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The problem of fundamental laser line broadening due to random spontaneous emission of radia-
tion and amplification of thermal radiation noise is analyzed in terms of a classical fluctuating field
phasor model. We derive a general expression for the intrinsic linewidth, given in terms of the spec-
tral power of the radiation noise source, which can be classical or quantum mechanical in nature. In
the case of a two-level atomic laser, we recover by the use of Einstein relations, the traditional
linewidth formula of the Schalow-Townes form. In the case of the free-electron laser (FEL), using
the explicit expression for the spontaneous emission, we present calculation of the laser linewidth by
purely classical methods. The result agrees with the one obtained in the framework of a quantum-
mechanical model. By using “extended Einstein relations” which are applicable to classical radia-
tors, we show that a Schalow-Townes-type formula can also be obtained for the FEL. The theory
predicts extremely narrow intrinsic linewidth (10~7 Hz) for cw FEL’s with parameters similar to

those of the FEL experiment of Elias et al.

I. INTRODUCTION

Perhaps the most significant property of the laser oscil-
lator as a light source is its narrow spectral linewidth.
Consequently the pioneering articles on the maser and
laser development embarked extensively on the question
of the intrinsic linewidths of these oscillators.!?

There are many technical and environmental noise and
instability factors that may substantially increase the
linewidth of practical laser oscillators. The interest of the
present article is only in the fundamental intrinsic
linewidth of the laser oscillator, which is determined by
the spontaneous emission noise source of the laser medi-
um and the blackbody thermal radiation of the cavity.
Considering only the thermal radiation noise source for
the maser oscillator, Gordon, Zeiger, and Townes derived
in their first paper on the maser the following expression
for the fundamental linewidth:!
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where k is the Boltzmann constant, T is the temperature
of the cavity walls, P, is the total power generated in
the oscillator (which would be the total output power if
internal dissipation losses were negligible), Av,, is the
FWHM (full width at half maximum) bandwidth of the
molecular spontaneous emission line, and Av,., is the
FWHM maser oscillator linewidth.

In their first paper on the laser, Schawlow and Townes
extended the maser linewidth formula (1) to atomic lasers
arguing heuristically that in the optical regime the
thermal agitation energy kT should be replaced by the
much larger energy of one optical quantum Av of the
“zero point fluctuations noise””” resulting in

(Avgy)?
AVla\ser=2'n'h"_1_)¢ s 2)
gen i

where Avg, is the FWHM spontaneous emission linewidth
of the atomic laser, which was assumed to be much nar-
rower than the cavity linewidth Av, . This linewidth can
be written in various forms, '

AV1/2=‘V‘=L=‘2‘1“%(1—VR1R2). 3

The parameter Q is the quality factor of the cavity (most-
ly useful for masers), ¢, is the exponential decay time con-
stant of stored radiation energy in the cavity. The last
part of the equation refers specifically to a Fabry-Perot-
type laser resonator, assumed to have a length / and mir-
ror reflectivities R ,R,.>

It should be noted that in many laser devices the in-
equality Avg, <<Av;,, is not satisfied and therefore Eq.
(2), known as the Schawlow-Townes formula, should be
modified. Standard laser text books cite the following
laser linewidth formula:3
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In addition to the substitution of Av;,, for Av,, in the
Schawlow-Townes formula, Eq. (4) contains a level popu-
lation enhancement factor pu=N,/AN > 1, where N, is
the upper-level population and AN =N, — N, is the popu-
lation inversion at lasing threshold.

Numerous analyses of the laser linewidth problem were
published before, using both classical and quantum-
mechanical approaches. Renewed interest in this problem
has evolved recently mostly in connection to semiconduc-
tor lasers.* Though starting from general considerations,
applicable to any laser oscillator, the main purpose of the
present article is to derive a general expression for the
free-electron-laser’ (FEL) linewidth. This kind of laser
was operated recently with long pulses (microseconds
duration) using electrostatic accelerators, and recent ex-
periments indicated that it may be operated at a single
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longitudinal mode.® It is expected that this kind of FEL
may be operated in the future in cw mode, and with very
high-power output. Consequently, as we shall show later
on, such FEL may be endowed with an extremely narrow
intrinsic linewidth.

Since the FEL is basically a classical device, it is ex-
pected that all its operating parameters, and in particular
the laser oscillator linewidth, can be derived in terms of a
classical theory. This is one of the goals of the present ar-
ticle. We will show that the results are consistent, in the
common applicability regime with those derived recently
by Becker et al.” using a quantum-mechanical approach.

We reiterate that the basic process of the laser oscillator
line broadening is classical, regardless of the kind of laser
considered and the nature of the emission process. The
broadening results from the stochastic nature of the in-
coherent noise superimposed on the coherent radiation

. field, which was built inside the cavity by the stimulated
emission process. This broadening mechanism can be
described well by very simple classical formulas regardless
of the nature of the noise, as long as we assume Gaussian

_ noise statistical characteristics of the emission events.

The two fundamental noise sources in laser and maser
oscillators are the spontaneous emission of the laser medi-
um and the amplified thermal radiation of the cavity
walls. These noise sources may be intrinsically classical
or quantum mechanical in nature, depending on the cir-
cumstances.

The Schawlow-Townes formula [Egs. (2) and (4)] seem
explicitly quantum mechanical. They are often derived
entirely within a quantum-mechanical model,? or semi-
classically® (the noise emission process is described in
terms of single optical quanta emission). We will show
that the basic and more general expression for the
linewidth is a simple, explicitly classical formula depend-
ing only on the incoherent noise spectral power and the
stored energy in the cavity. However, a Schawlow-
Townes-like formula similar to (4) may be restored from
the basic equation by expressing the spontaneous emission
noise source in terms of the stimulated emission power us-
ing Einstein relations, and then expressing the stimulated
emission power at lasing threshold in terms of the cavity
resonance linewidth Av, ).

The extension to the FEL problem is straightforward.
Since the basic linewidth formula is classical it can be ap-
plied directly to the FEL problem by substituting for the
noise source power the known formula for the classical
spontaneous emission in the FEL (which is the undulator
synchrotron radiation®). Consequently, in this case one
may calculate explicitly the line broadening without
knowing the laser gain and without using the Einstein re-
lations as needed for the Schawlow-Townes expression.
Nevertheless, we show that also in this case a formula
similar to the Schawlow-Townes expression can be ob-
tained by going through a similar process as for the two-
quantum-level laser, but using an extended form of the
Einstein relations'® (the standard relations do not apply
directly to the classical FEL). When taking some simpli-
fying limits, it turns out then that for the FEL, the place
of the thermal agitation energy kT in (1) and the photon
quantum energy (kv) in (2), (4) is taken by the energy ex-

traction out of a single electron at laser saturation, which
is a classical quantity (and usually of multiquanta magni-
tude).

For the sake of simplicity we use in the present article a
very simple “field phasor” model in order to describe the
line-broadening process by random noise generation. This
intuitive derivation would be sufficient to obtain the ex-
pressions required in the present article. For a more
rigorous analysis of the classical laser oscillator equa-
tions,'"!? and the correspondence between classical and
quantum-mechanical representations of the laser oscilla-
tion,!3 the interested reader is referred to an extensive
series of papers by Lax et al. (of which we cited three).
Lax et al. showed that to a good approximation the laser
oscillator may be treated at all pumping levels as a
rotating-wave van der Pol oscillator where the effect of
the noise was treated by adding a driving “Langevin
force” to the homogeneous equation.!'?> The resulting
stochastic equation requires a numerical solution in the
general case. They showed that the linear approximations
leading to the Schawlow-Townes formula are valid only
well below lasing threshold. Well above threshold a more
appropriate linearized analysis results in a linewidth,
which is reduced by a factor of 2 relative to the
Schawlow-Townes formula. This result relies on the as-
sumption that in this limit the amplitude fluctuations due
to noise are stabilized by the oscillator relaxation process.
It is assumed that the phase and amplitude of oscillation
are nearly independent variables, and thus the effect of the
small amplitude fluctuations is only to add up a low wide
spectrum background to the coherent signal field. Only
the phase fluctuations contribute then to the broadening
of the spectral line to a finite width. The oscillator line-
broadening process can be described in this limit as a usu-
al Brownian-motion process of the field vector phasor,
producing random Gaussian phase noise modulation.

In the present article we assume a similar model, of an
oscillator above threshold described by a randomly fluc-
tuating phasor vector having its phase and amplitude vari-
ables decoupled. Consequently we expect to obtain expres-
sions smaller by a factor of 2 relative to the Schawlow-
Townes formula. We point out, though, that an addition-
al enhancement factor may appear in the linewidth ex-

- pression when the phase and amplitude are coupled.!!

This would happen when the oscillating frequency is a
function of the oscillator operating point (nonlinear
dispersion), which will cause spurious phase modulation
noise associated with the relaxation oscillation of the am-
plitude fluctuations. This effect has been recently the
subject of vigorous investigation and has a significant
measure in the context of semiconductor lasers,®!4—1¢
however, its consideration is kept out of the scope of the
present paper.

II. GENERAL LINEWIDTH FORMULA

We consider a laser oscillator which supports a single
cavity mode. An internal noise source produces elec-
tromagnetic radiation, which can be characterized as a
train of randomly emitted wave packets feeding into the
cavity mode. The random process may be quanta emis-
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sion from excited atoms by spontaneous emission or from
a surface of finite temperature (blackbody radiation). It
can be also classical spontaneous radiation emission from
electrons in an electronic tube or a free-electron laser (in
this case the coherent wave packet may contain on the
average multiple number of quanta or less than one
quantum—see Appendix C). In either case we will as-
sume that the wave-packet emission events are random,
obeying Poisson statistics.

The simple phasor model depicted in Fig. 1 is sufficient
to describe the phase noise modulation and the line
broadening in a laser oscillator well above threshold. The
phasor vector of length 1/¢, and phase © represents the
coherent energy ¢, stored inside the cavity by a single cav-
ity mode g. The phase and magnitude of the stored field
and its representative vector change slightly every time a
new wave packet of energy Ag, is emitted with random
phase ¢ relative to the stored field phase. It is assumed
that the amplitude of the vector is restored back to its
original value by the relaxation mechanism of the saturat-
ed oscillator. However, the phase of the vector does
change at a random direction by an amount
AO©=1/"Ag sing. When many emission events take place
randomly, the phase of the vector drifts gradually in a
Brownian-motion fashion giving rise to the frequency line
broadening.

‘This model is a simple adaptation of the line-
broadening intuitive model commonly used for conven-
tional lasers,>*!> except that we do not interpret the
wave-packet emission vector (of length 1/Aeg.) as
representing a single quantum emission, but generalized it
to represent any amount of energy emitted coherently in
each event which is one out of a train of independent ran-
dom emission events.

We assume that in general the radiative emission noise
source is characterized by a spectral power Sg,o» Which is

the total power per unit radian frequency fed into a single
standing wave of transverse quantization indices g,. Sq:w
may be the spectral power of any of the classical or quan-
tum noise emission processes mentioned in Sec. I. We as-
sume that the power is generated by an average rate of K
wave-packet emission events per second. Then the aver-
age energy fed into the cavity mode ¢ (single transverse
and longitudinal) per event is (Ae,) =S, ,Aw/K, where
Aw is the radial frequency bandwidth subtended by the
single cavity mode.

We can now state that the infinitesimal phase change
after each emission event is A©=(Ag,)!” %sing /v e, .
After a time 7 (in which K7 emission events take place)
the mean square of the stored field phase is

S, wAw
((Ae)z),z—(éf-‘i)—<sin2¢>1<r=i—q’i—r. (5)
€ 2 g

The line spectrum of the field stored in the cavity can
now be found by the standard Fourier transformation of
the field autocorrelation function (the Wiener-Khinchine
relation). Neglecting the amplitude fluctuation, and as-
suming the linear time dependence (5) of the mean-
squared phase random variable, results in a Lorentzian
line-shape function of a FWHM width which is exactly
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FIG. 1. Fluctuating phasor model. The large vector

represents the stored electric field amplitude V¢, and phase ©
inside the cavity. The small vector corresponds to a random
emission of a single radiation wave packet of energy Ae, by a
noise source. The wave packet is emitted at a random phase an-
gle ¢, relative to the stored field phasor vector, rendering a cor-
responding small angle (phase) rotation A© of the vector.

equal to the diffusion coefficient in Eq. (5):>!1:16
S, Ao
1 Sqo
Awjgger= 5 ‘Ec . (6)

This expression can be interpreted as the frequency band-
width associated with the time constant in which in-
coherent radiative energy equal to the stored energy e,
damps into the cavity mode.

A few notes on the results and the assumptions used are
in order. We first point out that K canceled out in the fi-
nal results [(5) and (6)], which means that the amount of
energy carried by an individual wave packet is not
relevant in the foregoing discussion (as long as the ran-
dom emission events statistical model holds). it may cor-
respond equally well to single quanta, multiquanta, or
(statistically) fractional quantum emission at each radia-
tion emission event. We note that Eq. (6) is explicitly
classical and would become quantum only if the noise
source is characterized by a quantum spectral power Sg,0r

In (5) it is assumed that the wave-packet emission ener-
gy and phase may both be random variables but statisti-
cally independent. Quantum emitters have well-
determined wave-packet energy: Ag,=(Ag,)=7#w. For
classical emitters the wave-packet energy is random when
discussed in terms of the quantized field. The number of
photons per emitted wave packet is a random number
obeying Poisson statistics,!” and may have large fluctua-
tions when vy, =(Ag, ) /#iw <1 (which is usually the case
in FEL’s—see Appendix C). However, the second mo-
ment of the phase fluctuations ((A©)?) is related to the
first moment of the wave-packet energy (Ag,) [Eq. (5)]
which is a classical parameter, and not to the second mo-
ment which is 7 dependent. Thus, for a large number of
electron radiators emitting during the oscillator coherence
time 1/Avy,., and a large number of photons in the oscil-
lating mode stored energy, there will bg no quantum ef-
fects that will modify the classical linewidth formula we
derived for the FEL. Quantum analysis!'® results in a
more involved scenario when considering the photon-
number statistics of many-electron emission (Appendix
C), but it still does not change the value of the average
photon number.
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There may be a question as to the appropriate mode
bandwidth section Aw to be used in (6). We will assume
now that the noise source has a much wider spectrum
than the frequency spacing between adjacent modes of the
cavity. For this case it may be argued!® that the spectral
power is equally distributed among the modes, and one
should substitute the intermode spacing for Aw. For a
Fabry-Perot resonator structure (assuming a single trans-
verse mode) the longitudinal standing-wave mode spacing
is

Aa):ﬂ'% . (7
"[Alternatively we may have stated that the longitudinal
mode density is (7c/I)~! and calculated the power per
mode by dividing the spectral power into mode density.]
The assumption of a wide noise spectrum is well satisfied
for the thermal noise source and for the spontaneous
emission noise in most atomic and solid-state lasers, and
certainly in FEL’s. In some atomic lasers and in masers
the spontaneous emission spectral line may be narrow
enough to invalidate our assumptions. In this case even
the spontaneous emission will be modified by the presence
of the cavity,?® and cannot be calculated out of the free-
space spectral power emission. Rather, the spontaneous
energy emission Ag, per cavity mode g should be calculat-
ed directly. ‘
As for the spectral power S, ,, we emphasize that it is

the spectral power fed into a standing-wave mode, hence
for isotropic noise sources, like thermal noise and spon-
taneous emission in conventional lasers S, , is twice the

spectral power P, , emitted into a single transverse travel-
ing mode in one direction. In free-electron lasers the
spontaneous emission (undulator synchrotron radiation) is
unisotropic and emits predominantly in one direction. In
this case we take S; ,=P, ., where P, is the forward

spectral power emission into a single transverse traveling-
wave mode.

The calculation of the spectral power into a transverse
traveling-wave mode P, , can be carried out directly for

either a quantum or classical spontaneous emission noise
source. In particular the classical synchrotron undulator
radiation into traveling-wave transverse modes was calcu-
lated specifically for rectangular waveguide modes,*! for
parallel-plate waveguide modes,?> and for general modes
(and specifically Hermite-Gaussian).?* The spectral power
of the spontaneous emission into a transverse traveling
mode may also be calculated at certain conditions from
the free-space spectral radiant intensity d*P/(dQdw) us-
ing
2

Pqta)= d—?_if—a-)—AQmOde ) (8)
where AQqoqe=A2/A.4 and A is the effective cross-
section area per mode. This procedure is correct only for
a transversely over-moded cavity structure, and when the
free-space angular spectrum of the noise source encom-
passes densely a large number of cavity transverse modes.
There are numerous computations of d 2P /(dQ dw)—the
nonisotropic spectral radiant intensity of the free-space

synchrotron undulator radiation (which is the spontaneous
emission source of FEL’s).>?*2° In the case of conven-
tional lasers, with isotropic spontaneous emission, note
that the free-space spectral radiant intensity to be used in
(8) is half the total (randomly polarized) spectral radiant
intensity of the laser medium (in order to account for the
well-defined polarization of a single mode of the cavity).
It may be computed, for example, in terms of the dipole
moment of the atomic transition using a simple semiclas-
sical approach.®

III. TWO-LEVEL (ATOMIC) LASERS

In most conventional lasers lasing takes place between
two distinct quantum levels, the emission process is iso-
tropic, and the condition Avg,>>c/(2]) is satisfied.
Hence we can use (7) in the linewidth formula (6). Ex-
pressing the noise spectral power as S, ,=2P,,, where

Py

and thermal noise amplification spectral powers per single
transverse traveling mode, one obtains

[(Py0)sp+ (AP, )n]e /(2])

€

o is the sum of the unidirectional spontaneous emission

9

AVigser=

The thermal spectral power (AP, )y is the spectral

power generated in one traversal by stimulated emission
amplification of the circulating blackbody radiation in the
cavity (Pqta,)thz(ﬁm/%r)(eﬁ“’/”— 1)-L It is assumed
that the circulating thermal radiation power is maintained
at thermal equilibrium with the walls (the resonator mir-
rors), contributing a very low power-additive wide spec-
trum background to the highly monochromatic intense
laser spectrum. Only the incremental incoherent power
(AP, ,)in=(G —1)(Py ) contributes to the phasor drift
process of line broadening.!” Here G —1=AP /P, is the
single-path gain of the laser. The spontaneous emission
spectral power per single transverse traveling mode can be
usually calculated from the free-space radiant intensity of
spontaneous emission?® using (8).

We may express the cavity-stored energy in terms of the
laser-generated power

P gen

—— s 10
27TA’V1/2 ( )

€

and thus obtain the following formula for the laser
linewidth:

A0 o /kT -1
(Pg,0)sp+(G —1) o (e —1)~iesl
A""laser:ﬂ' Pgen A’V1/2 .
(11)

Though expressed in terms of the fundamental laser
operating parameters, expression (11) is not very useful,
mostly because the spontaneous emission spectral radiant
intensity is sometimes difficult to measure or to calculate
accurately. One may take advantage of the Einstein rela-
tions?® in order to express the spontaneous emission and
thermal noise spectral powers in terms of the stimulated
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emission (gain) parameter. To simplify the expression
further we also use the relation of equality between gain
and cavity losses at saturation,

(AP,),

P,

G—1= zl——-\/RlR2=27T‘£—AV1/2. (12)

Substituting the “Einstein relations” (A6) and (A7) direct-
ly into (9), using (10) and (12), the following linewidth ex-
pression results in

(AVl/z)z

M=l (™4~ 1)~ i~

(13)

gen

This expression is of the Schawlow-Townes form. The
second (thermal) term of (13) is identical with the corre-
sponding term in (11) when (12) is used. Our expression is
identical to the corresponding expressions of Yariv® ex-
cept for a spurious factor of 2 which appears there. In the
short-wavelength limit #w >> kT the thermal noise term is
negligible and one obtains an expression similar to the
“Schawlow-Townes formula” (2). In the opposite limit
(maser) kT /(#iw) >>u >1 the spontaneous emission term
is negligible, and one obtains an expression similar to the
“Gordon-Zeiger-Townes formula” (1). These two expres-
sions differ from (13) by a factor of 2, which should be
expected in view of Lax’s comment on the difference be-
tween linewidths above and below the threshold.!! They
also differ by having Avg,—the spontaneous emission
linewidth—replacing Av; ,,, which seems to be the correct
frequency bandwidth to be wused”® in the limit
Avg, << Avy s, which is the opposite assumption to the one
made in Sec. II. For complete correspondence of the ex-
pressions, one should also note that in (1) and (2) the as-
sumption u~1 (N, >>N;) was implicitly used.

IV. FREE-ELECTRON LASERS

Since in the FEL the spontaneous emission and gain are
essentially unidirectional the spectral power that feeds
into the single transverse standing-wave mode g, equals
the sum of the spontaneous emission and the amplified
thermal noise emission of the FEL into a single transverse
forward going traveling-wave mode g,. Thus instead of
(9) we obtain from Eq. (6)

1 [(Py o)+ (AP, ) le /(21)

Viaser = D)

(14)

€c

Unlike atomic lasers, there are practical and reliable
classical expressions for the FEL spontaneous emission
and (the small-signal) gain. The forward spectral radiant

power of spontaneous emission per single transverse trav-
eling mode and the single-path gain (assuming in both
cases a uniform cross-section area of the mode along the

interaction length) are given by*>%*
Pq’a,=thsincz(§/2) , (15)
= d . 5=
G —1=Q, —sinc%(6/2) , (16)
%35

where sinc(x)=sin(x)/x and 8 is the detuning parameter.
These expressions are valid for a large class of quasi-free-
electron radiation devices (including Cerenkov and
Smith-Purcell radiation and cyclotron resonance
maser).!%3%3! ‘We will confine our discussion only to the
magnetic bremsstrahlung FEL for which

= |2 —k,—k, |L, (17)
vz
172 2 =2
1 Ho L, a,
R, =—1Ise |— —_— 18
K 8 0¢ €9 Aemqt 7/2 ( )
172 —
Q __ﬂli B_O_ ___I_'_‘i__i?"_ (19)
9 me? | & Aemqtkw y? ’

where k, is the axial wave number of the radiation mode,
which in (18) and (19) is assumed to satisfy k,~w/c
(negligible transverse wave number). f3, is the average axi-
al velocity of the monoenergetic electron beam propaga-
ting in the wiggler, y=(1—-8%)"1%, y,=(1—-82)"'2. L,
is the wiggle length and k,=2w/A, is the wiggler wave
number, where the wiggler is assumed to be described by a
periodic field function B(z)=Re(§we_‘k'”z). Aemg, is the
effective cross-section area of the mode,?>3! I, is the elec-
tron beam current, and

eB,
" kyme

ay

(20

is the normalized transverse momentum of the electron in
the wiggler. This formulation applies to arbitrary wiggler
polarization, where for a planar wiggler | B, | is equal to
the maximum amplitude of the periodic wiggler, while in
the helical wiggler it is larger than the amplitude by a fac-
tor of V2. In both cases | B, | =V2B,,, where B, is the
rms value of the periodic magnetic field and correspond-
ingly | @, | =Vv2a,.

Substituting (15), (16), and (10) in (14) we obtain the
following expressions for the FEL linewidth:

RySincX(8/2)+(G — 1) 22 (o Ao/kT_1)=1 e/

A'Vlaser =

(Y

P gen

R, +éq%(eﬁ“’/”— =1 esl

=0.277 Aviy .

p gen

A‘Vl/z

(21
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In the second part of (21) we assumed the practical case of
operating near the maximum gain point 6= —2.6, for
which d sinc*(8,, /2)/d 8,, =0.27 and sinc*(8,, /2)~0.55.
In some cases it is more convenient not to substitute (16)
for (G —1) in the second part of (21), and obtain a slight-
ly different result by expressing the gain in terms of the
cavity-loss parameters,

Hg‘)_s‘t“zZ(l—\/Rle)=47T%AV1/2. (22)

G—1=
: q

This relation is a modification of (12) for the case of uni-
directional gain.

The following example, based on the parameters of the
FEL experiments of Elias et al.,® demonstrates the use of
the line-shape formula, and indicates the parameter values
to be expected with FEL devices of this kind. Using the
parameters of Table I in (20) we find |3, | =0.17 and
consequently ¥, =y /(1+ | &, | 2/2)1/2=6.92. This results
in the synchrotron undulator radiation peak frequency
v=2y2%c /A, =800 GHz (A=375 um) and the spontane-
ous emission linewidth Avy,=v/N,=5 GHz (the gain
bandwidth is about half this value). The longitudinal
mode spacing is ¢ /(2/)=21.1 MHz, and the cavity reso-
nance bandwidth (3) is Av,,, =335 KHz. We note that a
large number of modes are densely distributed within the
homogeneously broadened emission linewidth, in con-
sistence with the conditions required in the derivation of
our linewidth formula.

The resonator cavity in the FEL is waveguiding in one
(vertical) dimension and free in the other (horizontal) di-
mension. For this structure the effective cross-section
area in the waist of the fundamental sinusoidal-Hermit
Gaussian transverse mode is Ay 0,1 =wobV 7 /8, where b
is the vertical waveguide dimension, and wg is the hor-
izontal (free-propagation) beam waist half-width (defined
relative to the 1/e fall off points of the field amplitude).
Using these parameters in (18) we find

R, =1500 eV (P, ,=825¢eV) .

For estimating the thermal noise generation we first note
that for mirrors kept at room temperature (k7T ~0.025
eV), the condition #iw <<kT reads A >>50 um. This con-
dition is well satisfied in the present example, and there-
fore the thermal noise spectral power is

‘ kT
(AP ,))in=(G —1)%:2(1—1/R1R2)—2;T—
=4Xx10"*eV
<<(Pg,0)sp -

Even though we operate at the long-wavelength (far-
infrared) regime, where the cavity mode is thermally ex-
cited to contain many photons, still the thermal noise
spectral power turned out to be negligible relative to the
spontaneous emission.

TABLE 1. FEL beam parameters (Ref. 6).

wo=1.65 cm |B| =005 T Vo=6.97
b=1.92 cm Ap=3.6 cm I,=2 A
=712 cm L,=576 cm 1—-V'R R, =0.05

Estimating now the power generation in the FEL from
the  saturation  power  extraction  formula®l3?
P, =IV/(2N;)=19 kW, we obtain from (21)
AVipeer=1.5%10"7 Hz, which is an exceedingly narrow
intrinsic linewidth.

Following the lead of the two-level-laser derivation we
derive now an alternative expression for the FEL
linewidth using the “extended Einstein relations.” The
Einstein relations between spontaneous and stimulated
emission coefficients (see Appendix A) are stated in terms
of transitions between two distinct quantum levels. How-
ever, the magnetic bremsstrahlung FEL in the practically
applicable classical regime is equivalent to a multilevel
(continuous levels) system in which multiphoton emission
and absorption are possible. The homogeneously
broadened emission and absorption lines of the FEL are
highly degenerate and are displaced in frequency only by a
small “quantum recoil” parameter.!®3*3* The net stimu-
lated emission rate is proportional to the difference be-
tween the slightly displaced emission and absorption line-
shape functions, which at the classical limit becomes the
derivative of the spontaneous emission line-shape func-
tion. Consequently, the spontaneous emission and the net
gain are proportional to different line-shape functions,
and the Einstein relations do not apply.

Based on Ref. 10 the extended Einstein relations [(B8)
and (B9)] are derived in Appendix B in analogy with the
Einstein relations [(A6) and (A7)]. We note that similar
relations were derived before classically by Madey, and

 can be derived from Bekefi’s inhomogeneous broadening

generalization of Einstein relations.>>3¢ Our extended
Einstein relations, are more general in the inclusion of the
thermal noise emission and the formulation in terms of
general single transverse modes. They are applicable to
the magnetic bremsstrahlung FEL as well as to a large
number of other free-electron radiation emitters.!® Substi-
tuting (B8), (B9), and (10) in (14) one directly obtains the
following expression for the FEL linewidth:

1 /KT 1y—1 (Avy )
M= (E+F0l++(RAT— D=1 =2 @3)
gen
where
3.2 2 . o=
£= 2Vz¥Yme™ X sinc*(6/2)
2m Luw -d—_[sincz(G/Z)]
doe
Bivzyme® A ymc? 1
~ — = - , (24)
T L, T 2N,

where in the second part of (24) we used the practical case
assumption of operating near the maximum gain point
(B7), and in the last part we took the highly relativistic
limit, and used the synchronism condition A=A, /(2y2). »
The third and second parts of Eq. (24) may be identi-
fied to have the interpretations as roughly one third of the
energy extracted by each electron at saturation in the
highly relativistic*> and general®! cases, respectively.
Thus Eq. (23) displays striking similarity to the atomic
laser linewidth expression (13), where &, the energy emit-
ted by a single electron in the FEL (weighed by a factor
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1/m), is analogous to the term #wy in the atomic laser,
which is the energy emitted by a single excited atom #iw
(weighed by the population factor p). The thermal noise
term in both expressions is the same except for the spuri-
ous 7iw/2 term in (23) that results from the spontaneous
emission.

In the FEL each electron emits a large number of pho-
tons (about 10° with the parameters of Table I). The
“thermal” term in (23) corresponds to half a photon ener-
gy in the optical limit #iw << kT, and to a relatively small
number of photons kT /(#w) (eight photons for the pa-
rameters of Table I) in the submillimeter-microwave re-
gime 10™* eV < #iw << kT. We therefore conclude that the
thermal noise contribution is negligible in the present ex-
ample and in most practical FEL examples.

Neglecting the thermal noise term, Eq. (23) may assume
an even simpler more compact form. Noting that the
power generation Py, may be written as the average ener-
gy lost per electron (7§) times the number of electrons
flowing in the beam per unit time (I,/e) we obtain

(Avy )?
I 0/ e
With the parameters of the FEL experiment of Ref. 6
given in Table I, Eq. (25) results in an estimate of
AVipser=9%10"° Hz which is an order of magnitude

lower than the previous estimate. This discrepancy is dis-
cussed in Sec. V.

AVla.ser = (25)

V. CONCLUSION

We demonstrated with the aid of the simple classical
model of a fluctuating field phase vector the computation
of the line-broadening mechanism in a laser oscillator
above threshold. The field fluctuation source may be a
quantum-mechanical noise (in which a single quantum is
emitted at each radiation emission event) or classical noise
(in which a multiphoton or fractional photon coherent
wave packet is generated in each radiation emission
event). This was used to derive linewidth expressions for
both two-quantum-level (e.g., atomic) lasers and classical
(e.g., FEL) radiation devices.

The final atomic laser linewidth expressions, in the ap-
propriate limits, are consistent with previously known
standard expressions. The FEL linewidth expressions are
consistent in the limits of common applicability with the
recent quantum mechanically derived expressions of
Becker et al.”

The general linewidth expressions for both atomic and
FEL lasers are simple functions of the spectral power of
the noise sources which dominate the line-broadening
mechanism. They both may be expressed in the alterna-
tive more conventional (Schawlow-Townes-like) form in
terms of the cavity parameters and the radiative energy
emitted at each random fundamental emission event. To
obtain these results one should make use of the Einstein
relations in the atomic laser case and an extended form of
Einstein relations in the FEL case.

Both the noise-power-expressed and the single-electron
emission-energy-expressed FEL linewidth formulas were
applied to estimate the FEL linewidth in a numerical ex-
ample corresponding to the FEL experiment.® They both

resulted in exceedingly low linewidth values of the order
of 1078—10~7 Hz. Even though the fundamental radia-
tion emission energy per electron is much larger in the
FEL (&) than in the atomic laser (#iw) and in the atomic
maser (kT), one may expect for FEL’s in general to have
very narrow intrinsic linewidths because of the very nar-
row cavity linewidth Av;,, and the large generated power
P, which are typical to these devices. Since single-mode
operation of FEL’s seems to be realizable, one could ex-
pect such devices to operate with a very high degree of
coherence. In practice, however, one will have to consider
the limitations imposed by technical noise and spectral
measurements capabilities (in particular, the length of
measurement time required—see Appendix C). _

The thermal radiation emission noise source was expli-
citly included in our analysis of both two-level lasers and
FEL’s. While in two-level lasers (masers) the thermal
noise may dominate the linewidth formula in the long-
wavelength limit #iw <<kT, we concluded that for FEL’s
the thermal emission contribution would be negligible.
Even though in the long-wavelength limit (as in the exper-
iment) there is multiphoton thermal population of each
cavity mode, the number of stimulated photons emitted at
FEL saturation by each electron exceeds this number con-
siderably (&/%iw >>kT /#w), making the thermal term in
(23) negligible for all practical cases.

One may argue that our use of the FEL small-signal
gain formula in the second part of (21) is not consistent
with our other assumption of laser operation at saturation
conditions. Similar questions may be asked about the va-
lidity, at saturation of the extended Einstein relations
which were used in deriving the Schawlow-Townes-like
formula (23). These difficulties are the source for the one
order of magnitude discrepancy between the values ob-
tained for Av using the two different formulas [(21)
and (25)]. The difference occurs in the present example
because the small signal FEL gain exceeds the cavity
losses, so that Eq. (22) cannot be used with the gain de-
rived from the extended Einstein relation. Consequently
the lower value derived from (25) is expected to be less ac-
curate than the first estimate. One would expect that the
two formulas would provide mutually consistent and
correct numerical estimates of the genuine intrinsic
linewidth when the FEL oscillator is designed to operate
near oscillation threshold conditions.

As mentioned in the Introduction, additional effects,
like coupling between amplitude and phase fluctuations
and other elaborations, may modify the results of the
present FEL linewidth simple model derivation, presum-
ably to cause further broadening. While there is certainly
room for further elaborations, it is suggested that the
present results provide a useful lower bound and a correct
order of magnitude estimate of the FEL oscillator intrin-
sic linewidth.
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APPENDIX A: EINSTEIN RELATIONS
FOR A TWO-LEVEL LASER

It is straightforward to derive from basic quantum elec-
trodynamical principles the relations between spontaneous
emission, thermal noise generation, and stimulated emis-
sion. It might be noted that the original Einstein coeffi-
cients relations?® were derived from a quite different point
of view (preceding the development of modern quantum
electrodynamics) and are somewhat less general.

The photon growth rate of a single cavity mode in a
two-quantum-level laser is

Dy _r — L N,—N)+N
dr e Vq+eﬁw/kT—1 2= N+,
d d d
_ |97 vq vq ’ (A1)
dt | dt |, dar |,

where v, is the number of photon is the cold cavity mode,
(e®/kT_1)~1 is the Bose-Einstein statistics thermal
equilibrium photon occupation number of the mode when
the cavity walls are at temperature T, and N,,N; are the
population of the upper and lower quantum levels, respec-
tively. The three terms contributing to the growth of pho-
tons in the cavity are the stimulated emission due to am-
plification of the coherent circulating power, the stimulat-
ed emission due to amplification of the incoherent
thermally emitted photons and the spontaneous emission.

The photon number in the cavity mode v, can be relat-
ed to the coherent circulating power in the cavity

Py=thov, S . (A2)

Using this relation and the proportionality between the
photon emission rate and the power generation, the fol-
lowing relations are exposed:

P, ) 1
%ﬁwc /1 : efe/kT _ 1

(AP, )g:( AP, ) yi( Py )= w, (A3

where u=N,/(N,—N,). Due to their proportionality,
the incremental power parameters in (A3) can be inter-
preted either as the cavity mode energy growth rate or the
unidirectional power growth along the laser. These rela-
tions can also be written in the form

(APq)st 1 [4
a sp=‘7q—3ﬁw7# , (A4)
(AP,)y 1 c 1
(APq)th:TEthLWj . (AS)

q9

The spectral powers may be obtained by dividing into the
cavity intermode frequency spacing Aw=mc /I [in con-
sistence with the cavity mode quantization assumed in
(A2)]. Marking the single path incremental power param-
eters with subscripts ¢, and defining the single path gain
G —1=(AP, )5,/ Py, one obtains

—4_r

#iw .
(Pooly=(6G 1720 , (A6)
(8P =(G — 1) B2 ookt _yy=t (A7)

APPENDIX B: EXTENDED EINSTEIN RELATIONS
FOR QUASI-FREE-ELECTRON RADIATION

The extended Einstein relations can be derived entirely
classically. Here we show their derivation starting from
an expression for the photon growth rate which can be de-
rived by taking the electron-classical limit (negligible
recoil) of the quantum-mechanical photon growth rate of
the FEL.>* The more general expression we cite here'
applies to a large number of quasi-free-electron radiation
devices (like Cerenkov-Smith-Purcell radiation, cyclotron
resonance maser, etc.), and not only to the bremsstrahlung
FEL. It also includes the thermal noise emission term,
and applies in general to any cavity single radiation mode
of uniform cross section along the interaction region,

dv . a=
o sp | 8inc“(6/2)

+[ 3+ (ef™@/kT_1 )_1+vq]e:1%sincz(§/2_)‘

dv,
dt

dv,
dt

dv,
dt

(B1)

>

th st

sp

where sinc(x)=sin(x)/x, 0 is the normalized detuning pa-
rameter measuring the phase lag of the monoenergetic
electron beam relative to the interacting longitudinal
wave, and € is the quantum recoil parameter.

For a bremsstrahlung FEL,

0= |~ —k,—k, |L, , (B2)
v, .
2
e=—" |2 |, (B3)
mYYsz UZ

where v, is the average axial velocity of the electron in the
wiggler, k,=2m/A, is the wiggler wave number, L, is
the length of the wiggler, k, is the axial wave number of
the radiation mode and y =(1—8%)"12, y,=(1—B2)"172,
The classical limit condition € <<27 is usually satisfied
for any practical FEL parameters.

The three terms identified in (B1) are the spontaneous
emission, the stimulated emission of amplified thermal ra-
diation noise and the stimulated emission of amplified
cavity-circulating coherent radiation. The term 3 in the
square brackets is included for convenience inside the
thermal radiation emission term, however, it is actually a
descendent of the quantum-mechanical spontaneous emis-
sion. It is the only pure quantum-electrodynamical term
which remains in the electron-classical limit € <<2m (as
long as the field quantization is still kept).

Using the proportionality relation between the photon’
emission rate and the power generation, the following re-
lations can be deduced from (B1):
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(AP,)g:( APy i(Py)p=vg€:[ 5+ (e™/*T — 1)~ 'e:sincX(6/2) / ;‘%—sincz(a/Z) . (B4)

These relations can also be written in the form

(AP Bivzyme® A ¢ sincX@/2)
Po="7 4 Lol d . a0 BY
q 4 w ' =—sincX(6/2)

do
(AP,)
(APq>th=~P-q—ﬁ[%+(eﬁw/kT—1)—1]%@% : (B6)
q

The spectral powers can be obtained now by dividing
into the cavity intermode frequency spacing Aw=1c/I.
Also for simplicity we assume the practical case assump-
tion that the oscillating mode operates near the maximum
gain detuning point =28, = — 2.6 for which

sinc2(§/2)/%sinc2(§/z)z2 . (B7)

We then obtain for the unidirectional incremental power
parameters

ytyme? 5

, (B8)
2772 Lm

(Pgo)p=(G —1)

(APgoly=(G — D[+ +(™*T—1)=1122 (o)

Equations (B8) and (B9) will be referred to as the extended
Einstein relations.

APPENDIX C: NUMBER OF PHOTONS
EMITTED SPONTANEOUSLY INTO A SINGLE
MODE BY AN ELECTRON

To calculate the average number of photons emitted by

a single electron into a single cavity mode, we multiply

the spectral power per mode [(15) and (18)] by the longitu-

dinal mode spacing Aw=mc /I, (7), and divide by the

electron’s injection rate I,/e and the photon energy #iw.
This results in

1 ay A2

Vep= 70

L, . ,=
9T 7 —sinc“(6/2) , (C1)
14+ag

Yo 1

where a=e?/(4megmc?)= 1 is the fine-structure con-
stant (expressed in mks units).

It is interesting to compare this expression with the ex-
pression for the total average number of spontaneously
emitted photons by an undulating electron in unbound
space (which can be directly computed from the angle in-
tegrated dipole antenna radiation formulas®?)

—2

44 ay
(Viotree =—— N, . C2
totfree =73 Tra2 (C2)

In the over-moded waveguide limit Eq. (C1) may be in-
terpreted as the total average number of emitted photons
multiplied by “filling factors™ corresponding to the solid
angle subtended by a single transverse mode and the fre-
quency regime section subtended by a single longitudinal
mode in the spontaneous emission bandwidth. Note, how-
ever, that when the waveguide is not overmoded, the total
average number of photons is not given any more by (C2).

Inspection of Eq. (C1) indicates that the average num-
ber of photons emitted into a single cavity mode per elec-
tron is for most practical cases smaller than one, though
multiphoton emission is conceivable with very long
wigglers. For the parameters of the experiment of Ref. 6
(Table I) at = —2.6 we obtain

vep=1.3X107°.

This is a very small number, and obviously refers only to
the probability of photon emission.

The adequate quantum field description of the radiation
from a classical current like an undulating electron, is the
Glauber coherence state. This corresponds to a Poissoni-
an quantum statistical distribution of the photon number
as a random variable.!” This means that if one measures a
system parameter (like the linewidth) which depends on
the average number of photon emission, and the measure-
ment is carried out with a small number of electron radia-
tors, there will be a great uncertainty in the measurement.
Furthermore, since the number of emitting electrons is
also a random (Poisson statistics) variable, the uncertainty
in the number of photons (and the measured system pa-
rameter) is even larger, corresponding to thermal statistics
of the total photon number.'® This may introduce greater
uncertainty in the value of the measured parameter, but
still keeps its average value (over an ensemble of experi-
ments) the same. Note that for measuring linewidth, a
very long measuring time—at least the reciprocal of the
oscillator linewidth (Awj,e ) '—is necessary. During
such a time the total average number of spontaneous
emission photons is equal to the average number of pho-
tons stored in the cavity €, /7w [as we noted in the inter-
pretation of Eq. (6) in Sec. II]. This is in practice always
a very large number.
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