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A new monolithic structure for solid-state traveling-wave amplifiers is proposed, which promises
efficient interaction between a drifting charge carrier stream and a slow electromagnetic wave
component. The suggested configuration is potentially suitable for operation in the far-ir frequency
regime. A one-dimensional analysis of the interaction between the electromagnetic waveguide mode
and the carrier current is presented, including the loss contribution due to the nonsynchronous space

harmonics of the electromagnetic mode.

{. INTRODUCTION

It is well known that when charged particles move with
a higher velocity than the phase velocity of light in the
same medium, a transfer of energy from the charged-
particle beam to the electromagnetic field in the
medium may occur.

This principle is used in traveling-wave tube ampli-
fiers in which an electron beam interacts in vacuo with
a slow electromagnetic wave component which is pro-
duced by a periodic waveguide (helix). It is interesting
to consider traveling-wave amplification when the
vacuum electron beam is replaced by drifting carriers
in a solid. This idea was previously discussed by
several authors (Refs. 1—3 and others), and experi-
mental evidence for the effect was presented. *

In most of the proposals to date the solid-state ampli-
fier involves a simple extension of the conventional
traveling-wave tube amplifier, where a current-conduc-
ting semiconductor is placed in close proximity to an
external slow-wave circuit (helix or metallic meander

z ™~CONDUCTING
x LAYER
WAVE GUIDE (ng)
AVAVad
(a) — le— ¢
t SUBSTRATE (ng) 7z
(ng)
i (nd)
T e AT 9 e €9 4o <o 4o & S
2 CONDUCTING
l = g -—L CAYER
* a d=L/2n
o WAVE GUIDE (ng)
) —] Y,
1 7 SUBSTRATE (ng) 7z

t
FIG. 1. (a) Monolithic solid-state traveling-wave amplifier
with conducting layer beneath the periodic corrugation. ()
Monolithic solid-state traveling-wave amplifier with conducting
layer on top of the periodic corrugation.
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line, electrically insulated from the semiconductor).
The extremely small mechanical period which is re-
quired of the external slow-wave circuit for very high-
frequency operation is hard to accomplish and, in ad-
dition, the coupling between the current and the elec-
tromagnetic wave in such a structure is not efficient.

Our previous studies on the propagation of electro-
magnetic waves in periodic structures®~7 led us to con-
sider a different realization of the device which we
believe to be more appropriate for solid-state traveling-
wave amplification at optical and submillimeter wave-
lengths. In the present paper we discuss the suggested
structure and present a theoretical analysis of its
operation. In the structure, which is described in Fig. 1,
the slow-wave circuit is a periodically corrugated di-
electric waveguide, and the current-conducting layer is
built right next to the perturbed surface in a monolithic
way, which may be accomplished by diffusion, ion im-
plantation, epitaxial growth, or carrier injection. Such
a structure allows tight coupling between the carrier
current and the slow electromagnetic wave component.
The electromagnetic wave is waveguided in the thin-film
waveguide and no external resonator is required. We
derive an analytical expression for the gain achievable
in the proposed structure using expressions for the
interaction impedance which were derived elsewhere. ®

In general, when an electromagnetic wave propagates
in a periodic structure, its modes are given by the
Flouquet theorem. Considering a TM mode propagating
in a periodic waveguide such as that of Fig. 1, the
magnetic field component is given by

©

H(x,2)= 2 _ay(x)exp(=iB,z), M

where 8, =8,+2m/L; L is the period of the perturbation
and §, is nearly the propagation constant of the unper-
turbed waveguide so that 27/x < 8, <(27/X)n,, where n,
is the index of refraction of the waveguide dielectric
material and A the vacuum wavelength of the electro-
magnetic wave.

The terms in Eq. (1) (space harmonics) with m +0
can have arbitrary phase velocity according to the
choice of L and m. They can thus be made to satisfy the
condition of energy transfer from the charged carrier
current to the electromagnetic wave, which occurs when
the carrier velocity exceeds the phase velocity of the
electromagnetic wave component. Considering for
example the first harmonic, the condition is

Uo>(vph)1:_§0_._u;—n/L’ (2)
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FIG. 2. Gain curve of the traveling-wave amplifier. Describes
the gain vs drift velocity v, (for fixed A).

where v, is the carrier’s drift velocity and w the wave
angular frequency. With g, < 2xn/L, the ampilification
condition (2) can be written as A > L¢/v,.

Surface corrugation on GaAs crystals with periods
down to 1000 A has been demonstrated using ion ma-
chining techniques. ® Developing techniques of uv, x-ray,
and electron lithography promise in the near future
production of corrugation periods of several hundreds
of angstroms. Hence, assuming v,~2X107 cm/sec and
L2200 A, we deduce from Eq. (2) that amplification
may be possible at wavelengths longer than ~30 um.

Since B, «<27/L (L <), the profile of the m =1 and
m =~ 1 space harmonic in this limit® is

a,,(x)=a,,(07) exp((- 27/L)x], £>0

=a,,(0") exp[(27/L)x],

where the x coordinate origin is chosen to coincide with
the corrugated surface. This means that the first har-
monic has appreciable amplitude only within a layer L/
27 thick beneath and above the corrugated surface.
Hence for appreciable interaction, the carrier current
must be confined within this layer as shown in Fig. 1.

x<0 (3)

In the following sections we analyze the interaction
between the drifting carriers and the electromagnetic
wave in the given structure described above. The
single harmonic interaction analysis is similar to the
one-dimensional derivation presented by Solymar and
Ash, ! The derivation, however, is extended to describe
interaction of the electromagnetic mode through several
space harmonics, and uses the interaction impedance
of the corrugated dielectric. ® The illustrative examples
are discussed with special emphasis of the far-infrared
regime. '

Il. TRAVELING-WAVE INTERACTION THROUGH
THE FIRST SPACE HARMONIC

The line of analysis is as follows: The slow-wave
field component E o o expli(wt — Bz)] modulates the
drifting carriers and generates a carrier plasma wave.
The plasma wave in turn induces an electromagnetic
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wave in the corrugated waveguide. Calculating each of
the processes separately and substituting them self-
consistently results in the dispersion characteristic for
the combined excitation traveling in the structure. The
imaginary part of the propagation parameter g gives
the expected gain,

The ac electronic motion and Maxwell’s equations are!

(iw = iBvy+ 1/7Yv, = i(D/n,7) Bn, = — (e/mNE, + Ecl), (4)

BJ, = - ewn,, (5)
i€BE, =en,, (6)
J, =~ e(ngv; + vgny), (7

where D= (kT/e)u and 7 are the carrier diffusion con-
stant and collision relaxation time, respectively.

v, ny, J,, E;, and E01 are, respectively, the ac com-
ponents of the velocity field, carrier density, current
density, longitudinal space-charge electrical field, and
circuit-induced electric field, all assumed to vary as
exp[i(wt ~ Bz)] and are considered small compared to
the dc parts (v, n,, Jy E,).

From Eqs. (4)—(7) one gets

- ocwWd
(Bug — @)+ iT[05f + @2 — (Bvg - W) E,, (8)

where I, =dWJ, is the total ac current (W is the device
width), v,=(kT/m*)}/? is the thermal velocity, w,
=(nye?/em*)'/? is the plasma frequency, and o= e’n,7/
m* is the Ohmic conductivity.

L=

The current I, considered as a driving term, in-
duces a field E,_ in the waveguide®

E°1 = 1[32}311(1/(3"1’ - Bz)]ll; (9)
where K, is the interaction impedance K, = | E,(0)1%/28%P,
and P the total power of the electromagnetic mode.

Substitution of Eq. (9) in (8) results in the dispersion
equation for j:

{%L - “"W[(ﬂ% - <%h - l)] }(Bz—ﬁf)ﬂQle,

(10)

where @, =Wdp,K,0. For the special choice of d=L /27
=1/8,, Q,=WK,o0.

For a=0 (no interaction), the dispersion relation
gives the four independent eigenmodes of the systems,
the electromagnetic waves 8=+p,, and two plasma
space-charge waves. For small values of a, we can
expand 8 around 8,. The imaginary part of the first-
order approximation is

S, -1
(S, ~ 1P+ A%[(S, - 17 - B?}’

where S, =8,v,/w, A=wT, B=[(v8,/0)?+ (w,/wy]’2
The curve describing this gain dependence on drift
velocity is given in Fig. 2.
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At a fixed frequency w, the gain as given by Eq. (11)
reaches its extrema at

<2A232 —1+[(247B* - 17 + 12A‘*B4]”2) 1/
Slm -1=z 2 )
6A
(12)

The parameter A%B?= r%(w} + v%8%) is independent of
frequency. For cases when 242B%>>1, Eq. (12)
simplifies into

Sim—1=B=[wi+ (v B )?/w (13)

and the exponential gain constant is

Bn= 2B, = W = QB s s (19
For the case when 24%B% « 1, Eq. (12) gives

Sim— 1=AB*=7?[(v,8,f + W]/ wr, (15)

&1 =3Q1B; WT/T[(v,8,)* + w3]. (16)

11). BACKWARD WAVE INTERACTION

Analysis of the interaction of drifting carriers with
the electromagnetic wave via the — 1 space harmonic is
similar to the treatment of Sec. II. However, since the
-1 space harmonic (with 8_, < 0) has opposite phase and
group velocities, its induction mechanism is different, °
and the field induced in the circuit by a current
I_, <exp(—ipz) is®

Ec-lz_i[BZBqKq/( 2:1_[32)]1_1. (17)

Substitution of (17) into (8) results in the dispersion
relation:

fors a0 (20 )
=i|Q-1|Bz» (18)

where Q_, =dWB_,0K_,=- Q| (since B, =~ 27/L is
negative).

The first-order solution of the dispersion equation
gives

_ 1918, S,-1
B)a=""3—" G- IP+AlG,-IP-BF (19)
where A=w7, B={{(9,8-1)/wP +(w,/w)*}/2, and the
variable S_, =B_,v,/w is positive only for negative
velocities. The gain dependence on drift velocity is
again given by the curve of Fig. 2. Gain starts when
S_; > 1 which means negative drift velocity which exceeds
the negative phase velocity of the — 1 harmonic. Note
that negative g, corresponds to gain, since 3, <0.

The condition of maximum gain is given again by Eq.

(12), and the maximum gain is given by Eqs. (14) or
(16) (where @, is replaced by 1Q_,1).

IV. INTERACTION OF AN ELECTROMAGNETIC
MODE VIA MORE THAN ONE SPACE HARMONIC

The model of interaction via a single space harmonic
may be too simplified for a high-temperature electron
beam with low gain, An electromagnetic wave which is
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propagating in the periodic waveguide consists of an
infinite number of space harmonics. Each of these
(even if it is not synchronous with the current) modu-~
lates to some extent the drifting carriers with a dif-
ferent space-charge wave. Each of the space-charge
waves interacts back with all of the space harmonics
and through them amplifies or attenuates the total elec-
tromagnetic mode.

We will assume a model in which all the space har-
monics except the main three: — 1, 0, 1, are neglected.
Significant resonant interaction will take place only be-
tween a given space-charge wave and its parent space
harmonic. Qur assumption is that the three interaction
mechanisms may be treated independently, and the total
gain of the electromagnetic mode will be given by the
sum of the gains or attenuations due to the three
coupling interactions.

To calculate the interaction with the zero (fundamen-
tal) harmonic, we can use the analysis of Sec. II, sub-
stituting subscript 0 for every subscript 1. The variable
S, =(By/w) v, is very small, of the order of 10~ (¢/
n,<w/B,<c), hence we may substitute S,~0 in Eq. (11)
and get

Q8 1
(Bido=~- —g_q 1+ P10 B /WY = (@, /wPE (20)

where Q,=WdB,K,0.

It is interesting to note that when one substitutes X,
=(p/€e)’? 1/Wdp2, which is the interaction impedance of
an homogeneous dielectric, one gets the familiar free
carrier loss expression, including the diffusion and
dielectric relaxation effects:

1/u 1/2 1
B":E<?) O T+ PP = (w8 wP = (wyfwrF 2V

The free carrier loss of the total propagating mode is
therefore inherently included in the model as the
asynchronous interaction between the fundamental space
harmonic and the plasma carriers and is given by Eq.
(20) with K, appropriate to the gpecific interaction
circuit. ’

Once we choose a synchronous interaction via the
first harmonic, the interaction with the -~ 1 harmonic is
asynchronous and lossy, and vice versa. To find the
loss due to the — 1 harmonic when the first harmonic
interaction is on maximum gain condition [Eq. (12),
(13), or (15)], we have to substitute in Eq. (19) S_,
== (S,),- If we let g stand for S,,, -1 in Eq. (12), (13),
or (15), then

Q1 18] 2+g¢
B)a=—5" GrgFrAlE  F - FF
Since 8., <0 this positive (B,)., corresponds to attenua-
tion.

(22)

For the case when the -~ 1 harmonic is synchronous
and on maximum gain condition, a similar equation ap-
plies for (B,), with the subscript - 1 substituted by 1,
and the sign reversed.

V. DISCUSSION AND ILLUSTRATIVE EXAMPLES
The analysis of Sec. IV enables one to compute the
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traveling-wave amplifier total gain when the interaction
impedance of the structure is known for each of the
space harmonics. For the particular structures shown
in Fig. 1 the interaction impedances are (see the
Appendix)

o (B\? n} naa®
Ks0)=(2) " Gy i (s

(23)

for the structure of Fig. 1(a), and

" E_ 1/2 n? hga2
K@) —<fo ) 2"41.0("§ + n‘zl)z YaBokloys W
131 ndo 2
x| g,B,F =+ —vo) (24)
per

for the structure of Fig. 1(b).

(25)

X (u 1/2 2 W
o Eo) ”t BBt W )

Note that high interaction impedance (and therefore
gain) should be expected for the forward wave interac-
tion mode in the case of structure 1(a) and for the back-
ward mode for structure 1(b).

Numerical camputation of the interaction impedance
for the structure 1(a) with n,=3.5 and n,=n,=1 results
in a maximum forward interaction impedance when the
thickness is chosen to be = 4x. The interaction im-
pedance is then K, =0. 57(a?/AW) (11 /€,)* /2.

The interaction impedance thus increases as a®/x.
Technological difficulties are likely to limit the cor-
rugation depth to something less than the period. We
will thus choose in the following examples a=4L =u/8,.

Let us consider two illustrative examples:

(1) A =100 um (w=1.88%10* rad/sec), T=1.33x10"1¢
sec, w,=1.6x10" rad/sec, v,=2x10" cm/sec, v,
=1x107 cm/sec, L =600 A.

When GaAs is used as the dielectric material (effec-
tive electron mass ~0.08m,) the indicated w,, v, are
achieved with n,="7.9x10 ¢m™ and T =53 °K.

The conditions of this example are in the regime
where Eq. (16) applies (242B <« 1). The calculated gains
are: g,=1.44 cm™, g,=-0.45cm™, g ,=-0.03 cm™,
and the total maximum gain is then g=0.96 cm™,

(i) A=100 um, 7=1.7X10"* sec, w,=1.3x10" rad/
sec, v,=2%X107 cm/sec, v,=1%10" cm/sec, L =280 A.

For GaAs, the indicated w,, v, are achieved with »,
=4.8x10' ¢m™ and T =53 K.

In this example we are in the regime of Eq. (14)
(2A%B? > 1). At maximum gain condition we have g,
=2.15cm™, g =-0.45cm™, g, =-1%x10"% ecm™, and
the total maximum gain is g=1.7 cm™,

It should be emphasized that the equations derived
above indicate a higher gain for a longer relaxation time
7, but at the collisionless regime w7 >>1 there are
doubts about the applicability of the macroscopic equa-
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tions [Eqs. (4)—(7)]. This regime, which requires dif-
ferent theoretical methods, will be treated separately
in another paper.

Higher plasma frequency (i.e., free carrier con-
centration) increases the gain due to the first-order
harmonic interaction. On the other hand it also in-
creases the loss due to the interaction of the zero and
—1 harmonics. In addition, skin depth may become
small enough to limit the space harmonic penetration
below the penetration assumed. It was verified that the
skin effect can be neglected in the above examples. For
optimization of the device operation it may be necessary
to operate in a region where the skin effect is signifi-
cant. In this case different expressions for the interac-
tion impedance should be derived straightforwardly.

Appropriate choice of a semiconductor and the tem-
perature which allow higher drift velocities may ap-
preciably increase the gain. However, in high-mobility
semiconductors, the small effective mass may require
extremely low temperature in order to achieve suf-
ficiently low thermal velocities.

In conclusion we demonstrated in this paper that a
new approach to solid-state traveling-wave amplifiers
based on existing and still developing techniques of
semiconductor surface corrugation and thin-film wave-
guiding, may possibly provide new amplification and
oscillation devices in the interesting regime of sub-
millimeter and far-infrared waves. Common use of
semiconductor techniques, epitaxial growth, doping,
and lithography, makes such devices compatible with
electronic and future optical integrated circuits.

Evidence for gain in solid-state traveling-wave am-
plifier was presented in Ref. 4. Even though different
structure and frequency regime were used in that
experiment, one should expect similar qualitative be-
havior. We note, however, that some important details
of the experimental results differ from the basic theory.
Higher gain was observed at the backward wave opera-
tion mode, also instead of the S-shaped gain curve (Fig.
2), gain increased in some of the samples starting with
zero applied field. We conclude that the question of the
experimental observation of amplification in a circuit-
solid-state-plasma interaction is still open.

APPENDIX

The expressions for the interaction impedance of the
structures in Figs. 1(a) and 1(b) [Eqs. (23)—(25)] are
derived separately (Ref. 6). The derivation is too
elaborate to be included here, but we henceforward de-
fine all the parameters used in the cited equations, so
that we merely define the terms involved in Eqs. (23)—
(25).

The parameters 8, h, y, and ¢, are the propagation
parameters of the TM electromagnetic mode in the
unperturbed dielectric waveguide [Fig. 1(a) or 1(b) with
a=0, L=0]. The solution of the electromagnetic mode
is given by

H (x, 2)= // (x) exp(~ iB2),

so 8 is the mode propagation parameter in the z direc-
tion. &, y, and a are the propagation parameters in the
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waveguide layer, air, and the substrate, respectively.
Maxwell’s equations connect the propagation parameters
through the relations #?=n%k% - 8%, y®= g% - n2k?, o

=p% = n?k® (k=21/X). The parameter ¢, is the effective
transverse mode confinement distance and is given by

=2 2 2 2
Y2+ I t vE+hpt 1
t“‘: > (__+____

o + k2 1>
n: o Rzyp iy

a2+ h? M50
where y = (n2/n’)y, a=(nZ/n)a.

In the first-order approximation the propagation
parameters of the zero space harmonic are equal to
those of the unperturbed mode so 8,=8, y,=¥%, @,=0a.

The parameters nzLo, n%, are the zero- and first-
order Fourier components of the perturbation layer
relative dielectric constant, (27/L)g, is the first-order
Fourier component of the dielectric constant logarithmic
derivative dloge/dz.
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For example, with the structure of Fig. 1(a), where
the perturbation layer is a symmetric rectangular
corrugation, n%,=3(n2+n?), ni =(2/n)(n2-n?),

g, =1(2/7) In(n2/n?).
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