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The Nonlinear  Interaction  Between a n  Electron 
and  Multimode  Fields in a n  

Electromagnetically  Pumped  Free 
Electron  Laser 

Abstract-We  consider the  motion of an  electron  under  the  influence 
of two  counterpropagating  multimode  electromagnetic waves and  a 
longitudinal  electrostatic field.  General  equations of motion  are pre- 
sented  from  which  a  simple wavelength  scaling condition is deduced  for 
minimizing  detrapping  effects. An interaction  coherence  time or a 
maximum  useful  interaction  length  parameter  is derived. The  full 
equations of motion  are  numerically solved for a variety of external  and 
initial  conditions. 

T 
INTRODUCTION 

HE idea of the  utilization  of  an  electromagnetic wave as  a 
pump  source  in a free  electron laser was proposed years 

ago by  Pantell [ I ] .  Among the  attractive  features of this 
configuration are the availability of high intensity  sources 
(lasers) transverse uniformity  of  the wiggler field [2] ,  short 
pump wavelengths and  consequently,  short  operating wave- 
length.  The  main disadvantages of  the  utilization  of  short 
wavelength  pump  sources are lower  efficiency,  and  the  strin- 
gent  beam  quality  requirements  on  the  electron  beam  in  the 
linear  regime [ 2 ] .  

The  above mentioned  limitations can  however be surpassed 
once cfficiency  enhancing mechanisms  are considered  in the 
nonlinear regime [3] - [ 5 ] .  In these schemes an  electron, 
trapped  in  the  ponderomotive  potential, is made to radiate 
efficiently  into  the signal field by  applyingan axial electrostatic 
field.  This field performs  work  on a trapped  electron  without 
accelerating it,  transferring  the invested  energy to  the signal 
mode.  Such schemes are  of special relevance for  experimental 
proposals where  the  pump is a pure  electromagnetic wave and 
a strong signal field is already  present t o  create a strong  trap- 
ping potential [ 7 ] ,  [16],  and in particular,  in  two stage FEL 
configurations [6] , [ 1 1 ] , [I 21 . 

The  scope of the  model  treated  here, however,  goes beyond 
the specific case of  an  electromagnetically  pumped FEL. As is 
well known,  the  problem  of a static  magnetic  or  electric 
wiggler can also be  treated  in  the  extreme relativistic  limit in 
terms  of  an equivalent electromagnetic field [SI, [9]. 

In any  frame  of reference which moves at  such relativistic 
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velocities the  magnetic (electric) field  appears  almost as an 
electromagnetic wave. In  the  frame of the  reference  which 
moves at  the velocity of the  ponderomotive  force,  the  pon- 
deromotive  force  becomes  static, allowing the  definition of a 
ponderomotive  potential. On the same basis the equivalence 
between  two  proposed efficiency enhancement  mechanisms 
can be  shown: namely the  tapering of the wiggler period  and 
amplitude [ 131 , [I41  and  the  introduction  of a longitudinal 
accelerating  field. In the  tapered  period case a trapped elec- 
tron slows down as the wiggler period is shortened;  its  frame 
of reference is no longer inertial  and a forward  directed 
D’Alambertian force is felt by  the  electron. In the case of an 
axial electric field the  force is real  while the  ponderomotive 
frame  of  reference  remains inertial. A demonstration  of  this 
equivalence is presented in the  Appendix. 

The presence of  many  modes of different  frequencies  in  the 
wiggler or  pump fields  changes  some fundamentalaspects  of  the 
interaction. A ponderomotive  potential  cannot  be  straightfor- 
wardly defined any  more since there  exists  no  frame  of  refer- 
ence where  the  longitudinal  force can be  made  static. If such a 
potential is defined  for  one pair of  counterpropagating  modes, 
the  other  modes will give rise to slowly time varying forces 
whose  net  effect can be  the  detrapping or retrapping of elec- 
trons. If a longitudinal  force is present,  the  detrapping  mecha- 
nism will be  dominant, since any  detrapped  electron will be 
accelerated by  that  force,  away  from  resonance  conditions. 
The overall  efficiency of the  FEL is therefore  expected  to 
diminish as  the  number  of  participating  modes increase. The 
presence of several modes  may  be an inherent  feature  of  high 
intensity  sources (lasers) or  may arise spontaneously in the sig- 
nal wave in an oscillator configuration.  This  effect,  which  may 
be  of  practical  concern in  some free  electron laser experiments 
has received so far only  little  attention [ 151 . 

In  the present  paper we consider the  motion of an  electron 
under  the  influence of counterpropagating  multimode fields 
and  an accelerating longitudinal  electric field.  General equa- 
tions of motion  are  presented  and a  simple  “wavelength scaling” 
condition is found for  minimizing the  detrapping  effect. 
Under  these  conditions  an  ’interaction  coherence  time  of a 
maximum useful coherence  length  parameter is derived. The 
nonlinear equations of motion  are numerically solved showing 
the  gradual  detrapping  of  electrons  with  time  for  multimode 
interaction. 

0018-9197/84/0900-1079$01.00 0 1984 IEEE 



1080 IEEE  JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-20, NO. 9, SEPTEMBER 1984 

EQUATIONS OF MOTION 
In  this  section we derive the  equations  of  motion  for  an elec- 

tron  interacting  with  two  counterpropagating  multimode elec- 
tromagnetic waves and  an  additional  electrostatic  longitudinal 
field.  This basic interaction  scheme is shown in  Fig. 1. No 
highly  relativistic approximations will be made since we wish 
the results to  be relevant to  experimental  situations where 
moderately energized electron  beams are  used [6] , [7] . 

We start  with  the  Lorentz  force  equation as  follows: 

dP 
dt 
- = -  @+;Xi): 

-+ 

that can be expressed by  means of the vector and scalar poten- 
tialsA  and @, in  the  form 

The velocity  has been expressed here  by  means  of  the canonical 
momentum pc. After  expanding  the  vector  product  of  the vec- 
tor A and  its  curl  we  obtain 

Since we aim towards collinear  plane waves, we  can  choose z 
as the  direction of propagation, explicitly 

A = A(2, t)> @ = qqz). 
- t +  

(4) 

Here, A means  there is no i component  to  the vector potential. 
The conservation of the transverse  canonical momentum pc 
follows straightforwardly  from (4) and a  simplified equation 
for P, is  obtained. 

where we made use of  the initial condition p c ( 0 )  = 0. We in- 
troduce now the explicit form  of  the field as the sum of  two 
counterpropagating waves 

-f 

A = Re (A, + A , )  
+ +  

where w and s stand  for wiggler and signal fields, and  the  total 
number  of  modes  is 2M + 1 and 2N + I ,  respectively. The 
phases of  the  forward going signal wave and  backward going 
wiggler wave are given by 

$ sn = -  wsnt + ksnz + $o,n (+ z direction) 

$,, = - %m t - kwmz + QOwm (- z direction). (7 

We now introduce  our first  explicit approximation  by as- 
suming that  an  electron will interact significantly only  with 
forcing terms  which move close to  its velocity and  thus ne- 
glect all the  terms  which  propagate  with phase  velocity larger 
than  the speed of light, and  thus disregard all contributions  to 

_c 

‘dc 
c_ 

Fig. 1. Interaction scheme of two  counterpropagating  electromagnetic 
waves and an  electron  beam,  in the presence of a  longitudinal  electro- 
static  field. 

(5) having phase velocity equal  or greater than e. Now, in- 
serting (6) and (7) into ( S ) ,  we obtain 

. sin(krzrnz - Ghm t + $onrn) - eEdc (8) 

where E:, are  the  ponderomotive field amplitudes 

4rn = wsn - Uwm knm = ksn + kwm 

$on, = $om - +oVrn. 

We observe here  that  the  ponderomotive waves created  by 
the  multimode wiggler and signal fields propagate  at velocities 
u,,, = (w, - %)/(kn + km), which can be significantly smaller 
than  the speed of  light. These  velocities,  related to  different 
mode pairs  are  in  general different  from  each  other. An elec- 
tron  launched  at a  velocity u,, will see a static  force  due to  
the  corresponding  ponderomotive field. Other  terms in (8), 
however, will  still be  time  dependent in the  electron  frame of 
reference  and will slowly affect  its  trajectory. It  should be 
remembered  that  when a dc  longitudinal field is applied  as an 
efficiency enhancing  mechanism,  the fact that  the  electrons 
are continuously  trapped is crucial: only  then  can  the  dc field 
perform  work  on  them  which  it  totally  transferred  into  the 
radiation fields [ S I .  The  multimode  perturbation  may  act 
then as  a detrapping  agent  which lowers the general efficiency. 
In  the  next  section we show that  this  perturbation can be 
minimized by fulfilling  a proper “scaling condition”  on  the 
wavelengths of  the fields  involved. 

FURTHER CONSIDERATIONS REGARDING 
MULTIMODE INTERACTION 

A .  Frequency Scaling Condition 

Assume now  that  an  electron is drifting  with a  velocity close 
to resonance with  the  ponderomotive field Eyl, i.e., 

As stated  before  this  electron will feel in a  frame of reference 
moving with velocity Uphll a static  force as a consequence of 
the  modes  of  frequency wls and wlw.  Assume now a second 
pair of  modes is present with  frequencies wzs = ols + Ao, 
and w2, = wZw + Am,. The  frequency difference between 
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the  two  additional waves in the  electron  inertial  frame will be 

A o ’  = ~ ( 0 1 s  Am,) (1 - 0)- ~ ( o ~ w  -t Aww) (1 PI 
= ~ ( A G J ,  - Aw,) - $(Aw, -t Am,). (1 1) 

It is  apparent  that  the  frequency  difference in the moving 
frame is smaller than  that  measured  in  the  laboratory  frame. 
If we control  the  frequency  difference A o ,  and Ao,, we 
may  be able to satisfy  Am’ = 0, implying 

Fulfillment  of  this  frequency scaling condition  means  that 
the  electron will feel  a static  force  from  the  ponderomotive 
field  arising from  the  modes  at  frequencies 02, and 02s also. 
For  multimode laser electromagnetic  sources, Ao, and Ao, 
are  constant so that  the scaling conditions can be fulfilled 
simultaneously  for all pairs of  modes  with  equal  mode  indexes 
(n = m). The  total  number  of pairs that can be  made to cor- 
respond is of  course  not  greater  than  min(2N, 2M).  The  fre- 
quency  difference A o  between  adjacent  modes  depends  for a 
laser source  mainly  on  its  length L :  

A o = -  
71C 

n“L 

where nr is the  refraction  index  of  the laser gain medium.  The 
scaling condition (12) can be then simply reformulated: 

In  other  words  “the lasers cavity lengths should  be made  pro- 
portional to  the respective  wavelengths.”  This condition can 
be implemented in  a variety of existing  laser  sources. 

B. The Detrapping Time 
Our purpose  now will be  to  find  an expression for  the  de- 

trapping  time T~ due to the presence of several modes in the 
wiggler and signal fields. It is intuitively  apparent  that  this 
detrapping  time should be  related  to  the  coherence time of 
the laser souces  involved. For  this  purpose  it is convenient to 
write  the  force  equation (8) in the  frame  of  reference moving 
with a  velocity given by (IO). After  performing  the  fully 
relativistic transformation  and inserting scaling conditions  (1 2) 
we find  the following  expression: 

* sin {y(k,, (1 - 0 2 )  t Aks( 1 - 0) (n  + m )  Z’ 

- r(Aos(1 - P )  (n - m>t’ + Grim 1 - eEdc (1 5) 

where we used the  fact  that  the  modes  frequencies are  equally 
spaced, i.e., 

k,, = k,, t n Ak, + m Ak, 

a,, = moo + n Ams - m Ao,. 

We also applied  here  the  Lorentz invariance of the  longitu- 
dinal amplitudes E:,. From  (1 5) it is clear that  when  fre- 

quency scaling condition  (14) is satisfied,  a time  independent 
force is obtained  for all terms  with m = n. There is however  a 
difference  in  the wavevector values of  these  terms  which  intro- 
duce a spatial  amplitude  modulation of the  resultant  pondero- 
motive  potential. When the  length  of  the  source lasers is larger 
than  the  interaction  length Lint, then  2r/Ak, > > Lht and  this 
spatial variation is negligible. In the special case when  the 
source lasers are  mode  locked,  the  phases  of  different  pondero- 
motive  potentials $,,, are identical  and  they  sum  up  coher- 
ently  to  produce  an  intense  and  narrow  resultant  ponderomo- 
tive potential region.  Notice though  that we still have the 
mixed  terms m # n and  they  can still  cause electron  detrapping. 

The  detrapping  time  for a given pair of  modes ( m ,  n )  will be 
defined as the time required  to  dephase  the  corresponding 
argument in (1 5) by  n/2,  namely 

(7,Dn) = ./[2yAoS(l - P )  (n  - m)]  (16) 

or,  returning to the  laboratory  frame, 

7En = n/[2AoS(l - P )  ( n  - m)]  = n/[2AwW(l + P )  (n - m ) ]  

(1 7) 

which is the desired  expression for  detrapping  time  indepen- 
dently  of  whether  condition  (14) is satisfied or  not. We ob- 
serve here  that if the wiggler and signal fields have the same 
number  of  modes,  and we insert  in the last  expression the 
maximum value of n - m (namely 2N), the  detrapping  time 
will be larger than  the signal coherence  time,  but  shorter  than 
that  of  the wiggler. This estimate  of  the  detrapping  time is 
basically a  lower  limit estimate assuming worst  detrapping 
conditions.  The  true  detrapping  time is of  course a  result of 
the  contributions  of all pairs (n ,  m )  with  the  corresponding 
weights Et,. In  the  detrapping process the  additional axial 
electric field will also play  a major  role.  The  total  influence 
of  these  factors will be  taken  into  account in the  next  section 
where  the  full  nonlinear  equations are solved numerically. 

C. Trapping  Criterion 
In this  section we derive an approximate  trapping  criterion 

in a situation  where several modes are present in the  electro- 
magnetic  fields.  Unlike the single mode case no  “trapping 
bucket” can be drawn  in  the phase  space  since  forces are  ex- 
plicitly time  dependent  in all frames of reference. We develop 
here an energy  spread acceptance expression which  has  two 
practical  meanings. In  the case of a monoenergetic  electron 
beam it will evaluate the  spread in  energy of  trapped  electrons 
caused by  the  interaction,  and in the case when  the  beam  has 
a finite  temperature (initial  energy spread)  it will reflect the 
admissible spread  in energies for a  significant trapping  fraction 
to be  expected. 

Start  with a single mode case. The field  can then  be  inte- 
grated over the  distance  to  obtain a time  independent  poten- 
tial  in  the moving frame  of  reference: 

V’ = G’(l - COS k;, 2’) (1 8) 
where 

5‘ = Eco/k&, k;, = y-’ k,, . 
The  maximum velocity  spread that  electrons  initially  at rest 
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can acquire  due  to  the  interaction, assuming a nonrelativistic 
spread will be 

Avi = 4(eL$"/n~)~/~. (1 9) 

Back in the  laboratory  frame,  this velocity  spread will imply 
a spread in  the  electron beam  energy 

e V =  mc2 (y - I). (20) 

Differentiating this  last  expression with respect to  velocity, 
assuming yz = y and inserting Av, = y-2 Avi one  obtains 

AV, = 4(y + (VV,')'/" (21) 

We finally postulate  that in a  multimode case with  random 
mode phases,  these energies will sum up  in  the average like  an 
incoherent process  yielding 

AV, = 4(y t 1)1/2 V112 jl". (22) 
n ,  m 

This would be the statistically averaged energy acceptance 
and  the beam  energy  spread  caused during  trapping, assuming 
of  course  that  the  interaction  time is shorter  than  the  detrap- 
ping time  (1  2). 

NUMERICAL SOLUTION OF EQUATIONS OF MOTION 
Equation (8) was solved numerically  for  the  time varying 

ponderomotive field by means of  a  sixth  order  predictor- 
corrector  routine.  The  calculations were performed  each  time 
for  20 particles of  different initial  phases  (launching times) 
uniformly  distributed. All the runs  had the following data in 
common. 

Toto1 pump source intensity = 10 MW 

Total signal source  intensity = 10 MW 

Edc = - 585  V/m 

A, = 10.8 pm 

A, = 9.2  pm 

Interaction  length: 10 cm 

Beam cross  section 0.1 cm2 

/3 = 0.08. 

These data  are based on  the  parameters  of  an  on going trap- 
ping investigation experiment  [16] . In this  experiment  the 
radiation sources are  two pulsed C 0 2  lasers tuned  at  two  dif- 
ferent  transition lines. The  maximum  attainable  pondero- 
motive field is in this case 2.3  kV/m (single mode  casej.  Re- 
sults are presented  for  the cases of 1 , 3 ,  and  5  modes in each of 
the  interacting  radiation  beams. In the  multimode case the 
mode  intensity  ratios were 2:3:2  and  2:3:4:3:2, respectively. 
In the  multimode cases the  mode field phases  were  picked up 
randomly. 

A .  Final  Electron  Energy  Distribution 
The  electron energy distribution  after  the  interaction is 

shown  in Fig. 2  for  electrons  starting  the  interaction  with  dif- 
ferent  initial phases. One observes here  that  the presence of 

Fig. 2. Energy distribution of electrons  after 3 cm of interaction  as  a 
function of the  initial phases, for  different  number  of  modes  in  the 
electromagnetic  fields.  Upper  graph:  one  mode.  Center  graph:  three 
modes. Lower graph: five  modes. 

many  modes  not  only decreases the  mmber of  trapped  par- 
ticles,  but also makes  the  distinction  between  trapped  and 
untrapped  electrons  more gradual. 

B. Exit Times (Bunching Effect) 
The  trapped  electrons dwell  mainly  in the  ponderomotive 

potential wells. Once a  dc field is applied,  the  untrapped elec- 
trons are stripped  away creating gaps in the  trapped  electrons 
axial distribution. This feature can be seen in Fig. 3,  where 
the relative exit  times  are  shown. Only trapped  electrons 
times  are  plotted.  The  untrapped  electron  times are much 
shorter,  out  of  the  drawn scale. 

C. Overall  Trapping Efficiency 
Fig. 4 shows  clearly the  effect  that  many  modes have on  the 

trapping process: the  trapping  fraction gradually  decreases 
with  the  interaction  distance.  The  effect  of  the relative  phases 
of  the  different  modes is also seen here. These initially  ran- 
dom phases determine  the  trapping  fraction  at  the beginning 
of the process. The  detrapping  times are  significantly  larger 
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Fig. 3. Exit  times  of  trapped  electrons  entering  the  interaction  region 
with  different phases.  Time is measured  relative to  the  exit  time  of 
the  main  ponderomotive wave,  in units of s. Upper  graph:  one 
mode in the fields. Center  graph:  three modes.  Lower graph: five 
modes. 

than  the  predictions based on  the  lower  limit  expression (17). 
This is explained  mainly  because  scaling  condition (12) was 
assumed in the  simulation  that  ensuring  that  the 2N+ 1 pon- 
deromotive  field  terms  are  temporarily  synchronized. 

D. Detuning Effect 
All the  preceding  results  assumed  a  synchronous  cold  beam, 

i.e., a  beam  with  energy  spread small compared  to AV, and  a 
velocity  equal  to  the  phase  velocity  of  the  main  ponderomotive 
field.  Fig. 5 shows  how  the  trapping  efficiency is affected  by 
detuning  the  electron  beam by +2 eV.  In the  three  mode  case, 
it is seen that  detuning  affects  mainly  the  initial  trapping  frac- 
tion, the detrapping  rate  afterwards  remaining  essentially  the 
same. 

CONCLUSIONS 

It was shown  that  efficient  trapping  of  electrons  in  the 
ponderomotive  potential  of  multimode  fields is possible  within 
a  definite  coherence  length.  This  length  can  be  maximized  by 

ln lero~t ion Lenglh (cml 

Fig. 4. Trapping  fraction  as  a  function of interaction  length  for  three 
mode  (upper  graph)  and  five  mode  (lower  graph) fields.  Different 
curves  correspond to  different  initial  phase  distributions. 

fulfilling  a  suitable  wavelength  scaling  condition.  The  trapping 
fraction is then  mainly  affected  by  the  initial  phase  distribu- 
tion  of  the  participating  modes. 

APPENDIX 
We demonstrate  here  the  equivalence  of  axial  electric  field 

and wiggler amplitude  or  period  tapering in the  trapped  elec- 
tron  problem. 

In  the case when  the wiggler amplitude  and  period  are al- 
lowed to  vary as a  function  of z, the  force  equation (8) can  be 
rederived  from (5) in  the  form 

d 
dt 2my az 

where kpm ( z )  = k,,,(z) + k,, and we assumed w, = 0 and a 
single mode  in  the wiggler and signal  fields. 

We substitute  the  electron  coordinate z ( t )  in  terms  of  the 
perturbation  coordinate 6, (t)  which is the position  coordinate 
of  the  electron  relative  to  the  position  of  a  perfectly  trapped 
electron  (which moves at  the  phase  velocity  of  the  pondero- 
motive  wave). 
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Fig. 5.  Influence  of  detuning  on  the  trapping  fraction.  Perfect  tuning 
(Uo = 0) is defined  with  respect  of the  main  ponderomotive wave. 
Upper  graph:  one  mode fields. Center graph: three  mode fields. 
Lower  graph:  five  mode fields. 

To a very good  approximation  this  results in 

and 

where we used the  approximation 

Yph (1 - p:h)-1’2 y y 

and 

y- [ l  + (eA,/mc) ] . 2 112 

Equation (A4) is basically the  pendulum  equation [13], 

[14]. The first term  on  the right hand side is the  ponderomo- 
tive field (9). Clearly, the  second  and  third  term play the same 
role as the  fourth  term  and can be regarded  as  equivalent  axial 
forces which result from  the wiggler amplitude  and  period 
tapering 

The first term can be  interpreted as the  force resulting from 
transfer  of transverse kinetic energy into  longitudinal energy 
(which is directly  transformed  into radiative  energy). The 
second term can be  interpreted  as  an imaginary  D’Alambertian 
force as it is viewed in a  noninertial reference frame moving at 
velocity uph. It  transforms  the  longitudinal  kinetic energy 
into radiative  energy. Note  that  the real axial  electric  field 
Edc generates radiating  energy on  account  of  its source and 
not  on  the  account  of  the  electron energy. Equation (A6) is 
in agreement with  the analysis of [14], except  for  a  factor 
2y: which  appears  there in the second term  erroneously in 
our  opinion. 

The equivalence relation (A6) can also be reversed. The  am- 
plitude  tapering  which is equivalent to a given dc field & (z )  
is found  to  be 

The equivalent  period tapering is given by 

and  (A3), (A6). 
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