) is that the second order Taylor expan-
sion of g{{,}—g({,) in terms of f, will be negligible
relative to the first-order term:

29,
g€

This means that the variation in the electron distri-
bution between states k,, <k, <k,, should be gradual
enough and not abrupt. In vacuum ¢lectron tube diodes
the electron distribution falls abruptly 1o zero on the
low velocity side of the distribution [63]. This velocity
distribution edge corresponds to the electrons which
leave the cathode vicinity with zero (thermal) kinetic
energy. [n this case, if the electromagnetic wave phase
velocity v, =w/f,, is synchronous with the slow edge
of the electron distribution, and §,, is large enough,
guantum effects may not be negligible and the first-
order electromagnetic gain will still be proportional toa
poputation difference g({,) — 9({,) — (26, 42)-rather than
to the derivative of the distribution function g'({,,) (26,
61}).

In the case when |{|> | we can substitute (38) (for any
finite distribution function g(x)) by its asymptotic
approximation :

1

~— = 77
G(0) Z (1

When substituted in (60) this results in
F)

Bm < krh ' (76)

Xp=—¢ — 7]
{w— flug)

which when substituted in (24) produces the con-
ventional traveling wave amplifier dispersion equation

{1]

(78)

Kmsﬂmﬁlww?)/vo

- =1. (79)
(87— By
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Notice that this equation is applicable only if

=12kl 5 (50)
Uik

which means that the phase velocity of the wave w/p
should be sufficiently out of synchronism with the
cleciron beam velocity v, compared to its velocity
spread v, so that the electron beam would look
monoenergetic to the wave. In the limit of monoener-
getic beam, indeed the electron beam plasma can be
described by the macroscopic (moment)} equations from
which (79) was originally derived [1].

&, Collective Interaction

The formulation presented above is general and de-
scribes self-consistently the interaction of an assembly
of electrons and an electromagnetic “circuit” wave. We
can use it to delineate two extreme regimes : (a) Where
the collective nature of the electrons (plasma waves) is
important and {b) The single electron regime. Regime
(a) obtains when the phase velocity of the “cold circuit”
w/f,, nearly equal to that of the plasma wave at the
absence of the circuit 1.e.,

sF(B,,,,w)z1+xp(ﬁm,cu)/a’50. (81)

It follows from (19) that under these conditions the
propagating disturbance is accompanied by strong ac
excitation in the electron plasma so that we refer to it as
the collective regime., The microwave traveling wave
tube, as an cxample, operates in this regime.

The second regime is one where condition (81) is far
from being satisfied. The interaction of the elec-
tromagnetic wave and the electron beam does not
involve substantial excitation of the electronic plasma
wave, and consequently, we refer to this regime as that
of the single electron interaction. The Smith-Purcell or
Cerenkov radiators fall in this category.

Notice that the gain (or population inversion)
condition—(8 or 48 or 71)—is applicable in both the
collective and single-glectron regimes. In both cases we
may get either gain or attenuation depending on
whether the gain condition is satisfied or not. However,
as (26) indicates, higher gain or attenuation are usually
expected when the condition, (81}, of plasmon-photon
phase matching (collective interaction) can be
- approached.

When (81) is satisfied (collective interaction), the first-
order solution (25) cannot be used. Instead, we may
expand both denominators of (24) to first order near B,
and obtain a second-order equation for 4p [21].
Sometimes even the second-order approximation is
not valid (as can be the case in the traveling wave
amplifier) and (24) must be solved accurately.

To get collective interaction in the nondegenerate
plasma quantum mechanical regime, one has 10 satisfy
(81) with the susceptibility ,, given by (41). The real and
imaginary parts of the function G({) are iliustrated in
Fig. 7 for the case of shifted Guussian distribution. By
inspection we find that we cannot satisfy {81) unless

[jmék‘d ' (82)

The real part of (81) 1 —0.5(k3/B2) Re {G(L,)— G =0
may be satisfied even with a weak inequality in (82).
However for the imaginary part 1o diminish
Im {G({,)— G({,)} =0 one must satisfy the strong in-
equality (82) so that 1€, 1€, 3> 1. Exact vanishing of
1m {G({,) — G} is never possible as long as the tail of
the electron distribution does not vanish (which is the
reason for the Landau damping effect). However, the
larger [{,l, 1C, are, the closer Im {G((,)—G()} ap-
proaches zero.

Similarly to the nondegenerate case, in the degenerale
quantum case—(52 to 54) and Fig. §— the condition for
the satisfaction of (81) {collective interaction) is

In the classical limit (60, 61) and Fig. 9—we must
require

B <kp (84)

in order to satisfy (81) {collective interaction), Similarly
in the classical degenerate limit —(62, 63, 81)—the
condition for collective interaction is

ﬁmék}‘"}" (85)

An additional condition for obtaining collective in-
teraction is

Wffa> ', (86)

which means that the longitudinal bunching period of
the plasma should be considerably larger than the
average distance between individual electrons, so thata
continuous charge hydrodynamical model can be used
for the plasma. A different interpretation of (84) and
(86) is presented in the appendix. It is shown that (84)
results from requiring that the collective longitudinal
plasma bunching energy will exceed the individual
thermal {escape) energy of the electrons, and (86) results
from requiring that the collective energy exceeds the
Coulomb rcpulsion energy between individual
electrons.

Under conditions where collective interaction cannot
take place, a theory which is based on plasma charge
waves analysis [1] cannot be used. However our first-
order single electron interaction analysis (Secs. 2, 3) still
holds. We just need to avoid using Poisson equation
(17) claiming that the electron plasma is dilute enough
so that the local field E,(f5, w) s identical to the external
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field E(f,w) and ¢ (f,w)=>1, (18). So that our [irst-
order single-clectron interaction analysis (Sec. 3)canbe
used whenever conditions {85) (86) are not satisfied.
In the classical monoenergetic beam limit where (79)
applies and we assume that collective interaction takes
place, {81), we find from (81, 79} that

w )

7}; ~p,t —ﬁ—: 87
Since inequality (84) is necessarily satisfied when col-
lective interaction takes place, we find from (64), (84),
(87) that inequality (80) is automatically satisfied. This
proves that in the classical regime (79) is usually
applicable for traveling wave amplifiers operating at
their normal (collective) operation condition, since then
condition (80) is automatically satisfied.

The collective interaction of an electron beam with an
electromagnetic wave may offer higher gain than the
single-electron interaction mode. It is therefore a ques-
tion of practical interest to find what is the theoretical
upper frequency limit for operating traveling wave
amplifiers in the collective mode [22]. This limit is
usually defined by {84) and (86). However, in evaluating
the Debye wave number kp,, (64), one has to recall that
the velocity distribution spread v, which appears in (64)
is the longitudinal velocity spread of the electron beam,
which in accelerated beams is usually very different
from the transverse velocity spread [21, 63]. Assuming
that the longitudinal velocity spread originates only
from the initial thermal spread; then

(vlh)iz
Yaolo
where v, is the average velocity of the beam after
acceleration and (v,), is the initial thermal velocity
before acceleration.

We find that the longitudinal velocity spread v,, of the
accelerated beam can be many orders of magnitude
smaller than the initial thermal velocity (v,). The initial
thermal velocity in a vacuum electron tube diode is
about (v}, =2.1 x 107 cm/s (corresponding to cathode
temperature T;=1500K). Using (88) we find that
the longitudinal velocity spread after acceleration
1o v,=45%x10°cm/s (6 KeV energy} is only
v, =5 x 10* cm/s.

Current densities of the order of 1 KAjcm? are avail-
able in traveling wave tubes [22] which at this velocity
(vy =4.5 x 10? cm/s) translates into ng = 1.4 x 10'2em™?
and @, = 6.6 x 10'° rad/s. With the use of (64) we obtain
that kp=19x10°cm™' and also that ng'"
=9x 10" %cm. We hence find that conditions (84}
and (86) can be well satisfied with §,=83x10%cm™"
and, using (87), w@=38x10"3rad/s (wavelength
A=50um). For m=1 this is attained with period
L=95pm,

V0 =3 (88)

>

We conclude that the theoretical limitations (84, 86)
permit collective traveling wave interaction and possi-
ble traveling wave amplifiers and oscillators in the
submillimeter wavelength regime [64]. With further
increase in the electron beam density and the overcom-
ing of technological difficulties in the fabrication and
operation of extreme short period devices, it is theoreti-
cally conceivable that such devices can operaie in the
collective mode at the intermediate infrared frequency
regime.

AL shorter wavelengths, short periods and less dense
electron beams, collective traveling wave interaction
cannot take place, but amplifying devices operating on
single-electron interaction principles (Secs. 2, 3)can still
be constructed. The Smith-Purcell radiation [2] which
operated at the visible wavelength regime with grat-
ing period L=167um and electron density
1y =74 x 10® cm™* belongs in this catcgory. It is possi-
ble to verify that none of conditions (82} to (86) was
satisfied in that experiment and hence that it is a single
electron interaction effect.

6. Discussion on Some Free-Electron Lasers

An accelerated electron beam constitutes a situation of
electronic population inversion. Therefore, in a per-
iodic structure or slow wave structure where radiative
transitions between free-electron states are permitted, it
is possible to get ecither spontancous emission or
amplification by stimulated emission of radiation. 1f, in
addition, a feedback mechanism is introduced into the
device it is possible to get a free-clectron laser oscillator
[21, 70].

Many familiar electron beam devices and effects, like
the traveling wave tube amplifier 1, the Smith-Purcell
radiation [2), the Cerenkov radiation and bremsstrah-
lung provide either spontaneous or a stimulated emis-
sion of radiation, and in principle they all can be used to
construct lasers and laser oscillators.

In the present section we wish to discuss some of these
effects and the relations between them in view of the
simplified model derived in the previous sections. This
model is somewhat limited and not general enough to
discuss accurately all the effects of interest, but it is
good enough to describe and to explain their main
features,

6.1. The Smith-Purcell Radiation

In the Smith-Purcell experiment spontaneous emission
of visible light was observed from an optical grating
when an electron beam traversed in close proximity Lo
the grating and perpendicularly to the grating ruling
direction {2].

This effect can be described in terms of the present
model as interaction between the clectron beam and an
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evanescent Floquet space harmonic of a radiation
mode in the vicinity of the grating. The situation is
somewhat different from the case which we analyzed
before, where interaction with a discrete electromag-
netic mode was considered. In the Smith-Purcell experi-
ment an open structure was used which supports a

continuum of radiation modes. Of course, it is conceiv- -

able that the same experiment can be conducted in a
confined structure (waveguide) where also efficient
amplification of confined and discrete light modes by
stimulated emission may be expected [21, 70]. In this
case the coupled-mode single-electron-interaction ana-
lysis of Secs. 2 and 3 is well suited to describe the
interaction.

The dispersion relation of the Smith-Purcell radiation
was found to be [2]

mi=L (i —cos 9) , (89)
Yo

where § is the emission angle. This expression is
consistent with the discussion in the previous sections,
except for a small difference resuiting from the fact that
the experiment involved spontaneous emission while
our analysis was mostly related to stimulated emis-
sion. We use in (89) the relation (10)
B,.=(2n/A)cos @ + m2n/L, where f,=(2n/A)cos O is the z
component of the propagation constant of a radiation
mode propagating at an angle 6 to the grating. This
gives

UVg= E = vphm .
This is somewhat different from the previously derived
Cerenkov condition (8), which requires inequality in
(90}. Indeed we should expect no stimulated emission
gain exactly at the exact synchronism condition (90)
because then the effects of stimulated emission and
absorption are equal. Equations (26), (61), (65) and Fig.
9 suggest that maximum stimulated emission gain is
expecled around

w/ﬁm_v():vrh (91)

instead of (90). Hence, instead of (89) the maximum gain
condition is

(90}

c

mA =L( —cos 9) (92)

Vo — Uy
which usually is not much different from (89) since
Uy €0y,

Another feature of the Smith-Purcell effect which is
consistent with the present analysis is the polarization
of the emitted radiation. Like in the traveling wave tube

amplifier, the electric field of the radiation must have a-

component along the longitudinal (z) direction {a TM
mode), otherwise there will be no longitudinal coupling,

see (19) and (1). This was actually confirmed in the
original experiment [2].

An expression for the gain of Smith-Purcell free
electron laser can be found right away from (26), (75)

am oL K, Sk Im (GC,). )
Yo

It is important at this point to notice that in our analysis
we have assumed an infinite length of interaction
and a perfect periodic structure. In practice the per-
iodic structure of the electron beam will be of finite
length [ This would mean that the momentum of the
space harmonic B, =f,+2am/L will be defined to
within an uncertainty of 48, =2=/l. The uncertainty in
the momentum due to the finite length or imperfection
of the periodic structure leads to relaxation of the
momentum conservation condition (11) so that tran-
sitions do not take place any more only between pairs of
states with distinct longitudinal momentum (as shown
in Fig. 1) but other electrons in the electron beam
distribution will participate in the interaction. In the
classical limit the uncertainty in momentum leads to
uncertainty in {,, (65), which mean that electrons within
range A(,=w(fap,);, of the electron distribution
g(L,) participate in the interaction. We should require
A, <1 in order for our present analysis to apply. Since
@/B,, = vy this condition can be written as

B Vi (94)
Bm oy

The regime defined by this inequality can be called
“inhomogeneous broadening regime” and the opposite
limit corresponds to homogeneous broadening. As in
conventional laser theory, saturation in the laser gain
may be reached in the first case by “burning holes™ in
the electron beam distribution function and depleting
the population inversion between the states which take
part in the transitions. [n the homogeneous broadening
case all the electrons in the beam participate in the
interaction and hole burning does not occur. A similar
distinction between the two regimes was also pointed
out in reference to the Compton laser [26] and the
bremsstrahlung laser [27]. In these examples the homo-
geneous broadening assumption is usually more
realistic.

Within the limitations of inequality (94) and assuminga
thin electron beam compare to the decay length of the
electromagnetic space harmonic away from the per-
jodic structure {grating), (93) is a useful first-order
approximation to estimate the gain of a Smith-Purcell
type frec-electron laser. As would be expected for
single-electron interaction the gain is proportional to
the electron beam density n, (64). The dependence of
the gain on the frequency  is not obvious from (93)
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since the interaction impedance K, is usually de-
pendent on v and so is also the interaction cross section
area S {(keeping in mind that the width of the beam
should be thinner than the decay length of the elec-
tromagnetic space harmonic away [rom the grating).
Substitution of interaction impedance expressions
which correspond to some practical structures 21
results in that at high frequencies the gain given by
expression (93) is inversely proportional to the fre-
quency w and thus it would be hard to operate the
Smith-Purcell laser at very short wavelengths.

6.2. The Cerenkov Radiation

The Cerenkov radiation effect is closely related to the
Smith-Purcell radiation effect and to the discussion in
this paper. It is different only in the fact that the “slow-
wave structure” in this case is uniform matter (with
index of refraction n> 1) instead of a periodic structure.
Like the Smith-Purcell radiation, the Cerenkov ra-
diation is usually observed as spontaneous emission in
open structures. However, electromagnetic wave ampli-
fication by stimulated Cerenkov emission in con fined
structures is possible [31, 32, 70]. In such structures the
single electron interaction analysis (Secs. 2, 3) is well
suited to describe the interaction in optical frequencies.
Since the interaction in this case is with the whole
longitudinal component of the electromagnetic wave,
the interaction impedance (23) which should be used in
(26) is approximately

11 /psin?6 1
K = — e ——— ——
0 nl/; cost S’ )

where |/ pfeg = 377€1 is the vacuum impedance and 8 is
the “zigzag” angle of the (TM) electromagnetic mode
which propagates in the confined structure (wave-
guide). Equations (26), (75) and (95) result in an
approximate expression for the gam in a Cerenkov
waveguide laser

2 sin?d
%= Jank cosT0

Tahk cos

oy

Uin

Since Im {G'({)} has a maximum around {=—1 {see
Fig. 9), (96) suggests maximum gain at an angle
c

cosll= ———, 97
‘ n(vg = vy,) &

which is slightly different from the conventional ex-
pression for spontaneous Cerenkov radiation,
Equation (96) indicates that also the stimulated
Cerenkov radiation gain is inversely proportional to the
radiation {requency.

6.3. The Magnetic Bremsstrahlung Laser

The Stanford magnetic bremsstrahlung experiment [3,
147 is an example of a [ree-electron laser in which the
periodic structure affects the electron beam only. Tt was
discussed in the Introduction and distinguished from
the Smith-Purcell mechanism for which we presented in
the successive sections a quantitative analysis. This
analysis does not apply to the bremsstrahlung type free-
electron laser. However, since the kinematic of pro-
cesses {b) and (c) of Figs. 2, 3 (describing the bremsstrah-
fung laser) is similar to that of process (a) (Smith-
Purcell-Cerenkov laser), same gain condition is ex-
pected. Indeed Madey's radiation condition [3] (in the
limit of small magnetic field)

. L
>33

can be shown to be equivalent to (90} (m= 1) in the
relativistic limit {217

The “magnetic bremsstrahlung free-electron laser” is
basically a single-electron interaction effect (since con-
ditions (82) to (86) are not satisfied). This fact answers
the question raised by Madey with regard to the
difference between his calculated gain expression and
the conventional traveling wave amplifier gain ex-
pression { 14]. In a single-electron interaction the gain is
proportional to the electron density (or current density),
as obtained by Madey. By contrast, in the traveling
wave tube the dependence of the gain on the electron
density is more involved, and the first-order approxi-
mation, like (26), is not permitted because of the
coupling to the longitudinal plasma wave. Instead the
complete dispersion Eq. (24), or specifically {79) should
be solved.

Of course, also collective interaction of an electron
beam and an electromagnetic wave in a periodic
potential structure are possible, It is demonstrated in the
microwave [requency regime by the velocity jump
amplifier [4] and the Ubitron [5,31]. These devices can
be regarded as other examples of bremsstrahlung free-
electron lasers operating in the collective mode.

A (98)

6.4. Interactions in the Crystal Lattice

The channeling of electrons in the crystal lartice
provides us with examples of single-electron radiative
emission effects which are similar to the free-electron
laser effects and merit a short discussion on the basis of
the presented models. Notice that also the electromag-
netic wave with which the interaction takes place may
be a “waveguided” mode in the x-ray regime (the
Borrman effect [66]).

The effect of channeling radiation [8] was previously
discussed in the Introduction and presented as an
example of a transverse confining force [ree-electron
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laser which is anetogous to the cyclotron resonance
maser. Also the coherent bremsstrahlung effect was
explained in Section 1. It is schematically described by
diagrams (b) and (c) of Fig. 3 where the momentum G
which is delivered to the electron wave either in the
initial state (c) or in the final state (b)in order to balance
the momentum conservation Eq. (4) is a vector of the
crystal reciprocal lattice. It is suggested here that the
process described by scheme (a) in Fig. Jalso exists in the
crystal lattice, because the electromagnetic wave is ef-
fected by the crystal periodicity when propagating inside
the crystal, in the same way that the electron waves are,
This process may be regarded as “generalized coherent
Cerenkov radiation”. It should be distinguished from
the conventional Cerenkov radiation effect which s
independent on the periodicity of the crystal and
depends only on the “average index of refraction” of the
material —n In the x-ray regime n<1 and therefore
there is no conventional Cerenkov radiation.

To find the contribution of process () to the interaction
of electrons with electromagnetic waves in the crystal
lattice, one must first obtain the Floguet mode solution
of the electromagnetic wave in the crystal

E(r, )=} Egg, co)e@e "™ (99)
G

46=9+0, (100)

where G is a reciprocal lattice vector. The space
harmonic amplitude E is calculated from the infinite
set of equations

g X 4> Ea(q, w)= _w?ﬂg;ﬁc,a'(q: CD)EG'(Q, w) (101)

which results from Maxwell equations. The dielectric
matrix clements £; - were defined by Adler and Wiser
[67].

Equations (101) can be readily solved by some simplify-
ing approximation {68, 71]. The solution shows that the
amplitude of the longitudinal components {Eg G/G])
of the space harmonics may be non negligible compare
to the fundamental space harmonic. In a simple minded
model one may use the calculation of the space
harmonic amplitudes to find the interaction impedance
(23) and the gain (26) using the same model we used for
the Smith-Purcell free-electron laser. It is apparent that
this would be too crude a description of the problem
since 2 more general relativistic quantum mechanical
analysis should be used and homogeneous laser
broadening should be assumed. However, the in-
dication of the simplified model that the “coherent
Cerenkov radiation” gain reduces appreciably at short
wavelengths is probabely correct and conforms with
prediction and measurements of very weak interactions

in the x-ray and y-ray [requency regimes with coherent
bremsstrahlung [57] and stimulated Compton effect
[507]. By contrast, quite strong x-ray and shorter wave
length radiation is predicted for the channeling ra-
diation effect [9] making it more attractive for pos-
sible future coherent x-ray radiation.

7. Conclusion

The interaction of an electron beam with electromag-
netic waves was discussed in terms of a simple general
model. Collective and single-electron interactions were
distinguished as two different regimes of operation,
which can take place under different conditions. We
also distinguish between three classes of interactions {a)
The radiative electronic transitions are made possible in
a (periodic) structure which increases the momentum of
the electromagnetic field so that momentum can be
conserved in the process {Cerenkov-Smith-Purcell
class). (b) The missing longitudinal momentum is
provided to the electrons (bremsstrahlung class). (c} The
radiative transitions are made possible by a transverse
confining force which is exerted on the electrons.

A simple “one-dimensional” coupled mode analysis
was presented, providing expressions for free-electron
laser gain and gain conditions in the classica;, quantum-
mechanical and also degenerate plasma regimes. For
some applications the validity of the analysis is limited
and some further elaboration of the model would be
necessary. This includes an accounting for transverse
electromagnetic field components and transverse field
variation (which is necessary when the electron
beamwidth is not negligible), situations where the in-
teraction is not with a discrete single electromagnetic
mode but with continuum of modes, and situations in
which the interaction length is a limiting factor. In the
Jast mentioned case, which is often the practical case
and also when the accuracy of the periodic structure is
finite, the momentum conservation condition {4) needs
not be satisfied exactly and thus different (homo-
geneous broadening) analysis should be used.

The present discussion suggests that a number of useful
free-electron lasers based on principles of Cerenkov,
Smith-Purcell and bremsstrahlung radiation may be
constructed. The operation [requency can be deter-
mined by an appropriate choice of the period of the
periodic structure and by varying the electron beam
energy. This last possibility also provides the advantage
of laser tuning, Other foreseeable advantages of free-
electron lasers are possible high power operation and
high efficiency (with storage ring [3] or with decelerat-
ing electron collector electrode [70]), and the potential
for coherent laser sources from the far infrared to
possibly the short U.V. regime.
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Appendix

In the appendix we show that (84}, (86) are equivalent lo requiring that
the space charge wave bunching energy exceed the thermal encrgy
and the mean Coulomb repulsion energy between individual
electrons’.

The energy stored in one bunched period per unit beam area is e%/C
where Q = en,2n/f} is the charge {per unit area) in one bunched period
2r/ff, and C = efif2m is the capacitance per unit area of one period. The
average collective energy per electron is then found to be

nye? (2m\?
B eonear = —OE— (—.6—) . (A1)
The average therma! energy per electron is
Frera =y T - (A
The Coulomb repulsion energy between individual electrons is
1 &
Jmulnmb= TR (A})

&g

where ny ¥/ is the average distance between electrons.

Equation (84) is readily derived by requiring that (A.1) is much larger
than {A.2), using definition {64). Equation (86) is derived from the
requirement that (A.1) is much larger than (A.3).
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