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Traveling-wave interaction between flowing plasma and electromagnetic wave supported by external
slow wave structure is analyzed in the collisionless regime. The plasma is described with the
collisionless Boltzmann equation and the interaction is analyzed using the coupled-mode approach.
The analysis is applied to a plasma consisting of drifiting charge carriers in a solid. Illustrative
examples demonstrate interaction leading to wave growth for frequencies in the far-infrared regime. It
is suggested that experimental measurement of wave growth or damping due to this effect can
provide information about the velocity distribution of drifting carriers in the solid.

1. INTRODUCTION

As Landau'® first demonstrated, plasma waves in a
finite temperature plasma have features due to collec-
tive particle behavior which cannot be obtained from the
macroscopic kinetic equations, but which must be de-
rived from the Boltzmann equation. Landau showed
that the interaction of a plasma wave with particles
traveling with velocities near its phase velocity could
lead to damping of the wave even if the plasma is

_collisionless (relaxation time 7— «).

Using Landau’s results, it is possible to prove? that
no plasma wave is unstable in a plasma whose velocity
distribution function has only a single maximum. How-
ever, one can show that, if the plasma wave interacts
with an electromagnetic wave supported by an external
slow wave structure, the instability conditions can be
met for a plasma carrying a steady current. The goal
of this paper is to analyze a simplified model and
demonstrate this effect.

Traveling-wave amplification of an electromagnetic
wave through interaction with charged particles in
motion is a familiar phenomenon,. It has been success-
fully analyzed and implemented in the microwave travel-
ing-wave tube® and also in the solid-state traveling-
wave amplifier.*”® In the first case, the charged parti-
cles are in a form of a monoenergetic beam of electrons
moving in a vacuum, while in the second case, they are
the drifting charge carriers in a semiconductor,

In both cases, the charged particles are usually des-
cribed by the moment equations. This approach is valid
for different reasons in the two systems. The TWT
electron beam is nearly monoenergetic; for such a
beam, the Boltzmann equation reduces immediately to
the moment equation. Even though the carriers in the
solid-state amplifier have a finite temperature, col-
lisions are frequent enough that the effects discussed
by Landau for a collisionless plasma are unimportant
and the moment equations are again a good
approximation.

The condition for the onset of electromagnetic-wave
amplification is similar in both cases. Growth occurs
when a characteristic particle velocity v, exceeds the
phase velocity of the electromagnetic slow wave com-
ponent. For the TWT, v, is the common velocity of the
particles in the beam, while it is the average drift
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velocity of the carriers for the solid-state amplifier.
For the latter, if v,<«< ¢ the condition for amplification
is v,>v,, *wL/27 (for first harmonic operation), where
v,, is the phase velocity of the first-order electro-
magnetic space harmonic, w is the radian frequency of
the electromagnetic wave, and L is the period of the
waveguide corrugations (slow wave circuit).

If w is high enough, the drifting carriers in the solid-
state amplifier are a finite-temperature collisionless
plasma (w7>1). The existing analysis of traveling~
wave interactions is not applicable to this case, since
the moment equations used in it cannot correctly des-
cribe the Landau waves that propagate in a collision-
less plasma. We intend, therefore, in this paper, to
extend the analysis of traveling-wave interaction to this
regime, employing the Boltzmann equation to describe
the drifting plasma,

This work is motivated by recent work on periodically
perturbed waveguides™® and the implementation of
solid-state traveling-wave amplifiers, ® which has in-
dicated that devices operating in the collisionless re-
gime may be feasible and even more efficient than those
in the collision-dominated regime. Corrugated semi-
conductor surfaces with periods of the order of 1000 A
have been produced using ion machining techniques.?®
The development of uv, x-ray, and electron resist li-
thography could allow the production of surface cor-
rugation periods of the order of 100 A. With carrier
drift velocities as high as 2%X 107 cm/sec available in
semiconductors, the gain condition v,> wL /27 would
predict amplifying and oscillating devices in the far in-
frared (10'® s w < 10™ rad/sec). Since relaxation times
can be of the order of 107'* sec, such devices would
thus operate in the collisionless regime.

Il. THE DISPERSION RELATION

To analyze the interaction between the plasma waves
and the elctromagnetic slow wave components, we use
a one-dimensional model and a coupled-mode
approach. %8 First, we calculate the plasma dis-
turbance caused by an electromagnetic-wave field
E,x expli(wt - Bz)], which is supported by an external
slow wave structure. Second, the field induced in the
slow wave structure by a plasma wave is found. Self-
consistent substitution of the results of the two
derivations then yields the dispersion relation.
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The plasma response to the external field is obtained
from the linearized Boltzmann equation. We employ the
electrostatic approximation; hence, Maxwell’s equations
reduce to Poisson’s equation. If we assume negative
charge carriers, we have

(% + U )fl(z Uy t)=-— ° E(z, 2 fo(u) @)

%Ep(z,t)=—gj; duf,(z,u,t). 2)

Here, z is the coordinate in the direction of wave
propagation, « is the z component of the particle veloc-
ity, m is the charge-carrier effective mass, and € is
the dielectric constant, excluding the plasma contribu-
tion. The zero- and first-order velocity distribution
functions, f; and f,, respectively, are calculated from
the three-dimensional distribution functions by in-
tegrating over the transverse velocities. E(z,t) is the
total electric field, while E,(z, ) is the field due to
space charge; thus,

E(z,t)=E,(z,t) + E (z,1), (3)

where E_ is the external field induced by the slow wave
circuit.

We may solve for f, and E(z,¢) in terms of E (z,¢) by
using Fourier transforms in z. To avoid the difficulties
pointed out by Landau, ! we chose to add a small negative
imaginary part to the frequency, i.e., w —w —in. This
corresponds to turning on the disturbance in the far
past, and will allow us to define uniquely an integral
that is otherwise ambiguous. At the end of the analysis,
we will set =0,

The Fourier transform of a function %(z) will be
written

h(B)= [ dzh(z)exp(iz).

In what follows, we will suppress the common
exponential time dependence.

Using these definitions, the transforms of the solu-
tions to Eqs. (1)—(3) can be written

=565 @
e
A= L (-2 +) " 0E 0,

where

d 1 1
(B, w)= [1 —o% du l'if° (u——+ﬂ) ] , (6)
and where n, is the unperturbed carrier density and w,
= (nqe?/me)'/? is the plasma frequency. The integral in
Eq. (8) would have been undefined if n=0.

For later use, we will also need the z-directed
current density. Since J,(8)= —e [” duuf,(B,u),

o ew i % zfq
J,(ﬁ)——zW e‘,(B,w)Ec(ﬁ)j:°° du du 5 B) .
(7)
We have used the identities »/(x + a)=1 - a/(u + &) and
[ du (df,/du)=0 to put the integral in Eq. (7)in its
present form, That f,(x) should vanish as lul — « is
necessary for any reasonable distribution function.
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‘To cast our results in a slightly more universal form,
we define the following moments of the unperturbed dis-
tribution function: the carrier number density #n,
= [T fol) du, the drift velocity v,=n," ['* uf,(u)du, and
the temperature T and thermal velocity v,,, kT = 3mv?,
=mng' [ (u —uy)’fy(u)du, where k is the Boltzmann
constant, Also, we define a normalized distribution
function

fo(u)=—g(“—‘31). ®)

Uin

Using these definitions, we proceed to define the
plasma dispersion function

o [ gk)dx
clo= [ LR,

This definition disagrees with the usual convention in
plasma physics, where Im¢ > 0 is usually taken,

Im¢<0, 9)

Combining these definitions with Eqs. (6) and (7), we
find

W zk eG (g)
WE ), (10)

where k,, = (n,?/ekT)"/? is the Debye wave number,
t=-[vo~- (w-1in)/Bl/v,,, and where primes denote dif-
ferentiation with respect to the argument.

J(ﬁ)——zé

Since we now have the current induced by the slow
electromagnetic component E,(f), the circle can be
closed by combining this with the expression for the
field Ec(ﬂ) induced in the slow wave circuit by J ,(ﬁ),
which is given by the Pierce equation, ? Using this,

E(0)=iZ258 5;5"‘55 I (11)

where S is the cross-sectional area of the interaction
region, K, is the interaction impedance between the

slow electromagnetic wave and the plasma wave, and
B,= 2n/L. L is the period of the slow wave structure.

The dispersion relation is obtained by requiring Eqgs.
(10) and (11) to be sélf-consistent. This yields

€wpBK S k3G ()
Fop 110/ - (12)

i1, APPROXIMATE SOLUTION OF THE DISPERSION
RELATION

In general, one needs both a knowledge of the zero-
order distribution function and a reasonable amount of
computer calculation to solve Eq. (12) for 8. However,
if K, is small, it is reasonable to assume that the solu-
tion to the coupled system will not differ substantially
from that for K,=0, when there is no interaction. The
K,=0 modes are just the electromagnetic modes B8
=1 8,, and the hot plasma modes that satisfy D(8)=1
- (e2,/28°)G' (£)=0.

Since we are interested in the electromagnetic wave,
for small K, we can expand Eq. (12) about 8= 3,, keep-
ing only first-order terms. Setting g=8,+ A8, we find

ag' (k) (13)

AB=-"D@,)
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where ¢,= - (vo—w/B v}, a=}ewk?K,S, and where we
have finally taken the limit n—0 +,

Because 8, is real, we may write the real and
imaginary parts of 8 as

aImG’ (&,)
ImpB= —W— (14)
Rep= g, - =2 (Re0 €) - I @], a9)
| D(8,)] A
As a consequence of taking n—~0+, .

Ry
o G)=p [ S v ming ().
L x=&
Hence, if the zero-order distribution function is such
that g’ (£,)> 0, the system can support growing modes
(ImpA> 0) and amplification is possible, If it is also
true that g/(0)=0, then the gain criterion becomes
v,> w/B,, which is the condition obtained from the
moment equations. Consequently, the latter condition is
seen to be a special case, valid only for distributions
fo(v) whose maximum occurs at the drift velocity v,.

Two limits of Eq. (14) are of interest. If k2, /82< 1,
we have

ImB=nag’(t,). (16)

On the other hand, if £3 /82> 1, it is possible to have
ReD(B,) =0, which yields

L2 1

Im13~Tr P )
Physically, Eq. (17) means that maximum gain results
when 8, comes as close as possible to satisfying D(ﬂ,)
=0, which implies a good phase match between electro-
magnetic and plasma waves. As Landau showed, ! no
nonzero real 8 can satisfy the plasma-wave dispersion
relation exactly, but the gain increases the closer B,
comes to satisfying D(8)=0.

If the denominator in Eq. (17) is too small, one
wonders whether our first-order approximation to the
dispersion relation, Eq. (12), is valid. To check it,
let us extend the solution for AS to second order by
expanding both £} - 8% and 1 - (k3,/28%)G’ (¢) to second
order about 8= 8,. We obtain

2
A(A—B) +B(éﬁ)+czo, (18)
B, B,
where A=2+ (k},0w/26%,,)G"(t,), B=D(B,), and C
= (a/ﬁl)Gl (gl)'
The solution to Eq. (18) is

AB _ -Bzx(B2-44C)!/?

B 24 :
If 4|AC| < | Bl?, the smaller of the solutions in Eq.

(19) reduces to Eq. (13). Accordingly, this is the con-
dition for the validity of our previous approximation.

(19)

If the matching between the electromagnetic wave and
the plasma wave is good, then 4| AC|> |BI?; thus, the
amplifying solution to Eq. (19) is

2-(5)"
1
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IV. DISCUSSION AND EXAMPLES

The wave-particle interaction discussed here is of
interest for its application to broad-band high-fre-
quency solid-state amplifiers and oscillators. However,
the formalism developed here could also provide a
basis for a method of measuring the distribution func-
tion of a drifting finite-temperature plasma, e.g., a
solid-state plasma,

If one can measure AfS experimentally, then the de-
rivative of the normalized distribution function g’ (¢,)
can be found from Eq. (13). However, since ReAS may
be difficult to measure, especially in a solid, a series
of measurements of ImaAg for various w,B, and &,,
could furnish enough information to obtain g’ (gl) from
Eq. (14) alone. If it is possible to work in parameter
ranges where Eqs. (16) or (17) hold, then evaluation of
g'(t,) is straightforward when ImAS is known. It follows
that it may be possible to measure directly the velocity
distribution function of drifting carriers in some
regimes. Such a method will measure the distribution
of velocities in the drift direction rather than the dis-
tribution of electron energies. It may be complemen-
tary to other existent methods to measure velocity
distribution. !®

In order to estimate the amount of gain available from
the solid-state traveling-wave amplifier we will use a
drifting Maxwellian as a preliminary crude model of the
carriers’ velocity distribution function. Consequently,
we take g(x)=7"/2exp(- x?). The dispersion function is
then

G()=7"12 [ ax[exp(-x*)/(x - ©)]; Im<0.

The tabulated plasma dispersion function Z(¢), which is

- defined by Fried and Conte, has Im¢ >0 in its de-

finition. For real ¢, we have G(£)= Z*(¢). For
convenience, G(¢) is plotted in Fig. 1 for real ¢.

Figure 1 shows that the present G’(£,) can support
gain (ImB> 0) whenever ¢, <0. The drifting Maxwellian,
of course, satisfies g’(0)=0; thus, the gain condition
£,<0 and the previously derived v,> w/8, are
equivalent statements.

GI

FIG. 1. The derivative of the plasma dispersion function G’ (¢)
for Maxwellian distribution and real argument ¢.
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As a concrete example, we chose the solid-state
traveling-wave amplifier proposed and analyzed’:8
previously. This consists of a dielectric thin-film
waveguide with a surface corrugation of period L. A
conducting layer of thickness L/2r7 (the penetration
depth of the first-order space harmonic) adjacent to the
corrugated surface carries the current which interacts
with the wave. If the index of refraction of the medium
is n=3.5, the interaction impedance is given by’

K,=0.09-2 (La)''" 21
1=0.09 57— ( fo) W, 1)
where (i,/¢,)*/? is the impedance of free space, c the
speed of light, a the corrugation depth, and W the de-
vice width. (The cross-sectional area is given by S

= WL/ZTT. )

By choosing B =4k2,, a=3L=1/B,, v,/v,,=1.85, and
w/Bw,, =1.2, we obtain ¢, = -0. 65, which is near the
minimum of ImG’ (¢,) (see Fig. 1). Consequently, Eq.
(14) yields a gain g=2 ImfB=1, 5% 102wy, where g, w,
and v, are in cm™, rad/sec, and cm/sec, respectively.
The calculated gain is given in Table I for two proposed
dielectrics, along with some of the physical conditions
necessary to attain that gain. For this calculation, we
assumed a frequency w corresponding to a free-space
wavelength of 100 um.

As mentioned previously, higher gain should be
available in the regime where Eq. (17) is valid. Here,
we have ReG' (¢,) »26%/k2,, which requires ¢,<-0.9 to
ensure that ReG’(¢,)> 0. For maximum gain, one should
go to large |¢,1, but since this would require very
large drift velocities, one cannot increase |¢,!
indefinitely.

Unfortunately, in this high-gain region, a necessary
condition to satisfy ReG’ (¢,)~282/k2, is 2<k2,. Under
these conditions, it can be argued that screening by the
charge carriers will limit the penetration of the first-
order space harmonic into the plasma, thus invalidating
Eq. (21). However, to get a crude idea of the gains
available, we will retain Eq. (21), but assume that the
penetration depth is k;! instead of 87

For the parameter values.a=3L, v,/v,,=3.5, o/By,
=0.5, and #3/k%,=0.07 (.e., £;=-3), Eq. (17) yields
g2=4.8x10"%y,, (Again, g, w, and v, are in cm™,
rad/sec, and cm/sec, respectively.) Results analogous
to Table I are given in Table II. The frequency w again
corresponds to a free-space wavelength of 100 um, If
higher values of v(,/vth are possible, the gain rises
drastically, since it is proportional to
exp[+ vy~ w/B, v},

For measurements of the carrier’s velocity dis-
tribution function, operation in the attenuation region
is also of interest, Appreciable effects on the propa-

TABLE I. Example of gain,

TABLE II. Example of gain in the regime K,/g32 1

Ge GaAs
11 cm™! 18.2 cm-!
vy 1.2 x107 em/sec 2 X107 em/sec
L 57.3 A 95.5 &
T 21,.5°K 8.6°K
g 10" cm 3x10% cm™?

gating waves are possible here under physical conditions
that are more easily achievable. If w/8v,,=3 and
/v, =0 we obtain from Eq. (17) g= - 3.3x10%yy,,.
Using an w corresponding to 100 pm free-space wave-
length, we find the results given in Table III. Note that
the attenuation grows with frequency heré, contrary to
the behavior of free-carrier loss in the collision-
dominated regime. This effect is different from the
usual Landau damping because of the resonant effect of
the slow wave structure.

V. CONCLUSION

In this paper, we have analyzed the interaction be-
tween a slow electromagnetic wave and a collisionless
flowing finite-temperature plasma by using a one-
dimensional model. The primary purpose was to explore
the feasibility of solid-state amplifiers and oscillators
operating in the infrared; however, application of this
wave-plasma interaction to measurements of particle
distribution functions were also discussed. The analysis
in Secs. II and III is of quite general validity; the
assumptions made in specializing to traveling-wave in-
teraction with a solid-state plasma are, however, much
more restrictive.

The basic coupled-mode analysis is a standard -
technique, but our detailed predictions involved two ap-
proximations that could affect their numerical accuracy.
The one-dimensional model, although analytically con-
venient, ignores all tranverse variation in the fields.
The other questionable assumption is our use of a drift~
ing Maxwellian to model the distribution function of the

-flowing carriers. At present, these assumptions cannot

be rigorously justified, and we consequently suggest that
the gains calculated in Sec. IV should be regarded as a
rough indication of the magnitude of the effect. Further
experimental and theoretical work will be needed for
accurate quantitative predictions.

The gains found in Sec. IV are low to moderate, and,
if attainable, would be suitable for an oscillator or low-
gain amplifier. The proposed operating conditions would
be difficult to achieve at present. However, develop-
ments in semiconductor technology should make fabrica-
tion easier, and further optimization of the device by
varying the operating conditions and dielectric materials
should be possible,

TABLE IIl. Example of attenuation.

Ge GaAs Ge GaAs
0.34 cm™! 0.56 cm™! g -—8.1 em-! —21 cm™!
v 1.2 %107 em/sec 2 %107 cm/sec v 0 )
260 A 435 L 870 A 2300 A
T 77°K 31°K T 330°K 300°K
ng 6.6 x10' cm™ 9.5x10!% cm=? ny 6.5 %101 cm=3 4.5x10' em"3
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Measurement of the velocity distribution function of
the drifting carriers through their interaction with the
electromagnetic wave is an application which requires
experimental conditions that are much easier to attain.
Such measurements could yield useful information for
conditions with lower drift velocity, higher tempera-
tures, or longer perturbation periods.
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