Near-field analysis of the knife-edge technique

Abraham Aharoni, Abraham Gover, and Kenneth M. Jassby

While employing the knife-edge (KE) technique for detecting surface acoustic waves (SAW) in an expeti-
mental apparatus, it was ohserved that the phase of the detected signals varied with the lateral position of
the KE. This phenomenon is explained by deriving the Fresnel diffraction pattern of a Gaussian beam re-
flected from a surface sustaining continuous SAW and applying the results to obtain an analytical expression
for the signal detected by the KE technique in the near-field. The dependence of the detected acoustic sig-
- nal on the lateral position of the KE, which is described by this expression, is verified experimentally, The
frequency response of the KE technique and the effect of nonsinusoidal SAW are also considered.

. Introduction

The detailed analysis presented here was motivated
by an experimental observation noted by the authors
while attempting to measure the phase of surface
acoustic waves (SAW) by means of the knife-edge (KE)
technique.'* The authors found that the phase of the
detected acoustic signals depended on the lateral po-
gition of the KE. This dependence persisted when the
KE was placed well within the far-field region as defined
by the standard condition!-4 z %> W1/A, where z is the
distance from the surface sustaining SAW, W is the
extent of the illuminated spot on the surface, and X is
the optical wavelength. This phenomenon is not pre-
dicted by theoretical analyses of the KE technigue for
the far-field, and its occurrence may hinder the appli-

_cability of the KE techniques in situations where the
detected phase is significant, such as SAW velocity
measurements by the time-of-flight technique.5 Using
the near-field diffraction approach it is possible to ex-
plain this phase variation and define 2 confined region
within the far-field where this phenomenon is negli-
gible. ,

The reader is referred to Refs. 1-4 for detailed anal-
.yses of the KE technique. A short geometrical optics
description of this technique follows. In its simplest
experimental form {shown schematically in Fig. 1), the
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KE technique comprises a lens which is used to focus
the incident beam onto the material surface and a KE
which is placed in the path of the reflected beam,
blocking half of it when the material surface is unper-
turbed. If SAW are introduced to the material surface,
the reflected beam experiences a periodic deflection due
to the tilting of the material surface at the point of il-
lumination [as shown in Fig. 2(b)]. The resulting
variation in light intensity behind the KE [as shown in
Fig. 2(a)] is transduced into an equivalent electronic
signal by a photodetector.

The Fresnel diffraction pattern of a Gaussian beam
reflected from a surface sustaining SAW is derived in
Sec. II and employed in Sec. I1I for deriving an analyt-
ical expression for the detected signal in the KE tech-
nique. The resulting expression for the detected signal
describes a dependence of the signal phase on the KE
position closely resembling experimental results (pre-
sented in Sec. VII). In Sec. IV the variation of the de-
tected signal power with the extent of the illuminating
spot Wy is considered. This effect is found to result in
the bandpass frequency selectivity of the KE: detection
when the initial near-field analysis is extended in Sec.
V to describe nonsinuscidal SAW. In Sec. VI the re-
sults of Sec. III are modified to include the effect of a
lens system placed in the optical beam path.

il. Gaussian Beam Ditfracted by Continuous SAW

In this section we will assume an optical Gaussian
beam incident on a SAW propagating surface and apply
the Fresnel diffraction integral approximation to obtain
the near-field diffraction pattern. Although the formal
derivation of the Fresnel approximation limits the op-
tical aperture W with respect to the distance to the
observation plane z so that W « z, it has been shown
that it is valid even for W = z.6 'This condition poses
essentially no limitations on the applicability of the
following derivation for describing any practical ex-
perimental situation.
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Fig. 2. Deflected beam geometry in the KE technique. Cross-sec-
tiona! view of the KE (a) and side view of the material surface (b).

For clarity the actual reflection geometry of the KE
technique shown in Fig. 3 is transformed to the trans-
mission geometry of Fig. 4, where the modulation of the
incident light beam by the SAW is represented by an
hypothetical transmission function t(x1,t). The field
at a distance z from the SAW propagating surface may
be found by the Fresnel diffraction integral

explikz)

Ua(xa,yat) = e J.__ Uglz1,ynt)t(z1,t)

X exp [% [(xg~x1)2 4 (y2 - )’1)2]] dxdy, (1)

where k and X are the optical wave number and wave-
length, respectively. Here we shall assume an incident
Gaussian beam which has the following amplitude dis-
tribution?: :
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Uslx1.ynt) = Eowfexpl— W (= +¥D
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where W is the 1/e2 power width of the beam, r; is the
effective radius of phase curvature, w is the optical
‘frequency, and ¢ is a constant optical phase shift. The
effective radius of phase curvature of the Gaussian beam
at the surface ry includes the effect of any lens system

REFLECTED
BEAM

INCIDENT
GEAM

—=>

W MATERIAL
h i T SURFACE

B G sinlnz-R 1~ )
Fig. 3. Schematic illustration of a light beam reflected off a surface
sustaining SAW.
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Fig. 4. Schematic illustration of a light beam modulated by SAW,

in the incident or reflected optical paths (see Sec.
Vi),

For the case of SAW propagating on a reflective
surface, the incident light is phase modulated by the
surface ripple introduce by the SAW to the surface.
The surface ripple due to a single-frequency SAW
component of vertical displacement amplitude dg (in the
z direction), frequency £, wave number «, and phase

w8
8(x,2) = 8gsinlkx — wt — ), 3

introduces in the optical beam a phase modulation
tlx1,t) = R exp[i2kéy sin(kx —wt — )] 4)

R, the reflection coefficient of the material, is assumed
throughout this work to be real.

This transmission function and consequent analysis
are similar to those found in the case of a conventional
phase grating.? However, the time dependence of the

- transmission function here requires that it be first ex-
panded into temporal spectral components to comply
with the diffraction integral. This is done by applying
the identity!?

‘explia sind) = i Jqla) expligd), (5)
gm—=

where J; is the Bessel function of the first kind, order
g. Thus the transmission function t{x,t) of Eq. (4)
becomes
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so that
Urxyynt) = Uglxiynt)tlz,t)
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where
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and
J, = Jo(2kbo). (6b)

The terms U1 4(21,y1,t) in Eq. (6a) are the single-fre-
quency components of the optical field immediately on
reflection. Each diffracted optical field component,
Usq(x2,y2:t), 18 found by Fresnel integration of the
corresponding component in the (x1,y1) plane,
Ul,q (x 1;}’1,”, that iS,

J, explikqz)
iAgz

k
X exp [f EZ‘ [(xg =~ x1)2 + (y2— yl)gl] dxidyr, (7)

where A, is the optical wavelength of the gth order
corresponding to the frequency w +¢ (. Substituting
for Uyq(x1,y1,t) from Eq. (6a), terms containing the x1
and y, integration variables in Eq. (7) can be separated
to give

Ugglxayat) = J. _: Urglx1yt)

. J, . . ik
Usqlxayat) = i; explikqz — i) exp {2—: (x3+ y%)]

X exp[-i(qQ + o)t = igP)Tq(x2)Fqly)s  (B)

. where
= x} ik . R R
To(x9) = J‘:,. exp (- Wl% +§}-}}x§ +igrx; + :-Z—Zx‘f - :—;-xlxg) dx1,
{8a)
@ 2 ik & R
dqlya) = f__ exp(- vlvt? toyi+igiyi- =;"y1yz) dy.
(8b)

Formally k; and A, are functions of g, that is,
kq =—i=-—-c—"=k[1+q£‘-) '
W

where ¢ is the speed of light. However, the typical
magnitudes of @ and w are 10% and 10'° Hz, respectively,
so that, for any practical considerations, the difference
between k and k4 is minute and, therefore, ignored.

Equations (8a) and (8b) may be evaluated by
employing the integral identity*®

f " expl—yx? + ifx? + 2ikx)dx

. b
= % exp -;-arctan(.ﬁ/‘y) - —:—2-;%521 ()]
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Each diffracted frequency component may be eventu-
ally reduced to the form®

1
Usq(xayat) = Jg exp {‘ 'ﬁ/‘z[(xz - gz + il
2 .
2

X exp[—ilgQ + W}t - igy +i®l.  (10)
where the following parameters have been defined:

13
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We=WiVTi+ 2323, {10a)
Z = (rWhH/N, {10b}
t=1+2z/r, : (10c)
1 L[ £
re oz [1 {2+ (z/zF] (10d)

X X

Ax—;z-xz, {10e)

g =x(1=2/r).. {100)

In Eq. (10e) A denotes the acoustic wavelength and the
constant phase in Eq. (10) ® includes all the phase
terms at the distance z in the absence of SAW.

The final expression for the diffracted field,
Us(x2,y2.t), is found by summing over all g orders, that
is,

Wo hid

Us(xayat) = REg—— T Usglzayat) 11

Wagame
This result has a number of interesting features. For
the gth order, the frequency of the diffracted light is
shifted by g from the incident light frequency. Each
order has a Gaussian amplitude distribution with 1/e?
power width W3 and phase curvature 1/rg, and each is
shifted in space from the ¢ = 0 order beam gAx =
g(A/A)z. Physically, Eq. (11) may be interpreted as an
infinite sum of Gaussian beams with the gth beam tilted
in space at the diffraction angle g(A/A). The term
linear in x4 in the exponential, gglxs — q[(Ax)/2]}, which
appears in each diffracted order, results from the fact
that the direction of propagation of each diffracted
order is tilted with respect to the coordinate system.

The near-field diffraction pattern of Eq. (11) bears
a resemblance to the far-field pattern normally associ-
ated with the diffraction of a Gaussian beam from
SAW.1l Indeed Eq. (11} reduces to the far-field dif-
fraction pattern when the far-field conditions, z > =
or rg — o, implying Wy — (Az}/ (W and g — 0, are
imposed. The most significant difference between the
near- and far-field patterns is the spatial variation of
each order’s optical phase which is found in the near-
field but completely eliminated in the far-field. Con-
sequently, the observed intensity distributions of the
dift:racted light may be substantially different in the two
regimens. _ '

L] KE Technique—a Fresnel Analysis

The result of the previous section is employed in the
following to analyze the KE system of Fig. 1. InSec. VI
it will be shown that the treatment developed here re-
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Fig. 5. First three diffraction orders for Wy < Ax.

mains valid for any additional lens system incorporated
into the simple KE arrangement of Fig. 1.

The Bessel functions of Eq. (10), J,, have arguments,
2k5g, which are, for light modulated by SAW, typically
no larger than 1072, so that J; for q > 1 is negligibly
small, and the infinite sum in Eq. (11) may be approzx-
imated by

W,
Us(xa,yat) = REoWP‘ (Ug—1 + Uag + Uay). (12)
2

In the KE technique, the beam spot width W, is ex-
pected to be smaller than A/2, so that the separation
between orders, (A\/A)z, is normally smaller than their
width

> w2 22
W2z Wi Wi = TA
This condition is obtained directly from Eg. {10a).
Therefore, the g = 0, + 1 diffraction orders are to a large
extent overlapped, as shown schematically in Fig. 5.

Both the g = 1 and g = —1 orders, which oscillate at
frequencies w + § and w — @, respectively, heterodyne
with the ¢ = 0 order, producing rf signals at a frequency
Q. These two rf signals are equal in amplitude and 180°
out of phase and would, therefore, cancel one another
if all 3 orders were allowed to impinge on the same
photodetector. However, a KE manipulated in the
(x2,y2) plane to block one-half of the ¢ = 0 order dif-

fraction beam will in addition block a larger part of the

= —1 order beam, say, than of the ¢ = +1 order beam,
depending on their positions relative to the KE. The
resulting out-of-phase If signals which are produced by
the unblocked portions of the +1 and —1 optical orders
will be of differrent amplitudes, and a net electronic
signal will develop on the photodetector.

This qualitative wave optics interpretation of the KE-

technique is quantified in the following. The total
diffracted beam power density may be approximated
by

1 .
Pz =—JEU2U2
2V

1 € 2 W02 . . .
=3 ;RzlEo[ W (Ugolloy + UsolUszg + Uzollay + ce)

(13)

where ¢ and u are, respectively, the permittivity and
permeability of the light propagating medium and
where the small cross-terms have been neglected.
Using the expression for the incident power,

= |Eo|2 W},

u

the optical power density distribution associated with
the Q heterodyne frequency component may be written
as

2R2IP, . .
Paalsayat) = — [Uzo(Uge + Unad e, (14)

R2

Wi}
Employing Eq. (11), using the identity J_; = —J; and
expressing the sums of conjugate imaginary exponents
in cosine form, the time-dependent total power density
distribution can be expressed as

2R2P, ( i+ Zy%]
P: L) =——JyJyexp[— ——==
2.0{xz.y2t) Wi oy exp Wi

- 2
X lexp’— —_(Ig W?x)

cos[+ t + v,b—g[.rz —%)]

{x3 + Ax)? —98——:[/+g(xg+%)" .

-G o

- exp w3

(15)

This expression for the Q frequency component of the
optical irradiance distribution differs from the ex-
pression for the irradiance distribution in the far-field,
which was derived by other workers.2 The present re-
sult is more general since it applies for both far- and
near-field regions and includes the effects of any lens
system in the optical path (see Sect. VI). Equation (15)
differs from the far-field expression mainly in the de-
pendence of the rf signal phase on the spatial compo-
nent xo. This dependence is shown below to result in
a dependence of the electronic signal phase on KE po-
sition, similar to the experimental observations de-
scribed in Sec. VII. That is, the phase at which the
SAW is detected depends on the lateral position of the
KE. It wasshown in Sec. II that in the far-field limit,
g = 0, and this phase dependence vanishes in accor-
dance with the standard far-field result.?

The total optical signal measured at the photodiode
surface is found by integrating Ps a(x2,y2t) in Eq. (15)
over the area of the unblocked diffracted beam in the
plane of the knife-edge. That is

Puiglzart) = _f " dxs f " dys Pyalrayad), (16)
- x4 -

whete xg = xy marks the position of the KE as imaged
or projected on the photodetector. On evaluating the
integral over ys, Eq. (16) is reduced to the form

2 RZP
Pglxant) = \/: 2 Jody Tuigltart),
x Wy

o ok 52

X cos Qt+\€r—g(xg—é;—)

o521

X cos[fit + —-g (12 +é;—) ]dIz. (17a)

an

where
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Fig. 6. Amplitude and phase variations of the signal power as a
. function of £4.

A more symmetric expression for the signal power is
obtained by substituting x’ =x; — oAx and x” = x2 +
LAx in the first and second terms of Eq. (10a), re-
spectively,

1 [Ax\2 xatax/2
j!i rt = =<\
gxat) exp[ 2(W,Jl£.,-mz dx

X exp [—2 (%)2] cos(§it + ¥ — gx). (18)

This form is particula:ly useful as it demonstrates that
T eiglxd,t) ~0asxg — =, that is, no net signal will be
obtained in the absence of a KE. The integral in Eq.

(18) was evaluated numerically and typical results are |

presented in Fig. 6. For small values of Ax this ex-
pression may be approximated by

Taiglxa,t) = Ax exp [— % (—3%)2] exp[— 2 (%1)2] cos(Qt + ¢ — gxg).

In this case the total signal power [Eq. (17)] is given

by
2 Ax 4x3 + Ax?
2= ~ZR?P Iy — ——
Puiglxa,t) \/; oo J1 5 exp 2w )
X cos(S2 + ¢ — gxa), (19}

where, as previously noted, the phase of the detected
acoustic signal depends on the spatial position of the KE
Xd. :

Physically this phenomenon may be understood in
-a partial imaging context. The diffraction pattern in
any particular plane in the near-field region displays a
geometric correspondence between regions in this plane
and limited regions on the illuminated reflecting ma-
terial surface. As a result each spatial region exhibits
. the phase of a different point on the SAW path. This
behavior may be demonstrated by showing that the
total phase change AV e across the width of the dif-
fraction pattern Wy is related to the acoustic phase
difference across the width of the illuminating spot.
The maximal phase shift is obtained for Axg = W
Hence

] =R
V. = —gWy=2r—|—+=| =] +{=+ .
AV Ea ‘NA 1 Z rW? 1 Z

In the extreme case for which z — 0, AWy —
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—2m(W,/A), and the phase change has a 1:1 corre-
spondence to the SAW surface path. Forz — and r;
~» @, AW 0z — 0, 50 the far-field condition of no spatial
phase dependence implied in the literature? is verified.
Between these extremes the spatial phase dependence
gradually decreases as the observed diffraction plane
draws further from the SAW surface.

In concluding the present section, signal power results
for the geometrical optics and Fresnel analyses are
compared. Insetting xg =0 the gignal power obtained
by the Fresnel analysis [Eq. (19)] reduces to

2 Ax 1 [Ax\?
Pglt) = \/;—W:Rz Jod1 Po exp[— 5 [E) ] cos(ft + )

X
o \/%REPD(zem)—lkﬁo I cos(Sit + o),

where the small argument approximations for the Bessel
functions are used, the far-field approximation
2\
=Wy

for a coherent Gaussian wave is applied,” and Ax « W,
is assumed. For these conditions

Ws = 20ppam = 2

Puglt) = /21 ”TW"% R2Py cos(t + ¥), {20)

which is, as expected, proportional to the derivative of
the acoustic waveform at x = 0 [Eq. (3)]. The resultin
Eq. (20) exhibits the same parameter dependence as
that obtained in Ref. 2 for a uniform square spot illu-
mination. The different scaling factors, /27 in Eq.
(20) and 4 in Ref. 2, indicate a reduced detection sen-
sitivity with Gaussian beam illumination compared with
the sensitivity possible with uniform square illumina-
tion (see Sec. IV where the beamwidth for maximal
sensitivity for Gaussian illumination is found to be
smaller than that for uniform illumination).

IV. Beamwidth for Maximal Signal
The beamwidth which maximizes the detected signal
is predicted in this section, offering further insight into
the detection process. The value of Wy for which Py
is maximized is found by setting
dPuig
dWg
For the case where the KE is placed at the center of the
beam, x4 = 0, we obtain

b

leading to

=0.

Wap= Ax. (21

This condition may be understood in terms of either the
geometrical or Fresnel models of the KE technique.
Consider first the Fresnel diffraction pattern of Fig. 5
with the KE obstructing the negative x5 half plane, say.
The signal power for this case is a function of the overlap
between the ¢ = +1 and g = =1 orders. For a fized
value of Ax, both the overlap of the ¢ = 0,+1 orders and




that of the ¢ = +1,—1 orders are error functions of Wy,
The g = +1,~1 order overlap is, however, offset by 2Ax,
ang consequently the signal power is maximized for Wy
= Ax.

The geometrical interpretation is best described when
the far-field approximation of Wy [derived from Eq.
(10a}],

h¥

2=

TI"WI

and the expression for Ax = A/Az are both substituted
in Eq. (21). A new condition for maximal signal power
in terms of the beamwidth on the surface given by

Wi=A/r (21a)

is thereby obtained. This result may be interpreted in
the following way. If the beam spot width W, were
divided into small elements, the far-field electrical field
may be regarded as the superposition of the electrical
field amplitudes of each element. Condition (21a) in-
dicates that as long as W, < A/, the contribution of all
the elements add in-phase, whereas, if W, > A/7, some
of the elements produce out-of-phase electronic field
amplitudes reducing the overall signal power.

Intuitively one might expect the limiting spot width
for in-phase electrical field amplitude addition to be W,
< A/2, because the surface tilt throughout half of a
wavelength has the same sign. Indeed this is the con-
dition obtained for a uniformly illuminated square spot
on the surface.2 The somewhat reduced limiting width
of Eq. (21a) is attributed to the gradual decay of the
optical power in Gaussian spot in contrast to the sharply
defined boundary of the uniform square spot.

V. KE Technigue for Nonsinusoldal SAW

The diffraction pattern derived in Sec. Il assumes an
infinite surface corrugation, which is associated with
continuous single-frequency acoustic wavesforms.
However, in many practical applications SAW pulses
are employed. Itis the purpose of the present section
to consider the effect of nonsinusoidal SAW on the de-
tected signal in the KE technique.

An arbitrary surface acoustic waveform, 8(x,t), may
be represented as a Fourier series in spectral compo-
nents,

Uz g, ming

¥z

Fig.7. Fresnel diffraction pattern for light diffracted by nonsinu-
soidal SAW for Wy <« Ap,.
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Bxid) = T B sin[mixexr — Rt = ¥m)l, (22)
mwl

where §,, is the amplitude of the mQ, frequency com-
ponent. Normally Q, refers to the pulsed repetition
rate (PRF) in a multiple pulsed system or, alternatively,
to the reciprocal of the pulse duration T if only one
pulse is present, that is, @, = 2r/Tp. Similarly, £, =
27/X,, where X, is the spatial period or spatial pulse
duration for the same instances, respectively. The
phase ripple modulation introduced in a beam reflected
from such perturbations may be represented by

txrt) = RI] expliZkdn sin[mixpx ~ Dot = ¥oll. (23)

m=]

Applying identity (5) yields

txt)=R ﬁ i {2k explimgm(kpx = Qpt = ¥m)].  (24)

m=1 gma—=

Equation (24) may be multiplied out term by term
producing g™ terms, which, as shown in Ref. 12, may be
written as an infinite sum over a new index M. It would
then be possible to perform the Fresnel integration on
each of these terms to obtain an expression for the re-
sulting near-field diffraction pattern.’ Alternatively,
the analysis may be considerably simplified if the Bessel
functions of orders ¢ > 1 and their multiples are ne-
glected, as before, reducing Eq. (24) to

We) =R £ & Jy(2kém) explimqixgs = Qpt = Ym)]. (25)
1

qu—im=

Following a derivation similar to that which previously
led from Eq. (6) to the final result of Eq. (11) for each
term of the transmission function in Eq. (25), we obtain
the approximate expression

Wo L = .
Uz(Iz.yz.t)=RanT T I Upgmixayat), (26}

2qm—-1lmel

where

1
Uzgm(x2yat) = Jy(2kdyn} exp {— Wi [(x2 — mgax)? + y3]
2

ik
+'I—(I§+y§) + imqg (xg-mqéi}
21'2 2

X exp|—i(mqQp + wit —imq¥n +i®]. (26a)

The resulting diffraction pattern for nonsinusoidal
SAW under these approximations is shown schemati-
cally in Fig. 7.

As in the case of sinusoidal SAW, the central order
(g = 0) at frequency w heterodynes with each of the 2m
orders at frequencies w + mg§l, to produce rf signals at
mq®p. The 1f signals resulting from the mth order for
g = +1 and those resulting from the mth order for ¢ =
—1 are both at a frequency m$p, but the respective
phases of each signal are 180° apart. Therefore, unless
a KE is introduced to block a larger portion of the mth
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)
Fig.8. Actual (a} and equivalent (b) optical systems for a KE behind
alens. {(For clarity the incident beams are drawn from the left.}

order for ¢ = —1, say, these signals cancel each other.

By repeating the analysis of Sec. lII for the nonsi-
nusoidal diffraction pattern of Eq. (26), it is found
. that

2R2P L] L)
Posr(zayat) = __“Wq W2omUsim+ UzomUs -1 + ¢,
2 .
7

where

‘ 1
U2.0.mU2.q.m|q-*1 = J1(2kdm) exp [" Wz‘ [3% + {x3— mgAx)® + 2y
2

s = a )
= imgg Iz-mq-i'

X exp(+imqQpt + imgym) (27a)

- The signal power may be found by integrating this rf
component of the irradiance over the area of the un-
blocked detector [Eq. (18)], resulting in

2p. = ,
Pyiglxa,t) = \/%'@W_: ZlJl(%ﬁm)J.i,(m,xd.C), (28)
with - .
ra+mAxf2 1 Ax\2 | 2
saimaanr = f770 e |- o 2
X cos(mQpt + mPm — mgz)dz. - (28a)

For small Ax, Eq. (28) may be approximated by
Z R?Py ¥l =
Pllg(xdlt) o ’J; Wa e-Xp[ 2 (W) ] m}:£1 mAxkom,

ol ]

X cos(mQpt + mPm — mgxal, (29)

where the small argument Bessel function approxima-
tion, J1(x) = Y%x, was introduced in the last step.
The term
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ot i8]

in Eq. (29) describes the bandpass filtering quality of
the knife-edge technique where both large and small m
orders are detected with reduced amplitudes. Thisis
a consequence of the dependence of the signal power on
the ratio mAx/Ws. (In Sec. IV it was shown that
the maximal signal is obtained when Wy = mAx.) On

defining
Ax
e |

letting x4 = 0, substituting for Ax, and introducing the
relation

1 _ %
Ap 27V
where V ia the acoustic velocity, Eq. (29) reduces to
2R%Py; = B
Puglt) = A/ == L —mQpbn coslmpt + ¥im)}.  (30)
* W2 m=1

This expression is approximately proportional to the
temporal variation of the surface slope,

d
&; [3lxy= 0t}

provided that, for all m for which the magnitude of 8,
is significant, both B is approximately constant (the
acoustic frequency bandwidth is sufficiently small) and
V is approximately constant (no acoustic digpersion).

Vl. Knife-Edge Behind a Lens

The treatment in the previous sections referred to the
simplified KE system of Fig. 1. In practical KE sys-
tems, however, a lens is normally placed in the reflected
optical beam path Fig. 8(a)], for which the results so far
do not hold. Nevetheless, it is possible to show that the
system of Fig. 8(a) is optically equivalent to the system
of Fig. 8(b), where the lens f is replaced by aneffective
lens f, positioned in the optical beam path immediately
after the reflection from the SAW surface, provided
that

Ze =z="vs fe =§f—u=zeﬂv.
a quadratic phase correction ¢, is applied to the KE
plane, and the apertures of both systems are infinite.
This claim may be verified either by employing the basic
Vander Lugt equation!? or by applying repeatedly the
Fresnel integral to calculate the output optical distri-
bution function of both systems.®

Using this model it is possible to modify the expres-
sion for the signal power in the simple KE system (Eq.
(17)] to describe the signal power for the standard KE
system of Fig. 8(b). The phase correction ¢, does not
affect the results and is lost when the conjugate multi-
plication [in Eq. (14)] is carried out. Therefore, the
required expression is identical to Eq. (17 yif Wyisre-
placed by W,, g by g, and z by z., and when it is re-
membered that the initial phase cutvature 1/ry, must
now include the phase curvature introduced by the lens
fe. Thus




21 2 1(8x)2
Pyglzat) = ;TV':JoJxR Pg exp ~3\w.

xd+Brel2 x )2
dx exp [-2 —]]
% J:J-A!.fﬂ ¥ exp [ (We

X coa(lt + ¢ — gex), {31
where
Xe = 3 z4, {31a}
W, = W vTF+ 21125, (31b)
fe=1+z/rie, (3l¢)
- Z=(xWH/A, (31d)
1 1 1
. E ' (31e)
l=_1.l1_____f ] (319
re 2e {2+ (2./2)°
Ze = k(1 + z./r.). (31g)

For small Azx,, Eq. (31) may be approximated by

2z, 1 .td]ﬁ
iglzat) &2 4 f =—JoJ1 RP - =
Poiglxa,t) \/;Wg a1 oexp[ 2 \w. l

X cos(Qlt + ¢ = g.xa). (32)

Several phenomena are predicted by Eqs. (31) and
(32). Whenz, = —re (whichforr; = implies z, = f,
or v = f) it is found from Eq. (31) that g, =0, and the
signal phase becomes independent of x4. The condition
v = f occurs when the KE is placed at the back focal
plane of the lens. As in this plane the far-field is formed
(Fourier transform plane), the condition of no signal
phase dependence on xg in the far-field limit is recon-
firmed.

At the point where z, = —T1e, 8e changes sign from
positive for z, < f to negative for z, > fe. This sign
change is predicted by geometrical considerations. (A
KE on the left side of the beam produces a signal in-
phase opposition to a KE on the right side of the beam.
After the focal point, v = f, the left and right sides of the
beam are interchanged.) This phenomenon is dem-
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Fig. 9. Schematic illustration of the experimental apparatus.
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Fig. 10. Oscilloscope traces of the two amplified and detected
acoustic signals.

onstrated in the results of experimental work, which are
described in the next section.

Note that the inflection point where g, changes sign
is the focal plane v = f and not the beam waist point,
which is easier to locate in a KE experiment. Differ-
entiation of Eq. (31b) results in the useful expression

Z2—-u(f—u)

"= (33)

Uy

from which we conclude that v, < f for u < f and vice
versa. Only when u = f does the focal plane coincide
with the plane defined by the beam’s waist.

Vil. Experimental
The theoretical dependence of the detected acoustic

signal phase on the KE position was verified experi-

mentally by employing two similar SAW detecting
stations as illustrated in Fig. 9. A piezoelectric trans-
ducer was used to generate SAW pulses of 5-MHz center
frequency on the front face of an optical mirror. Each
acoustic pulse was at first detected at point A on the
mirror surface by the KE system of Ch. 1 and then at
point B on the mirror surface by the KE system of Ch.
2. The amplified electronic signals obtained in the two
channels (Fig. 10) were fed into Ch. 1 (START) and Ch.
2 (STOP) of a time interval counter, which was pro-
grammed to initiate the measurement at the first posi-
tive slope zero crossing of the signal on Ch. 1 and ter-
minate the measurement at the corresponding point on
the signal of Ch. 2 (see Fig. 10). The KE of Ch. 1 was
maintained fixed, while that of Ch. 2 was scanned across
the optical beam (along the x direction), and the time
interval between the signals of Ch. 1 and Ch. 2 was
measured as a function of xg. This procedure was re-
peated for several positions along the optical beam axis
(z axis). The measurements along this axis are taken
relative to the position of the narrowest portion of the
optical beam (beam’s waist), which was found by
searching for the position along the z axis for which the
noise level in the detector, indicating the presence of the
laser light, persisted for the minimal scan along x». The
experimental results are plotted in Fig. 11. Figure 12
shows the theoretical dependence of the signal phase on
xq as predicted by Eq. (36).
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Fig. 12. Theoretical variation of signal phase with KE position.

Vill, Discussion

There is a good agreement between the variation of
the signal phase with the KE position as measured ex-
perimentally (Fig. 11) and that predicted by the nu-
merical integration of the theoretical results (calculated
forr; = », Wy =0.2mm, f = 50 mm, z = 650 mm, and
u = 0 and shown in Fig. 12). The slopes of the signal
phase before and after the narrowest beam point (the
origin in the graphs of Figs. 11 and 12) have been cor-
rectly predicted. 'The lapsed time was found to increase
as the KE of Ch. 1 placed before the focal point is drawn
transversely to the beam and away from the KE of Ch.
2. These results support the physical interpretation
given in Sec. 11, whereby the KE is congidered to define
through partial imaging a small region within the illu-
mination spot on the SAW surface. Asthe KE is moved
in the said direction, the effective separation along the
SAW propagating surface between the two KE-stations
ia increased, and the measured lapsed time increases
with it.

Other similarities between the theoretical and ex-
perimental graphs are less significant as the parameters
used for the theoretical calculations are difficult to
measure. Nevertheless, it is noted that the correct
order of magnitude for the phase gradient g is predicted
by the theory. Moreover, the positlon of the Fourier
(focal) plane, which is determmed in our analysis to
coincide with the position along the z axis where the
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signal phase is constant as a function of x4, occurs in
both graphs at z = 0.2 mm.

These results demonstrate the importance of the
understanding and control of the phase detection in the
KE technique when an accurate definition of the beam
spot is required as is the case for SAW velocity mea-
surements by the time-of-flight method.> Indeed our
experimental system, described in Fig. 9, achieved SAW
velocity measurement accuracies of (AV)/V = 10~* and
better.14

IX. Conclusion

The KE technique is analyzed by Fresnel diffraction
methods both for continuous and pulsed SAW. The
analytical expressions obtained for the detected signal
describe in both casgs a dependence of the detected
signal phase on the lateral position of the KE. Intui-
tively this phenomenon is interpreted as resulting from
the partial imaging occurring between regions on the
SAW-propagating surface and the KE plane. It is
demonstrated that the near-field characteristics of the
KE, which have been verified experimentally, comply
with the results obtained previously in the far-field.
Other results include an analytic description of the
technique with any lens system and the relation be-
tween the signal amplitude and illumination spot width.
The generality of the results described herein permits
prediction of the performance of experimental instru-
mentation employing the KE technique under a wide
range of operating conditions. Full understanding and-
control of the detected signal phase in the KE technique
are important for any application requiring phase ac-
curacy, such as SAW time-of-flight measurements.
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