J. Plasma Physics (1984), vol. 31, part 2, pp. 230-251 239
Printed in Great Britain

Electromagnetic instability supported by a rippled,
magnetically focused relativistic electron beam

By S. CUPERMAN, F. PETRAN

Department of Physies and Astronomy, Tel Aviv University,
Tel Aviv 69978, Israsl

AND A. GOVER
Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel

(Received 17 August 1983)

The coupling of volume, long-wavelength TM electromagnetic and longitudinal
space charge (electrostatic) waves by the rippling of magnetically focused elec-
tron beams is examined analytically. The dispersion relation is obtained and
then solved for these types of wave. Instability, with growth rates proportional
to the relative ripple amplitude of the beam, is found and discussed.

1. Introduction

The stability of rippled, magnetically focused, partially neutralized electron
beams was recently investigated for the case of electrostatic perturbations (Cuper-
man & Petran 1982; Petran & Cuperman 1982; Cuperman & Gover 1983,
communicated). It was found that such rippled beams are unstable for both long-
and short-wavelength electrostatic perturbations. The physical mechanism re-
sponsible for this instability is as follows: When the wavenumber corresponding
to the period of the modulation (rippling) of the beam phase matches the slow
and the fast natural modes of the unrippled beam they beat together to form a
resultant wave whose amplitude is modulated by a standing wave envelope.
The ponderomotive force exerted by the resultant wave pushes electrons from
low-density regions toward higher-density regions, thus further increasing the
bunching already existing in the equilibrium state. This instability belongs to
the class of parametric instabilities.

In this paper we investigate the stability of relativistic, rippled, magnetically
focused electron beams against coupled electromagnetic and electrostatic pertur-
bations which are phase-matched by the beam ripple.

The equilibrium configuration consists of a cold electron beam (radius b)
which partially fills a conducting pipe (radius a) in the presence of an axially
uniform magnetic field, B, (see figure 1). The degree of neutralization of the
electron beam (by positive ions supposed at rest) is arbitrary. The rippling is
due to the imbalance of the forces acting on the fluid element of the beam at
the exit from the gun.

In the stability analysis we concentrate on £-type (i.e. B, = 0) volume waves
and consider the limiting case of long-wavelength perturbation. In this, the
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static magnetic field is assumed to be relatively strong, so that only the per-
turbed longitudinal motion (along B,) is important. The resulting dispersion
relation is solved for resonant mode coupling cases. Specifically we consider the
resonant coupling of (i) fast TM mode and slow space charge mode and (ii) slow
and fast space charge modes.

The paper iz organized as follows. In §2 we present the basic equations used
in the paper. §3 is concerned with the equilibrium and provides simple analytical
expressions for the ripple characteristics and the corresponding particle density
modulation. In §4 we carry out the stability analysis. A dispersion relation for
coupled E-type wave modes is derived and then solved for resonant two-mode
interactions for TM and electrostatic (e.s.) modes (§4.5.1} and e.s.—e.s. modes
(§4.5.2). Simple expressions for growth rates of the instability are obtained and
presented. A summary and discussion is provided in §5.

2. Basic equations

Consider a relativistic cold rippled magnetically focused cylindrical electron
beam (radius b) which partially fills a conducting pipe (radius a}) in the presence
of an axially uniform magnetic field, B, (see figure 1). The electron beam is
partially neutralized by ions at rest which occupy the same space as the beam.
(The beam is separated from the conducting pipe by vacuum). The fluid and
Maxwell’s equations describing such a system are

2112 )+ L) + 2. (0B = 0, (1)
L R LA (@)
Pe s B0 0 Bl (VB 3)
A AL\ (@)
VxE=—%%]t§, (5)
V><B=4—:fj+%%]::’, j=§eana\7a, (@ = e,1), (6)
153;-(7« ).;.iaft; BE—*&ﬂ%‘,naea {7)

and
V.B=0. (8)

Here V = V,+v, 7, =¥+, 7, = v, and ¥, = v, with ¥, being the constant axial
streaming velocity in vacuum and v,, vy, v, the self-generated velocity components;
E, (i = r,0,2) are the components of the electric field; B is the total magnetic
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Perfectly conducting cylinder

Tiovre 1. Equilibrium configuration and co-ordinate gystem.

field; n,, e, are the particle density and charge, respectively; v = (1 - V2/ct)-}
is the relativistic factor.

3. Equilibrium

For mathematical simplicity we here consider small induced azimuthal and
axial motions and therefore neglect the self-magnetic equilibrium field, i.e. we
take B = B,. Moreover, in order to obtain simple analytical solutions, we con-
sider conditions consistent with the following assumptions: (i) constant axial
streaming velocity, (il) constant beam current (rb?V, = const.), (iii) radially
uniform particle density and (iv) small relative ripple amplitude, & = (b--7,)/7,.
Under these conditions the equilibrium is determined by the motion of the outer-
most (edge) electrons described by the ‘envelope’ equation, as follows.

In a reference frame moving with the beam the radial motion equation reads

d v} eE, wvyu,
at " r Tmy Ty

(9)

The three terms on the right-hand side of (9) represent, respectively, the
centrifugal, electrostatic and magnetic accelerations. Unless these forces balance,
a net force acts on the electrons and produces a periodic beam envelope. The
radial space charge electric field appearing in (9) can be obtained by integration
of {7} and is

mwpy(1—f)

r, 0gr<h, (10a)
B e 2y
r 9 _ 5
magl{l =)0y, (100)
e 2y r

Here & is the rippled equilibrium beam radius, why = 47, e%/m is the corre-

sponding plasma frequency, n,(z) is the electron density, r is the radial distance

from the axis and f= Npo/Me 18 the fractional neutralization of the beam.

(In deriving (10) we used the assumption (ii) providing the relation n,? = nyr2
9 PLA 3T
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and consequently wh, = who (ro/0)%, with @y, and r, being the unrippled electron
plasma frequency and equilibrium radius, respectively).
The equilibrium angular frequency 6 (0 = vy/r) can be obtained from (2)-(5):

gx(b) = 2‘1’-0;{1 + [1—2“’?‘0(1—10)]%;—52 .

(1)

g
Notice that @ is constant only in a given cross-section of the beam; it depends,
however, on the radius of that cross-section, which varies along the beam
(z direction). The + and — signsin (11) correspond to the fast and slow beam ro-
tation modes, respectively. (The beam can be either in the slow mode of rotation,
if the magnetic field at the cathodeis in phase with the magnetic field in the pipe,
or in the fast mode of rotation, if the two above mentioned fields are opposite).
Now the envelope equation describing the equilibrium radial motion of the
outermost electrons can be obtained from (9), (10) and (11). After linearization
(|8]/7o < 1), the following simple harmonic oscillator equation is found:

S§+wid =0, (12}
where wy, the linear proper frequency, is given by
w? P %Y
oy = [1-2B ). (13)
The solution of {12), after converting to the rest frame, is
b = ry+8ycos(kgz+ ) (14)
Here
ks = 6oV, (16)

is the ripple wavenumber (see figure 1) and ¢ depends on the state of the beam
at the exit from the gun and entrance into the axial magnetic field region.

The modulation of the beam radius (cf. (14))in conjunction with the condition
(iii) leads to the axial modulation of the particle density (and therefore of the
plasma frequency) namely

nlz) = ng[1 + 28, cos (kgz + P)], (16}

where _
8o = 8o/ 70

4, Stability analysis. Volume waves
4.1. The wave equation

From Maxwell's equations, we have the following general wave equation in a
plasma system:

1 PE 47
2H — e = — —
VIE-V(V.B)—57r =55 (17)
The z component of (17) is {3/06 = 0)
10 ( oE,) K, 1880, 4mdj,
Fé?(f—’ar)J“_eaE?J’{v(v‘E)}z_E‘a??__c“%'ﬁ' (18)
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4.2. The linearized MHD equations

For simplicity, we here consider the case of a relatively strong applied magnetic
field, B,; that is, we neglect the fransverse perturbed motion (3, = %, = 0). Then,
the linearized MHD equations with axial symmetry (8/96 = 0) become

o L oR  om 3, _on

§+VZEZ+”’§+%E+”’5§ =0, (1)
Do p 2 - i B (4)
Ei(rﬁﬂ) = 4_@124_133‘?’ (6¢")
ror ¢ ¢ ot
;:;::.. rE,) +%l§-" = dnile. (7.

4.3. Delails of the wave equation

In order to describe the axially symmetric perturbations supported by the
rippled beam equilibrium defined by (14) or (1 6}, we can use the following Floquet
expansion:
8(r,z,8). = X A, (r) efwt-knz) (19)
where "
ky, =k, + nkg, (20)
7 is an integer and 3 = 4,7, £,.*
The explicit wave equation can be obtained from (1)-(7") and (18)-(20).
First, by (19), equation (18) becomes

1o ( 8E, . N T drriw
;E;(T—ar'—) —]C%Ez,n~4ﬁeﬁknnn+§ Ez,n = WGTJ"' (21)
In deriving (21) we used Poisson’s equation providing
S
Ey=— (- 7). 22
VAV .E) az( drrefi) (22)

* We recall that we here assume a model in which the main effect of the beam equilibrium
periodicity {rippling) is to modulate the electron beam density according to (16); possible
simultaneous modulation of the equilibrium velocity is not considered.

g9-2
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Thus, we should now find the expressions for the perturbed quantities appearing
in (21).
From {4’} and (19) we find
ie

B, = i 23
Ysn mil,,,'}’uLz’m (23)
where
Qn. = w_'kn,Vz' (24)
From (1) and (19) we obtain (§ = &/ry)
- k,n kg, .. o
Ty = &ngvz.n+5_;)g(vz,n+l + 7, n-—l)' (25)

In this derivation we (i) neglected the third term in (1) as compared with the
second*; (it) used the relation (186) for n, with the + sign; (iii) expressed sin kg2
and coskgz in terms of exponential functions; and (iv) used the identities
kﬂ.+1 - kS = kﬂ—l +kS = kn

From (21) and (23) we find the perturbed current, namely

- _ . 162 n, 0 te nyw (B E
7o = —e{AV,+nd,) = 2 0 ( antl

L had _ zn—1 . 2
m-},a Q'rzt o m'ys Qﬂ. ‘Qn-i-l M Qn—l) ( 6)
Finally, upon substitution of the results (23)-(26) into (21), we find the

following wave equation for the waves supported by the rippled beam configur-

ation considered here (and illustrated in figure 1):

12 { 8k, , w? why
Fa—r(’ or )+(Ez"k")(1‘mz)g“'“

— 3 w;ﬂ (ﬂz_kz Ez n+1+Ez n—1 (27)

73'Qn c? " Qn+1 Q .
Equation (27) indicates that every three space harmonics namely n, n+ 1 and
n— 1 are coupled. Before considering the general case described by this equation,
we consider the uncoupled case, § = 0.

n-—-1

4.4, The uncoupled case

If § = 0 we have the simple case of a uniform cross-section electron beam in a
circular waveguide. Since the (equilibrium) periodic perturbation was removed,
all the space harmonics in the expansion (19) vanish so that only the fundamental
mode (» = 0) exists. Equation (27) becomes

ta( ek |,
;E(TE)—T EH”O T Ty, 29
12(98) o s,
ror\ or =7 T
where -
72 = 71 —wl /Y302, (29)
72 = (k2 w?/c?) (30)

* As will be shown later, in the long-wavelength limit, & ~ J,, &&/éz ~ k.A,
o/ 8r ~ k, J) and consequently #i/ar < 978z (J, and J, = J, are Bessel functions).
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and
Q=w-kV. (31)

Equations (28) are Bessel type equations and their (fundamental) mode sol-
utions are

B, = AJy(mr), LS {(32)
B, = B{L(7r) Ko(7a)— Iy(Tr) Ko{7a)], » > oy (33)

where the solution (32) was chosen so as to remain finite at r = 0 while the solution
(33) was chosen to satisfy the boundary condition at the perfectly conductive
waveguide wall. To determine the constant B and the mode parameters k,, 7
and 7 one should match the tangential electric and magnetic field components
at the beam-vacuum interface. This will be carried out explicitly in the long-
wavelength limit.

At this point we choose to consider E-type waves, i.e. waves characterized by
B, = 0. They may include longitudinal (electrostatic) modes (only &, # 0) and
transverse magnetic (TM) electromagnetic modes (having all but the B, compo-
nent non-zero). In the case of relatively strong magnetic field (7, = 0), for azi-
muthally symmetric modes (9/86 = 0), Maxwell’s equations reduce to*

—ikE‘,—% = _3(‘/_3 A (55)
and
ity =g, (6a”)
Solving these equations provides
B, = p’af”, E, = aa;:z (34)
where the constants « and £ are given by
z 1 . W

“Fiorer PR (35)
Thus the continuity of the tangential components E, and B, at r = 7, requires
(after division term by term of the two matching conditions)

1 gF \in 1 o\ out
— =5 = 36
(Ez 37‘ )T=T- (Ez &"r )1‘21'0' ( )
(Notice that in this case, because 7, ~ #, = 0, the transverse field component,
E, is also continuous (%, ~ By). This is no longer valid in the case in which

* The reduction of Maxwell’s equations (5) and {8’} (in which 8/36 = Oand j, = 0) to
{36") and (6a”) proceeds as follows. Integration of {5¢’) for TM modes (B, = 0) gives
rhy = const., ie. H, = const./r; the physical requirement of &, being finite atr = 0
implies B, = 0. Using Ey = 0in (6a") provides 8, = 0. Thus only B,, &, and By are non-
#eTo.
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F1 # 0.) Substitution of (32) and (33) into (36) results in the uncoupled modes
dispersion relation, namely
TJl(T""n) - ?11(?7'0)1(0('?@) + Ly(7a) Ky(Try)
Jo(774) Ly(Tro} Ko(Ta) — Ly(Fa) Ky(7rg)
After some mathematical manipulation, this equation can be simplified in the
long-wavelength limit, 77y, <€ 1, 7a <€ 1, and becomes
72 = (k2 — 0?/c®) (1 —wiy /v = — 2/riIn(a/ry). (38)
Here, two distinct cases may occur.
(i) If o » &V, one has Q = w—k, ¥, ~ w and {38} reduces to
i = w? 2 1
T rllnfa/ry) 1 —wd,/ Q%Y
Since k&, < w/¢, (39) describes two electromagnetic (TM) waves: a forward and

a backward propagating wave.
(i) If &k, = w/c, wl,/v*2% > 1, (38) can be written as

(37)

(39)

Q214 R) = Rwl,/y%, R= (kzwcﬂ:) el la/ry (2“/ ro) (40)

where R(< 1) represents the ‘reduction factor” due to the finiteness of the beam.
To first order, the solution of (40} is

Q{-_» i—R‘}wpo/?ﬁg‘ (41)
or alternatively
w{ = k¥, + Rlw o /74, }
K = w/V, ¥ Rlw,y /Y%
Equations (41) or (42) represent the dispersion relation of two forward propa-
gating space charge waves, namely, 3 fast wave and a slow wave.

(42)

4.5. Non-zero coupling

Equation (27) represents an infinite set of coupled differential equations and its
explicit solution is rather difficult. For the case of weak coupling (small &) a
reasonable approximation is to assume that the transverse profile of the funda-
mental space harmonic, # = 0, is similar to that of the unrippled beam (i.e.
uncoupled) case (cf. (32) and (33)). For the other space harmonics, n $# 0, (27)
can be regarded as inhomogeneous equations. Thus, for any space harmonic =,
the solution will consist of a homogeneous solution together with an inhomo-
geneous solution which is forced by the coupling to the next lower order har-
monie. In the present analysis we ignore the homogeneous solution and thus
assume that all the space harmonics have the same transverse profile identical
to the unperturbed beam profile inside the beam {equation (32)):

B, = Jy1r) T a, exp [i(wt —k,2)] (43)
By (43), equation (27) turns into an infinite set of algebraic equations, namely
2 2
2__ .2 = CIUTJO E)_ _ 12 a’n+1 a’n—-l
rh=ren =0t (5 -4) (B2 52) )
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where
T = Ta(1 —wpe/y*QE), (45)
and
75 =k — w¥/ct, (46)

The assumption that the different space harmonics have similar transverse
field profiles (r, ~ 7} results in nksk, < 7% which is a long-wavelength limit
condition. In the long-wavelength limit we can use the approximation (38) and
reduce (44) to

2hf‘.)j __.,(‘_)32’_0 2 _3 @iy 2_22 Bpiy h]
[(kn Cz) (1 YSQE) +r§ln(a/r0)] = aysﬂn n c? Qn+1+Qn—~l ’
(47)

In practice, the infinite set of equations (47) is terminated and only two or
three space harmonics are kept. With appropriate choice of kg, the electromag-
netic mode £FY (equation (39)) can be coupled resonantly to the slow or fast
space charge waves (equation (42)) through the first-order space harmonic of
the EM waves. Alternatively, the slow and fast space charge waves may be
coupled to each other through the first-order space harmonic of the fast wave.

4.5.1. Coupling of electromagnetic and space charge waves
Forn = 0and » = 1, from (47) we obtain, respectively,

w? w2 2 ~ Wk w?
3 _ Y __¥po — FP0 2 {2k 21
[(’“ =) (1 yms)*raln(a/ro)} % 37390[(’““ cﬂ)(ﬂﬁﬂ_ﬂ (48)

and

) 2 2 2
A Y CP D) 2 590 [{1a @\ (0  ay
[(kl 52) (1 '}’3Q§) +,.(z}1n (G/TD)J % 73y [(kl 52) (Qz+Qo)] - 49

We solve (48) and (49) in the resonant regime, i.e. we neglect the space har-
monics 7 = 2 and n = — 1. Thus, we consider the coupling of the fundamental
electromagnetic (TM) wave (see (39)) and the slow first-harmonic space charge
wave (see (42)). The resonance condition is

5

i
&

L

Thus, for the TM mode (k, < w/c, @ < £,), recalling that k) means k., =
{k, +nk$),_o = k%, (48) can be written as

w? 2 Q2 o w® () 1
2 Y 0 — FZPo 2 )20 - .
[t ) = 35 (8- 8) & ]
(81)
For the space charge wave (k, » w/c), (49) reads
[+ By~ (who/v*) Ryl 2y = Seho/7%) [(Qu/ Qo) Bil . (52)
Equations (51) and (52) for a, and a, provide the dispersion relation
w? 2 Q3 w} = W w? R
2 % 0 2_, 2p9 =& B _ ) ~1 __
[t i) (21 50) =358 (4-5) syt
(83)
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For convenience, we rewrite (63) as
AB = 520, {53")

To obtain a relatively simple analytical solution, we simplify (53) as follows.
(i) Since for electromagnetic waves w > k,¥,, we approximate Q,/[Q, — w2,/ v?]
in 4 by w*/{w®—w2,/y%). (Recall that Q, = w -k, ¥, Qy = 0—k,V, k, = k, + nkg.)

n g

(ii) Comparing the Ia,st two terms in 4 with (39) (gwmg the TM- eigenmodes
in the uncoupled case, k,.) we find that 4 can now be written as

k§—keg? = (ko — k) (g + ') = 2hey (kg — ko).

(iii) In B, considering the slow space charge mode 2, ~ — wpoRf/ %, (equation
(42}), one may write

B= Qi—%"Rl _ (Ql_“;_f;’Ri;) (Ql~“;—1;’R*{) ~ -2“}’]-—?12% (Ql %R‘}')

(iv) In C we use (from {39))

b —w*/c? = = [2/r§In (a/r,)] [*/(w* — wio/7°)]
Then, by (i)-(iv), (53) reads (we now use the notation %, for &, and k, , for k;)
W%UR% 1 w?

2yi{rolIn (a/ro)| 4, o (w? — wio/¥°)?
with Q, = w — (%, + kg) V. Solving this equation provides

__I'_ prR& 4 (55)
Wt —why/y? 2k, o1V, riIn(a/ry))

(kz% kz,ﬂ) (Ql + C"po R#/’)”}) =4

(54)

= w

Imk, = +ié

4.5.2. Coupling of space charge waves .

In the limit &, > w/c, the slow and fast space charge wave solutions (equation
(42)) may be coupled through the first-order space harmonic of the fast space
charge wave. Taking &, = k, = &/ we keep in (47) only the terms with n = 0,1
and write it in the form

(- wioRo/')’a) 2y = ‘_?(w%oRo/'}’a) (Qo/ ) ey (56a)
and
(Q2 —who By /v ay = 8wl By /v?) (Qy/ Q) (560)

where, in accordance with (40), we define R, = 0-5(k2 — «?/c?) (r}In (a/ry)).
Using (56c)in (565} and solvmg the resultmg dispersion relation at the reson-
ance condition kg = (R} + RY) Ywhs/y® provides a complex solution with

So

Physically, however, this solution contradicts the assumption of strong magnetic
field, w, ® @, used in this paper. Indeed, the resonance conditions in (57) are

w—kV = +wp0R§/y§ {n = 0, fast mode)
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and
w—{k,+kg)V, = — wpﬂR%/y'% (n = 1, slow mode).

These conditions imply
ksV, = ol B+ BY)/7?

which, by (15) and (13), reads
Wi = GV —f)+ (B + RY? /).

Now since y 2 1, (1 —f) < I, R§+R% < I, the last condition implies w, ~ W0
which contradicts the assumption w, » g indicated above.

However, short-wavelength wolume or long-wavelength surface space charge
perturbations are unstable. The non-relativistic treatment of these cases has been
given in Cuperman & Petran (1982) and Petran & Cuperman (1982).

3. Summary and discussion

We investigated the stability against mixed electromagnetic and electrostatic
perturbations of rippled, magnetically focused relativistic electron beams.
Specifically, we considered the resonant coupling of a volume TM (fast) wave
and a volume longitudinal space charge (slow) wave, in the long-wavelength
limit. We found instability with the (convective) growth rate given by (55).
Essentially, the growth rate increases with the increase of the relative ripple
amplitude, &, the plasma frequency, w,y, and the reduced plasma frequency,
Wpo B3, it decreases with the increase in the relativistic factor, y.

For simplicity, in the solution of (53) we considered the specific resonant ‘slow’
space charge mode as given by (42) and thus reduced (53} to the (second-order)
equation (54). This provided the result of (55).

Now if this ‘educated guess’ for the selection of the specific slow space charge
mode (as represented by the step (iii) preceding (54)) is not made, & more general,
third-order equation replacing (54) is obtained. This equation reads

B~y o) (k; + kg — 0/ V4 03 /U) (k4 kg — 0V, ~wp [V +Q = 0 (54')
where
wy = wyo RE/y (57)
and
b, B, kE—w?/c?
Ak, oS G~ who /Y

@@= (58)

Equation (54') is similar to that oceurring in travelling wave tubes (Pierce
1950), free electron lasers of various kinds (e.g. Kroll & McMullin 1978; Sprangle
1974; Gover & Sprangle 1981) as well as plasma instabilities (e.g. Bekefi & Shefer
1979). Notice, however, the presence in the (small) coupling term, ¢ (equation
(58)) and also in Q, = w—k,V, of k,. Thus, for simplicity, in the expression for
Qwense & = &2 g and (soe (39)) k2, g~ w2/c? = — [2/7r8 In (/o) [Q3/(O — wiky/7)).
Finally, we approximate Qy >~ @ (Q > k7)) and obtain for ¢

oo Buk 1 w?

ngz:ﬂys 7§In (a/"'u) (w?— ‘”.1200/")’3)2' (58)



250 8. Cuperman, . Petran and 4. Gover

We are now in a position to discuss (54') (with ¢ given by (58')). Defining

8k = Iy —k, o, (59)
8, = wp/V,, (60)
and the ‘detuning’ parameter
6 = oVl ks, (61)
(54') can be written in the form
8k(Sk—0—0,)(6k—0+0,)+Q = 0. (62)

A detailed investigation of this third-order algebraic equation is given in Gover
& Sprangle (1981). A number of useful analytic approximate solutions can be
found corresponding to different gain regimes. Equation (62) has three roots and
the condition that two of them be complex (conjugate) is

Q > A[906% — 68 + (074 362)). (63)
D

When this condition is satisfied, one of the roots has a positive imaginary
(Im &%) part. This root gives rise to an exponentially growing convective in-
stability which can grow out of noise (or from a RF radiation signal coupled at
the entry of the device, at z = 0). When |Imdk|z > 1 (high gain regime) the
exponentially growing term exceeds the other two terms which correspond to
the other two roots (one oscillating and the other exponentially decaying}. The
only important term is then the exponentially growing term.

From (62) and (58’) two high gain approximate expressions can be readily
derived. For 8 ~ — @, and |8k{ < 0, (62) reduces to a second-order equation,
(k)2 = —@/26,. Upon substitution of expressions (60) and (58"} for 6, and @,
respectively, one recovers the result {55). This gain regime is the collective gain
regime. The synchronization condition & ~ —6,, can be written as

+ = kz,0+kSl ’ (64)

RSICR

w8

which means that the TM electromagnetic wave is phase matched to the slow
space charge wave via the wavenumber of the periodic envelope perturbation kg.
We made this assumption in deriving the simple result (55). The validity range
of this gain regime can be written as QY < 0,

In the opposite limit, 8, > |0k|, @ » 0, and {6] < |8k|, (62) reduces to a third-
order equation, (6%)* = — @ and the root corresponding to exponential growth is
8k = — @41 + 3%1)/2. The exponential growth parameter is

3t
=2 0%
Imk 3 @
_ 3% 524, R, 1 w? }
T 3yt Vik,, riln(a/ry) (@F —whe /YRR

This is the strong pump regime.
Besides the stability against mixed electromagnetic and electrostatic pertur-
bations (§5.1), we also investigated the stability of resonantly coupled slow and
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fast space charge waves (§5.2). Under the conditions considered here, namely,
relatively strong applied magnetic field and long wavelength, n = 0 and n = 1,
volume space charge waves, no instability was found. (Instability occurs, how-
ever, when the magnetic field is relatively weak).

It should be mentioned that in this paper we treated only the coupling of
waves due to (equilibrium) density modulation of magnetically focused electron
beams; (for simplicity, we assumed constant axial streaming velocity, V). Thus,
additional effects arising from simultaneously occurring equilibrium velocity
modulation, or specially prepared solely velocity modulated beams, should also
be considered. Furthermore, there is still scope for a more accurate three-
dimensional analysis which will take into account the homogeneous solutions
of (27) and allow for different forms of transverse field components for different
space harmonics.

Finally, we point out that the instability due to beam envelope rippling in
the case of magnetically focused electron beams should be of interest in the field
of free electron lasers. It can be a source of laser instability when inappropriate
beam focusing is used. It can also be considered as a possible mechanism for free
electron lasers.
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