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We present an analysis of a free-electron laser within a three-dimensional model, in which the
finite transverse dimensions of the electron beam are taken into account together with the
confinement of the electromagnetic modes by a guiding structure. The analysis is based on the ex-
pansion of the beam’s self-potential into an infinite set of modes that interact simultaneously with the
wiggler and signal fields. Explicit gain-dispersion equations are developed for several cases including
a waveguide tube completely filled by an electron beam of uniform density, and a uniform-density
electron beam partially filling a waveguide (or in free space). This is carried out in both the magnet-
ized beam limit and the general case which includes surface currents. The results bear significant
effect on free-electron-laser gain operating parameters in the collective regimes and on the threshold

of absolute instability oscillation.

I. INTRODUCTION

The main features of the magnetic bremsstrahlung
free-electron laser (FEL) may be well described by a one-
dimensional model. The finite transverse dimensions of
the electron beam in a practical embodiment are usually
taken into account by means of a “filling factor” equal to
the cross-sectional areas ratio of the e beam relative to the
electromagnetic wave. The coupling between the radia-
tion wave and the beam is assumed to be reduced by this
factor relative to the coupling in the ideal one-dimensional
transversely infinite FEL model.!

Recently there has been substantial interest in and
numerous publications on three-dimensional analysis of
FEL. Various aspects of three-dimensionality have been
considered; most of them are out of the scope of the
present paper. The main three-dimensional aspect con-
sidered so far is the radiation field diffraction. The gen-
erated stimulated-emission radiation is emitted along the
FEL interaction length from a source (or “aperture”)
equal to the dimensions of the electron beam. If this
beam is narrower than the input electromagnetic wave,
then the generated radiation diffracts differently (more)
than the input radiation wave, and a one-dimensional
model will not describe the electromagnetic wave properly
(in particular, in the high-gain regime).?

A significant simplification of the three-dimensional
FEL problem is possible in a system which is translation-
ally invariant and transversely confined. In this case it is
possible to expand the electromagnetic wave in terms of
axially uniform transverse modes. The frequency-domain
Maxwell equations can then be reduced into one-
dimensional linear equations (in terms of the z-axial coor-
dinate) with constant coefficients.> >

Such a model of axially uniform radiation modes is well
suited to describe a waveguide FEL, but also is a good ap-
proximation for free-space mode propagation when the in-
teraction region is shorter than a Rayleigh length. This
model allows derivation of dispersion relations for the in-
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dividual modes which are valid not only in the low-gain
regime (where a diffracting mode model can be used®) but
also in the high-gain regimes.

The dispersion equations of the radiation modes are in
general coupled to each other, but in most cases the cou-
pling is neglected and, furthermore, it is assumed that
only one transverse radiation mode propagates in the sys-
tem. The single-mode dispersion equation is similar to
the one-dimensional model equation and the three-
dimensional effects are taken into consideration only
through a cross-sectional overlap integral of the radiation
mode with the e-beam current and wiggler field, which
modifies appropriately the one-dimensional FEL coupling
coefficient.” We note that unless the FEL gain is exceed-
ingly high, the single-mode approximation is quite practi-
cal because it is possible to control quite well the laser
transverse modes. In an amplifier this is done by insert-
ing an appropriate field distribution, and, in an oscillator,
by the resonator mirrors’ apertures. If the laser is based
on a waveguide, the transmission properties of the
waveguide (cutoff, mode selective loses) can be used to
control the FEL transverse modes.

While three-dimensional radiation effects are usually
taken care of by mode expansion of the radiation field or
by more elaborate models, little attention was paid so far
to the three-dimensional aspects of the electron-beam
plasma-wave propagation. These aspects are expected to
be significant only in collective (Raman) regime FEL’s®
where the radiation wave exchanges energy predominantly
with the collective plasma waves of the beam. In such
FEL'’s e-beam three-dimensional effects are expected to be
significant because the narrow e beam cannot be modeled
by a transversely infinite plasma, and transverse boundary
conditions have a substantial effect. Furthermore, the
finite beam plasma is known to have an infinite number of
modes and contrary to the radiation modes their external
control is virtually impossible. Consequently, a true
three-dimensional analysis of the FEL plasma waves is an
important problem to address. This interest is also de-
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rived by recent experimental progress in high-current
long-wiggler FEL’s and in particular the demonstration of
high-gain induction-linac-driven FEL’s” and proposals for
high-current long-wiggler storage-ring-driven x-ray and uv
FEL’s.!" Due to the feasibility of high-current long-
wiggler accelerators, collective effects may appear even in
FEL’s operating at short (optical) wavelengths.

The goal of the present work is to investigate the e-
beam plasma three-dimensional (3D) effects on the FEL
by means of analytical techniques. We find it again help-
ful to use a model of translationally invariant electron-
beam and electromagnetic wave structures. This allows
us to obtain relatively simple analytical expressions for the
dispersion relation which show similarity to the well-
investigated!! one-dimensional dispersion relation, and
reduce to it in the appropriate limits. The analytical tech-
nique is based on expansion of the electron-beam current
in terms of the finite-beam infinite set of plasma modes.
The FEL gain-dispersion relation is obtained with all the
modes included. Only in illustrative examples do we con-
sider the special case of coupling to a single transverse
plasma mode where the dispersion equation simplifies to a
one-dimensional-like form. In this case, similarly to the
radiation mode expansion problem, the operating parame-
ters’ definitions include overlap integrals with the trans-
verse profile of the particular transverse plasma mode.

Previous work on e-beam three-dimensional effects was
reported recently for specific cases of a helical wiggler
FEL with a cylindrical waveguide'>'* and a linear
wiggler'* (though without consideration of transverse
boundary conditions for the beam fields). In the present
work the analysis is carried out in the framework of a
general model which permits arbitrary transverse
geometry of the waveguide (slab and cylindrical
waveguides are considered as illustrative examples). The
general parametric interaction model used'® admits both
static and electromagnetic wigglers (pumps) and an addi-
tional axial guide field. The wiggler and signal elec-
tromagnetic modes may have arbitrary profile and polar-
ization. We avoid taking the extreme relativistic limit
¥ >>1 since many experimentally investigated collective
FEL’s are only moderately relativistic.

As mentioned before, the thrust of this paper is the e-
beam plasma-wave-related 3D effects, and many other 3D
effects of the FEL problem are not treated in the present
model. In particular, electron-beam energy and angular
spread are ignored to permit the use of a laminar flow
fluid charge model for the beam equations. The interest-
ing and timely 3D problem of optical guiding by the FEL
e beam'® is not considered here, though it turns out to be
mathematically related. The e-beam guiding effect results
from substantial modification of the radiation modes
(confinement) due to strong interaction with the e beam in
the high-gain regime. In the present model we assume
that the transverse profile of the radiation modes are
determined predominantly by the external structure
(waveguide) of free-space propagation. Solving for possi-
ble e-beam-guided radiation modes in the collective re-
gime FEL would require further development of the
present model.

As in any self-consistent theory of the FEL problem,

our work here will be based on the coupling of two kinds
of equations: (a) the field equations, which describe the
excitation of the waveguide electromagnetic modes by a
given current source, and (b) the e-beam equation which
describes the excitation of the charge-density modulation
on the e beam by the electromagnetic modes of the
waveguide. The first equation was treated in full generali-
ty by many authors®> and will be introduced in Sec. II.
In Sec. III we develop the excitation equation of cold-
electron-beam self-fields driven by the electromagnetic
waveguide modes. These self-fields submitted to the
boundary conditions on the waveguide walls are expressed
in terms of an infinite set of beam modes which are deter-
mined by the homogeneous solutions of the same equa-
tion. A simultaneous solution of these two equations
yields the FEL’s gain-dispersion relation expressed in
terms of multimode parametric interaction between a
waveguide electromagnetic mode and the beam modes.
These equations are derived in Sec. IV.

II. THE FIELD EQUATION

We mark the wiggler (pump) and signal fields by
indexes w and s, respectively. The signal radiation field
propagates in the same direction as the e beam (+2z), and
the wiggler field propagates in counter direction to the e
beam (—z). The fields are

ikgz —iwgt

E,(r,t)=Re[C,(2)8,(x,p)e ],
ikxz—iw t

s]’

~lsz—-la)wt]
’

ﬁlka*l(uwl]
i

where (&, B, ]e “Hsw? 790t are the fields of the empty
waveguide modes, C, ,(z) are the amplitudes of the waves
in the presence of the beam, and C,, is assumed to be con-
stant (nondepleted pump approximation). In the common
case of a magnetostatic wiggler w, =0=§,,, and the as-
sumption C,, =const is not an approximation. The excita-
tion equation for the amplified-wave amplitude C;(z) is
derived directly from Maxwell equations:*>

B,(r,t)=Re[C,(2)B,(x,p)e
E,(r,t)=Re[C, &, (x,p)e

B, (r,t)=Re[C, B, (x,y)e

d 1 —ikgz
T
X [ [ Trx0,2)-8 % (x,p)dx dy )

where J7;(x,y,z) is the current component at the frequen-
cy of the signal wave (w;) and T denotes the transverse
component. Here we assumed that the excited current at
frequency w; is purely transverse, which is an exact state-
ment in the normal case of a transverse static wiggler and
when the signal wave is TE or TEM. We exclude here
the case of a longitudinal wiggler'” and neglect the longi-
tudinal modulation in the case of TM signal and wiggler
modes. This is valid as long as the longitudinal electric
field is small compared to the transverse one, which is the
case far from cutoff, i.e., when w;, /C >>K, where K, is
the cutoff wave number of the waveguide. 7 is the nor-
malization power of the electromagnetic (e.m.) signal:
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Po=1Re [ [(& xFH ) Ndxdy . 3)

We define now the beat frequency w;, =w, —w,,, and as-
sume the presence of a density (idler) wave at the beat fre-

quency
n, =Re[f,(r)e "] . @)

The first-order response of the transverse electron veloci-
ties to the electromagnetic fields is

Vr(r,0=1[Vr(ne "+ Vp,(0e " ““I+c.c. (5)

Thus the transverse current components are obtained by
substituting Eqgs. (4) and (5) into the expression

JT = —én ,(r,t)VT(r,t) .

Neglecting terms which are not oscillating with frequency
w;, one finds that

Jp=—1lem, V¥, , (6)

where 7, oscillates with frequency w; and V,, is a phasor
of the velocity field vector with frequency w, and wave
number —k,,. For the sake of simplicity, in the proceed-
ing analysis we express V7, in terms of the wiggler ampli-

tude C, and the transverse wiggler velocity profile
‘va (x’y):
VTIAJ('x’y’z):(jwe -_iszcVTw(x’y) . (7)

Analytic expressions for the first-order transverse veloci-
ties of the electrons were developed in many other papers
for various configurations (Refs. 14 and 15); thus we shall

not discuss them here, beyond listing the expressions for
Y 1w, Vr, in Table I. The parameters of Table I are
specified for the particular example of linearly polarized
fields (though the analysis so far admits arbitrary field po-
larization). The given parameters also include axial guide
magnetic field effects.

Substituting Eqgs. (6) and (7) in Eq. (2), and Laplace-
transforming the resulting equation in the z direction, re-
sults in

sC,(s)—C,(0)
Cy
BN

f f (x,y,s +iK)

XV 10 (x,)- 8 % (x,p)dx dy | (8)

where K =k, +k, and
A(s)= fw e % A(z)dz .

Eq. (8) is our excitation equation of the e.m. signal field in
the waveguide. We turn now to develop the second equa-
tion, which describes the excitation of the density modula-
tion n;.

III. THE BEAM EQUATION

In this section we develop the beam self-field equation;
this equation, submitted to the appropriate boundary con-
ditions, yields the beam self-fields, expressed as an infinite
sum of the beam modes. The beam first-order density
modulation n; (4) will be determined directly from the

TABLE I. First-order transverse velocities of the electrons in the beam due to the electromagnetic modes of the waveguide. (a)
Beams without guiding magnetic field, (b) beams confined by an axial magnetic field; these expressions are valid far from the cyclotron
resonance (see Ref. 3). Only components with frequency ws,» and wave number K, are given.

Signal Wiggler
Fields E.(r,))=Re[Cy(2)&,(rr)e " ~"s'] Eu(r,0)=Re[C, &, (rr)e @’ ]
B.(r,)=Re[C:(2)B,(rr)e s ] Bu(r,)=Re[C,Bu(rrle v ~"“w']
V 1w Vi=C(2)e "‘ﬂvn Vi=Cye *”‘w’cvm
je /yom ~ ie /Y om ~
V = ad s z ¥ 0z s w= — z
T [Ers(rr)+1:Vo: X Brs(r7)] Vi otk Ve [&70(rr)+1: Vo, X Brw(r7)]
Fields E(r,))=Re[Cy(2)&,(rr)e " "] E, =0
&(rr)=’i\y§5(r1)
B,(r,1)=Re[C.(2)B(rr)e"" "] B=Re(Cw,i\x$we7'k“’z)+’i\zB”
A Wy =
ﬁs(rr)=—lx*cz—k:6:(rr)
v Ts,w VT: =Cs(z)e 'ksz‘VTS VTw — Cwe'kw Z‘VTw
~ Q,/Q e = ~ QQ Vo,
Vr=—t—) 8,(rr) V=3 — 2V
T 1—(,/Q) yoma, T TR0k Ve
I~ i e 3 2 ka Vtz)z
—1 6: ;
T 1—(Q)/Q)* yomaos (rr) +'y'9ﬁ—(ka0z)2

Q“=eB||/}’om 5 Q=€Bw/‘}/om
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beam self-fields, thus taking into consideration the
influence of the waveguide walls and the finiteness of the
beam on the excitation of the density wave n;.

Two assumptions are made throughout the deviations:
(a) Transverse variations of the beam modes are small
compared to the longitudinal ones: 3/9x, 9/dy <<9/0z.
(b) The electromagnetic waveguide modes are asynchro-
nous with the electrons or with the plasma modes. Only
the ponderomotive wave (which is the result of the beat
between the wiggler and signal fields through the non-
linear Lorentz force) is synchronous with the beam or
with one of its modes, and can interact with them.

The total beam electron density n (r,¢) is given by

n(r,t)=ngy(r,t)+n(r,t), ny<<ng 9

where n (1,t) is the total electron density, r=(x,y) is the
transverse coordinate, and r=x,y,z is a 3D vector. Also,
we define the total velocity field as

V= VOz/i\z + Vlz’i\z +Vo, ] Vi I ’ | Vr } <<V, . (10)

Vo, is the unperturbed beam velocity; V', and V are the
perturbed longitudinal and transverse beam velocities, re-
spectively.
We concentrate our attention on the perturbed quanti-
ties which oscillate with frequency w; =w; —w,,; thus
Vi.(r,t)=Re[ V), (r)e

1, (11)
n,(r,t)=Re[#,(r)e '] . (12)

—I(z)'-t

The transverse velocity field V1 is composed of three
phasor components: the first oscillates with frequency w;
and arises due to the transverse components of the beam
self-fields; the other two components oscillate with fre-
quencies w;,w, and arise due to the transverse fields of
the waveguide modes. Thus

—ik,z —iw,t

Vo(r,)=Re[V 5(r)e "'+ C, V1 (r7)e

iksz —iwst]

+CS(Z)CVTS(I'T)€ (13)

Expressions for YV, Y, are summarized in Table I.
We start our analysis from the small-signal fluid plasma
equations:

3

V-J:—E)?nle , (14)

J~—e(Vino+Von i, —engVy (15)
d d e

Viy=——5—[E,+(VxB)'], (16

—_— V _
o Ty Yoyim

where E, represents the longitudinal self-electric-fields of
the electron beam which oscillates with frequency w; and
(VXB);" is the well-known ponderomotive force which
oscillates with frequency ;.

Using the phasor notation of Egs. (11)-(13) and
Laplace-transforming Eqgs. (14)-(16) we find

i

2
i

- ,2
V3® “i(rr,s)+ (s2+w*2} ll—l—( p (1)
c

Voes—iw;)?

‘E)Mi(rr,s):

= e 1 = O; =
V0i=— EC

Iz Vo:s —iw; Voygm( pond T£2 ), (172)
nosvlz+V02sﬁ1+VT'(n0Va7)~i)=ia)iﬁl ’ (17b)

where A= [* ¢ A4 (z)dz and the pondermotive wave
phasor which oscillates with frequency w; is given by'>

E(]:(gndz%(st Xﬁ;‘w +V;w ><§Ts)'/i\z

Il

* =) i(kg+k, )z
(jw(:s(z)(g p(‘)nde : v )

. ~ (18)
6 ponda=H Vi XB Y, +V 5, X Br )i, .

The transverse derivative on the left-hand side of Eq.
(17b), V-(noV 1, ), will be neglected from now on due, to
assumption (a) at the beginning of this section.

We turn to express E, in Eq. (17a) in terms of the self-
scalar-potential of the beam, ®, which under the Lorentz
gauge condition obeys the scalar Helmholtz equation:

2 1 62 n,e

Vo 12 o (19)
The source term in the right-hand side oscillates with fre-
quency o;; thus the excited self-potential can be expressed
in a phasor notation as follows:

iw;t

D=0 =Re[® “(r)e '] .

Using Lorentz gauge condition, we find [under assump-
tion (a)]
1
=2

3
— A, '~
az z C

w;

P, (20)

|o

where A, =Re[ 4 ./(r)e _im"t] is the self-vector-potential
of the beam. Thus the self-longitudinal electric field of
the beam is given by

d 9 o

El'=—— 0% -2 4 1)

Writing Egs. (19)-(21) in phasor notation, and Laplace-
transforming the resulting equations, we find

o w?
E . (rp,s)=— s+—-2'— @ (rp,s) , (22a)
c
0 w% -
ﬁl(rr,s)z—e— Vi+si+— D (xy,s), (22b)
c
where
aZ aZ
Vi=—rrt— .
T~ ax2 + dy?
By inserting Egs. (22) and (17a) in (17b), one finds
DTS po (rrs) (23)
(VOZS—ia)i )2 pond\17) ’
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where w,X(r7)=e’no(rr)/egmyoy:, and ® “i(rr,s) is sub-
mitted to homogeneous boundary conditions on the
waveguide walls:

D “(r7,5) | wais =0 - (24)

Equation (23), which is of the Sturm-Liouville type, is
the ‘“beam’s longitudinal waves equation.” It describes
the excitation of the longitudinal plasma waves (space-
charge waves) in the beam. Upon substituting the formal
solution of this equation back in Eq. (22b), we find the
perturbed electron density of the beam. From now on we
shall call Eq. (23) “the beam equation.”

IV. INTERACTION OF WAVEGUIDE RADIATION
MODES WITH BEAM MODES
A. Uniform beam completely filling the waveguide

We start with the simplest case in which a homogene-
ous beam fills the waveguide completely. In such a case
w;, is constant across the waveguide cross section, and the
beam equation can be written in the following way:

®'?s = o

P
E pond »

VZ 6‘”[_'_ Z(S)$wi:
T § (Vops —io;)?

(25)

5

EXs)= |s*+ , (26)

~

2
(0]
] 1 (Vops —iw;)?

c

q’:,“’i | boundary:O . 27)

We shall first solve the homogeneous equation
Vid4+kZ2d=0 .
with the same homogeneous boundary conditions of Eq.

(27). The solutions are given by a set of eigenfunctions
{®,} and eigenvalues {kp, }:

V2T(/I\)n (rr;kn )+k72‘n (’I\)n(rT;an )=0,

n=1,2,3,... (28)
It is straightforward to find the solutions {®,} and
{k7n}. Such solutions for various geometries are summa-
rized in Table II. The dispersion relation of the beam
modes in the absence of the ponderomotive force is obvi-
ously

ENs)=k?,, n=1,2,3,... 29)
or
2 2
; [)]
s2+_‘ 1+——_p =k2 .
[ c? (Vs —io;)? o

TABLE II. Eigenmodes and eigenvalues of the self-fields of the beam for uniformly loaded geometries.

Waveguide .
geometry P, kn
2 172 1
= =1 |25 N cos(lg) Pim.
@ T aJ/(pim) a ¢ a
n=Ilm

J; is a Bessel function of order /

1
———-_J
@ aJi(pon V' 0
Azimuthal symmetry
X 2 sin llx
Vaa; 1
qQ
y
2
n=Ilm
172
X 2 . | nm
= sin | —x
QI___ a a

slab (@;— )

Pon

Dim is the mth root of J;

0
r Pon
a a
2 21122
y I mmw
2 a b
nw
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It is convenient to express the Laplace variable by a
wave-number notation s=ik. After some algebra the
dispersion equation reduces to the normalized form:

1
(Y?*-X)H |[1—-————— |=a?, (30)
(Y-B.X,) | "
where B, =V, /c and
;
Y=—,
@p
k,c
Xy=—1, (31)
@p
c
a, _‘_,—an
@p

Equation (30) was solved numerically for an example of
B,=0.5, a,=1.57n (n =1,2,3,...) which corresponds to
the specific case of a slab waveguide (see Table II) with
width @ =2(c /w,). The dispersion curves of the four fun-
damental modes (n =1,2,3,4) of the beam are shown in
Fig. 1. The beam modes differ from the well-known
modes of the infinite plasma in a number of aspects:

(a) In the beam problem the solution is characterized by
an infinite number of modes, while in the infinite plasma
model only two longitudinal space-charge modes appear:
the slow and the fast space-charge waves. (In the limit of
infinite plasma k7, =0, Eq. (30) collapses and yields only
these two space-charge waves: Y —f,X ==+1).

(b) All the branches of the beam modes bend and pass
through the origin of the k,w plane {or X, Y plane) in such
a way that the phase and group velocities of the modes
vary, but never exceed the velocity of light. By contrast
the modes of the infinite plasma can propagate with phase
velocity greater than ¢, and their group velocities are con-
stant and equal to the beam velocity.

It is important to notice that as long as k7, approaches
zero but is not identically zero, the slope of the dispersion
curves near and at the origin will not exceed the velocity
of light. When kg, takes very small values (i.e., a very
wide, but finite, beam) the dispersion curves tend asymp-
totically towards the lines

Y=+X; Y=B,X*1.
The solutions of Eq. (28) ®, are a complete and or-
thogonal set,!® satisfying:

f f@n(rT;an )(f)m(rT;kTm )dx dy =6,,, . (32)

The general solution of Eq. (25) can be expressed as an
infinite sum of ®,. The characteristic Green’s function of
Eq. (25) is given by the sum:!®

’ D, (r7;3k g )@, (kg )

(33)

and the full solution for ® “(ry,s) can be expressed in

terms of it as
}Fost Modes

} Slow Modes

G
anEcan/w'P= nl57
Bz= 0.5
3__
-
2l £
—
7
h S ’
Bu B /
- - 4
3 P /
>
g8 ,/
7 A
¥
o= PR
\\\ /
\I\.iqht Line -
~ | | | | | J
(0] 1 2 3 4 5 6
X=kc/wp

FIG. 1. The dispersion curves of the first four fundamental slow and fast beam modes of a uniform beam which completely fills the
waveguide, for a@, =1.57n and 3, =0.5. The light lines denote the dispersion curves ¥ =+ X.
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2
—_ Wp'S = w; , B , (34)
D “irr,s G(rr,t’ ,s)———"————E na(TT,8)dx’ dy’ .
(r1,s f f TS i - pondFT y
This defines explicitly the elgenmode expansion of the general solution and the expansion coefficients:
q_> rTy 2 A n rT;an) > 35)
A,(s)= 1 ; [ [ ®.(cr;kp, E ping(rr,s)dx dy . (36)

EXs)—k?, (VOzs—za)

Equations (35) and (36) give a full solution for ® “/ which is excited by the ponderomotive wave E

;)(‘;nd. The pondero-

motive wave excites an infinite number of plasma modes in the beam; each has its own amplitude 4, (s) and thus its own

growth rate along the interaction region.

The perturbed density wave 7, can be determined directly from @ “ with the aid of Eq. (22b).

equation and using Eq. (28) we find

2
‘ 2
._kT
m
c2

— €o —- 2
nl(rT,s):—e— 2 Am(s) s

where 4,,(s) is given in Eq. (36).

@, (rrikp,)

Inserting @ ' into this

(37

In order to get the gain-dispersion equation of the electromagnetic mode coupled to the plasma modes, we substitute

Eq. (37) in (8), and after some algebra we find

és(s) I Cw | 2609;

(s +iK) ‘(s +iK)+

-1

GO |7 82|

i

where
K=k;+k, ,
0= —L _K
N VOz ’
wl
0, =—~2 (39)
’ VOz

G” = f f EI\)"(I'T;an )ga ::énd(r]“ )dx dy s
= f f D, (r73kp )V, ()-8 $i(rr)dx dy

and the transverse velocities profiles V; are summarized
in Table I. Equation (38) is the general gain-dispersion
equation of the FEL which describes the interaction of a
single electromagnetic waveguide mode (the signal) with
all the modes of the beam.

Assuming that only the fundamental plasma mode is
dominant (G, 7, —0 for every n except n =1) and making
the small growth rate approximation |s | <<K, we find
the following simple gain-dispersion equation:

C,(s) (i0—s5)*+62,
S PR ol (40)
C,(0)  s[iB—s5) +06,,1—i6,k,
where

2
‘[(s+iK)2+ lf’c—l }[(i@—s)2+912,]—k%,,(i9—s)2

w;
[-C- _k72"n
G,y , (38)
oK
_ 2
'Cwl 8‘?|Gl7’1’
, . 41)
k
62, =62 |1+ T | =6R?
;
K*— |—
(&

It is of interest to compare Eq. (40) with the well-known
gain-dispersion equation of the conventional transversely

infinite FEL. The latter equation is known to be>!>1°
C(s) (i60—5)2+6;
C(0)  s[(i0—5)?+02]—i6k
a)l
_ %
Bp VOz ’
(42)
0=—1 _K
l’/Oz ’
ok
K={Cw|28l7gs’ g VTw pond’
where A4, is the effective cross-sectional area of the elec-

tron beam.

Equation (40) differs from the one-dimensional model
expression (42) only in the G, and 7, “overlap integrals”
with the beam modes which appear in the definition of k,
and in the space-charge parameter reduction factor
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—1/72

in (41) which originates from the transverse finiteness of
the beam and the waveguide. This reduction factor is
closely related to the plasma reduction factors which were
discovered and investigated a few decades ago in connec-
tion with microwave tubes.?

In the limit of transverse infinite dimensions one would
expect the 3D expression (40) to reduce to the 1D from
(42). Indeed this happens, since in this limit k;;—0 and
6,,—0,. Note, however, that the definition of the cou-
pling parameter «, still includes overlap integrals G, ,n,
(39) with the fundamental plasma mode.

The 1D limit condition
2
K- |2

k#,/ <1

can be simplified by substituting w; /k =V g (the phase
velocity of the ponderomotive wave). The space-charge
parameter reduction factor then tends to unity when the
following simple condition is satisfied:

ky <<K/7/pond:K’ >

where K’ is the ponderomotive wave number in the pon-
dermotive potential rest frame. This simply means that in
this moving frame the transverse dimensions of the
waveguide should be much larger than the ponderomotive
wavelength. For near  synchronism condition
Ypond=Yo; >>1, and taking for example a circular cylin-
drical waveguide (Table II), the 1D limit condition be-
comes
Poi v *Pm £:0_38—k—£ ’
27 ¥: vz

a condition which is not always well satisfied with typical
low-energy Raman regime FEL’s.

Another limit that is worth checking for examining the
consistency of the presently derived dispersion equation
with the conventional one is the limit 6, <<7. In this re-
gime (the tenous beam or “Compton” regime) space-
charge plasma waves should not play a role at all in the
FEL interaction and already the multiplasma modes
dispersion equation (38) should reduce exactly to (42) with
6, —0 (while K,f)f, stays finite). This is shown in Appen-
dix B for the more general case of a nonuniform beam.

B. Beam partially filling the waveguide

In FEL systems which contain a nonuniform beam, or
a uniform beam which partially fills the waveguide, the
analysis gets to be somewhat more involved. In such a
case we write the beam equation in the following way:

g(ry) qleein glrr)s _ o

V2P 402 7

1

H 2 p(;nd ’ (43)

where

w
sz_ _;+SZ ’
C
o _(VOzs—ia),)2 (44)
-,
P

and where w, is evaluated at the center of the beam
(where the electron density reaches the highest value) and
g (ry) is the transverse profile of the electron-beam density
(in the previous example of a uniform beam which fills
completely the waveguide, g(r)=1 for any ry inside the
waveguide).

We look for eigenvalues s, =ik, for which the homo-
geneous part of Eq. (43) together with appropriate bound-
ary conditions have eigensolutions ®,(r;). Contrary to
the previous case of a uniform beam, in general these
functions are not orthogonal in the simple sense of Eq.
(32), and the orthogonality relation takes on the form (see
Appendix A):

gl(ry) (ry)
[ [ e |5 —1|-02 |E_,
H; H}
X®, (r7)®,, (r;)dx dy =0
2
w;
szkj_? , (45)
(VOan—wl)z
2_
Hn"‘ a)lz
P

1. Beam modes in the magnetized beam model

To escape the problem of boundary condition
definitions at the beam boundaries, we assume first a mag-
netized (longitudinal) beam model. In this model a strong
axial magnetic field suppresses the rf rippling of the beam
boundary so that its surface can be considered smooth.
For the FEL problem (contrary to traveling wave tubes,
for example) one should not take the extreme magnetized
beam (B|— o) limit literally, since then the transverse
electron quiver which produces the FEL interaction is
damped. The magnetized plasma model should be then
understood as an approximation which has greater validi-
ty at strong but limited axial magnetic fields.] The beam
density profile is now assumed to be z independent and
uniform within the beam boundaries:

1, inside the beam

g(rr)= !0, outside the beam 4o

and the scalar potential ®“" and its first derivative are
continuous at the boundaries of the beam.

In such a case the beam modes obey the following wave
equations:

~ 1 ~
Vid V4 Q2 271 Jcp‘”:o 47a)
inside the beam, and
VZT&\)(Z)—QZ(’I;(Z):O (47b)



36 THREE-DIMENSIONAL THEORY OF FREE-ELECTRON LASERS . .. 155

between the beam boundaries and the waveguide walls.
In addition, the following boundary conditions must be
satisfied:

V)|, =D Yrp) |, , (48a)
®2(r;)|,=0, (48b)
Vr® Vrr) |8, =V ®PArp) |8, (48¢)

where a, b, and €, represent the beam boundaries, the
waveguide walls, and a unit vector normal to the beam
surface, respectively.

As an example consider the slab geometry depicted in
Fig. 2: An electron beam of width 2a traverses along a
parallel-plate waveguide of width 2b. The system is as-
sumed to be infinite in the y direction.

Two kinds of solutions exist in such a system: even
and odd. The first kind (even solutions) is given by

:I\)“):C“)cos(QPx), |x | <a (49a)

SV=CVe-2 4 CP g |x|<b (49b)

where P2=1/H*—1. The odd solutions are obtained by
replacing cos(QPx) in Eq. (49a) with sin(QPx). Substitut-
ing Eqgs. (49) in the boundary conditions (48) and looking
for the nontrivial solution (C'”5£0) we find after some
algebra the following transcendental equations:

P tan(QPa)=coth[Q (b —a)] (50)
for the even solutions, and
P cot(QPa)= —coth[Q (b —a)] (51)

for the odd solutions, where coth is the hyperbolic co-
tangence function, and

FIG. 2. Schematic of the slab geometry used in Sec. IV B.

2
2 2 2y | @p
=(X"-Y7) |— | ,
9 ) .
P'=(Y—B,X)"2—1,
X_ﬁ (52)
w, ’
w;
Y=—
@p

Dispersion curves of the four fundamental even modes
in a magnetized beam with slab geometry and b >>a are
shown in Fig. 3 for various values of the beam width and
velocity (the width parameters of Fig. 3(a) and 3(b) corre-
spond to very wide systems, in order to emphasize the
asymptotic behavior of the space-charge dispersion
curves).

Following the above analysis, it is straightforward to
develop the mode dispersion equations and eigenmode
solutions for other geometries. In Table III we summa-
rize the solutions and transcendental equations of slab
and cylindrical geometries.

TABLE III. Eigenmodes and transcendental dispersion equations for various configurations with a uniform beam which partially

fills the waveguide.

@,

Dispersion equation

& V=CWcos(QPx)

i3

Slab geometry

odd

[6‘”=C‘”sin(QPx)

Cylindrical geometry & V=C Vo (QPr)

$(Z):C(2)IO(Q7‘)+C(S]KO(QV)

Qi=(x*—v?) |22

ven {6 2= @y —Qx+C(3)eQX

@‘”:C”'e —Qx_’_clj)eQx

even:
A’P tan(QPa)=coth[Q (b —a)]

odd:
AP cot(QPa)= —coth[Q (b —a)]

Ji(QPa)  I4(Qb)K (Qa)+Ko(Qb)I1(Qa)
Jo(QPa) ~ Io(Qb)Ko(Qa)— Ko(Qb)o(Qa)

A*P

s P2=(Y—fB.X)"2—1

1, confined beam

A=

2

v: X-=B.Y
1 Sl R A
X v_gx2 7l
x=ke, y_ o

Wp

’

Wp
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(a)

Slab beam , Free

c
==0.5
wpa

Br05

space

}Fost Modes

}Slow Modes

DN
R N ! 1 |
2

FIG. 3. The dispersion curves of the first four fundamental slow and fast beam modes of a confined uniform slab beam in free
space, for various operating parameters. Note the asymptotic behavior of the fundamental dispersion waves as x — « for the cases of
very wide systems (a) and (b). The light lines denote the dispersion curves ¥ = tX.

2. Beam modes including effect of rf boundary ripple

Analysis of beams without the magnetized beam ap-
proximation requires more careful consideration of the
boundary conditions. The form of the boundary condi-
tions (48a) and (48c) is invalid since the beam oscillates
with the beat frequency w; and its boundary ripples.
However, this effect may be well accounted for by the
microwave-tube-theory model of surface charges and
currents?h?? with a relativistic generalization.

We replace the rippled boundary beam by surface
currents and charges, carried on the surface of a beam
with a smooth boundary and uniform profile. The bound-
ary condition (48c) should be then modified accordingly
while (48a) and (48b) stay the same. Equation (48c) is re-
placed by

& (2) - 2 (1) ~ [
Vr(p (rr)fa-e,,—VTd) (I'T)Ia'enze— (53)
0
where o is the surface charge carried by the beam.
Neglecting azymuthal modes, the continuity equation
of oy is
a

3 o;
e s"V A x:Jr’, 4
FYid 050 (54)

where er " is the first-order radial current with the beat
frequency w;:

I =—enyV," (55)

and V,w " is the radial electron velocity due to the self-fields
of the electron beam, and it is derived from the force
equation:

o

S 0 pe

B Ve,

(VB V VA XTI X AY)E, .
Yom

(56)

Using the Lorentz gauge condition A4, ~(iw,;/sc®)® ",
and Laplace-transforming Eq. (56) we find

i(:)i V()z

SC2

E/Yom
T VoS —iw;

~

vro e, . (57)

= w;
r

After inserting Egs. (57) and (55) in (54), we find
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FIG. 3. (Continued).

iw; Vo, fills the waveguide. We carried out the analysis with and
& 02 ) without the magnetized beam approximation, and for
LR R— R S (58)  various transverse configurations of the waveguide and the
€o Yo (Vors—iw;)? a beam. For each of these cases we developed a transcen-
dental dispersion equation, the solution at which, for a
where o) =e’no/€ym. Using now (58), the boundary  given frequency w; (or Y), determines an infinite set of ei-

condition (53) becomes
Vr® Drp) |, 8,

iw,» V()z

2
1 Wy sc?

Yo (Vo5 —iw;)?

1—

Vrd V)| 8, .

(59)

The derivation of @ "> and the transcendental disper-
sion equations of the beam modes can now be carried -out
with boundary condition (59) instead of (48c). The results
are summarized in Table III for the example of a slab and
a cylindrical waveguide geometry.

3. The gain-dispersion equation

In Secs. IVB1 and IV B2 we derived the beam modes
in systems that consist of a uniform beam which partially

genvalues k, =is, (or X,) and thus a set of Q, and H,
[see Egs. (44) and (45)]. In all these cases the eigenmodes
are solutions of the homogeneous beam equation:

a g(rr) A
v2®, (r;)+ 0?2 —1|®,()=0. (60)
n
They are normalized according to
J [ ®2rpidxdy=1 61)

and are orthogonal according to the rule (45). Following
the procedure presented in Sec. IV A, we express the gen-
eral solution of the beam equation ® “(ry,s) as an infinite
sum of the beam modes:

B(rp,5)=S 4,(5)®,(r7) . (62)
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FIG. 3. (Continued).

By inserting Eq. (62) into the beam inhomogeneous Eq.
(43) and using (60) we get

- (rg) (ry) A
3 4,05 |0 gH—§~1]- P18
(rrl)s — o,
:-%Epgnd(rr,s). (63)

Multiplying both sides by @m(rr), and integrating over
the cross-sectional area of the waveguide, one finds an
infinite set of coupled algebraic equations for A4, (s):

S A4,(5)C (s)=d,,(s) , (64a)
glry) g(ry)

Coms)= [ [ |0° HZT —1]|-02 HZT —1 ]

XD, (r7)®,, (r7)dx dy , (64b)

d,,,(s):—gsi [ [ garE pinglrr,)®,, (rr)dx dy .

(64c¢)

Use of Helmholtz equation (22b) yields together with
equations (60) and (62):

2
— _S <5 2, |90
ny(rr,s)= - %An(S) st4 ' - l
g(rr) A~
—Q? —*—H; —1 l ](D,,(rr).

(65)

In order to find the gain-dispersion equation, one must
insert the formal solution of Eq. (64) into (65) and then
substitute the resulting expression of 7,(rr,s) into the
field equation (8). This procedure is extremely simplified
if we can assume weak coupling between the modes. In
such cases one can get an approximate solution for 4, (s):

d,(s)
A (s)~— . (66)
A, (s)~ C, (5)

[This approximation becomes particularly good when it
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can be argued that the electromagnetic mode couples
strongly to one of the beam modes n*, in which case
s=s,%, and by virtue of the orthogonality relation (45)
c,,+=0 for n#n*. This makes the reduction of (64a)
into (66) well justified at least for n =n*. Furthermore,

since C «, +(s)=~0 near synchronization, the amplitude
J
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Z,. +(s) is resonantly large and it is valid to substitute (66)
in (65) even for ns£n*, bearing in mind that these non-
resonant terms will have negligible contribution to the
sum.]

By substituting Egs. (65) and (66) into the field equa-
tion (8) we find

al 2 2 . '
C,(s) o | Cw | “€0b; s i (s +iK)G 1y ’ 67)
C,(0) 8|Ps| 4 w; &y
(s +iK)*+ - [(16—5)+6028,]—Q} F—l (i6—s)
where
Go= [ [ &(rr)& phnalrr)®, (rr)dx dy ,
2
, . ; g(rr) ~
M= [ [ |6+iKP+ | = | ~0F ~——H3T —1]I‘bn(rr)‘vm(rr)-g‘fs(rT)dxdy,
Gn= grr)®2(rp)dx dy ,
[ [ (68)

K=k3+kw ’

o=— _K

~V02 ’
wl

6,=—-% .

i VOz

As a check of consistency, when substituting in again g(ry)=1 (a uniform beam which fills the waveguide completely),
one finds &, =1, Q}(1/H2?—1)=kq, and Egs. (67) and (68) are reduced to the simpler equations of Sec. IV A [(38) and

39)].

In cases where the interaction takes place essentially with the fundamental mode, and the higher interacting beam
modes can be neglected (G, 1, —0 for n+£1), again one can get a simpler expression:

C(s) (i0—s)*+ 6},

= , (69)
C(0)  s[(i0—5)2+63,]1—i6}k,
where
-1
2 | &1
o1 —fﬁ_ll
03, =636 |1+ 5 =62R"?, (70a)
K- |2
C
2
& —KZ—-Q% g(rT)——lJ
C c Hi -
K= lg ,wp| |EOKG'1 JJ 2 = ®\(rr)V 1o(rr)-& fy(rr)dx dy (70b)
s i ay
—K>— 0} ——1}
[ J Hi

where again, as in Sec. IVA, Eqgs. (69) and (70) differ
from the well-known gain-dispersion relation of the trans-
versely infinite FEL device mainly by the introduction of
the plasma reduction factor

2J ]_1/2

aj

&‘{“lH—Q% [H_%_l ]/ le__

(2]

c

which multiplies the plasma parameter §p in (70a), and by
the inclusion of the beam mode profile ®,(r7) in the over-
lap integral associated with the FEL coupling coefficient
«, (70b).

It is of some practical interest at this point to examine
whether the expression for the plasma reduction factor
can be simplified, and to study its behavior as a function
of some of the FEL operating parameters. Appreciable
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simplification is obtained by assuming coupling to a single
beam mode (say, n =1). Hence we assume the phase
matching condition s =iK ~ik;. Under this condition the
reduced plasma parameter given in Eq. (70a) becomes
9;, =9[2,H 2 and the simplified reduction factor is

Vozk] —;

R'=H,= “=B,X,-Y, 71)

’

@p

where Y and X are defined as o, /w, and kc/w,, respec-
tively. Expression (71) enables us to assign an intuitive
geometrical interpretation to the plasma mode reduction
factor R: It is simply the normalized vertical distance of
the plasma dispersion curve from the tenuous beam
dispersion line Y =f,X as illustrated in Fig. 4. It is seen
that for a given frequency Y, two choices of H are possi-
ble, HY and H{, corresponding to interaction with the
slow and fast space-charge waves, respectively. When the
problem of relevance is attaining positive gain in the con-
ventional up conversion (w, >w,) FEL system, then H$
is the relevant parameter; however, when considering spe-
cial cases like attenuation conditions in the conventional
FEL scheme (beam acceleration), or gain in the down
conversion (w; <,,) absolute instability case,” H{ is the
right reduction factor to choose.

Some of the qualitative behavior of H; can be under-
stood from Fig. 4 without any numerical computations:
For very wide systems (c /w,a < 1) the space-charge-wave
dispersion curves tend to the lines Y =(,X+1 and
Y ==X and we find for H,:

Hi—1,
—1, YZ(I_BZ)_I
B,—1)Y, Y<(1-B,)"1.

(72)
H{—»

Thus even for very wide systems (or very high frequen-
cies) the reduction factor of the fast space-charge wave
can approach zero if y, >>1. Note, however, that when
one increases Yy, while keeping the width parameter
c/w;,a fixed and finite, H 511 decreases also because of a rel-
ativistic effect.

H3,H{ were calculated numerically for the case of a
magnetized slab beam with width 2a propagating in free
space (b >>a). A plot of H$"/ versus y for an example of

Y A p
Pl ,~//Aﬁz
/’/: H'/
XA;” X

FIG. 4. The geometrical interpretation of the simplified
reduction factor H .

1.0 T T T

0.0 1 1 L

Y

FIG. 5. The simplified reduction factors H{,H{ vs y for a
typical value of the width parameter. Note that the fast plasma-
wave radiation factor is diminishing much faster than the factor
of the slow plasma wave. The dashed line depicts the asymptotic
expression of H{ [see Eq. (72)].

Y =5 and ¢ /w,a =10 is shown in Fig. 5. It is seen that
the reduction factors of both slow and fast waves fall
down drastically for relativistic velocities of the e beam
and this fall down is more pronounced for the fast wave.

As a final remark for this section, we note that in the
general case of multi (plasma) modes operation with a
nonuniform beam in the limit of the tenuous beam region
(6, << ), the space-charge plasma waves should not play
a role in the FEL interaction, and the gain-dispersion
equation should reduce to Eq. (42) with 6, —0. We prove
this assertion in Appendix B.

V. THREE-DIMENSIONAL PLASMA EFFECTS
ON THE FEL OPERATING PARAMETERS

The application of the present theory to a practical
FEL problem requires in general two steps: (a) solution
of the beam eigenmodes and eigenvalues (beam mode
dispersion relations) problem, and (b) solution of the FEL
gain-dispersion relation. The second step may be carried
out with various degrees of complexity. Considering the
general case of a partially filled waveguide (or a finite
beam in free space) we may carry out the second step in
one of the three following ways:

(1) Exact solution of the set of Egs. (64), (65), and (8).
This approach considers all the beam modes and requires
solution of the algebraic set (64a), substitution in (65) and
(8), and consequently carrying out the inverse Laplace
transformation.

(2) Solution of the approximate multimode gain-
dispersion relation (67) by inverse Laplace transformation.
Though all the beam modes are included, the validity of
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the result depends on the validity of the simplifying ap-
proximation (66).

(3) Solution of the approximate single mode gain-
dispersion relation (69). This only requires inverse La-
place transformation of the equation, which can be done
numerically, and in many cases analytically, using the
same computer codes and analytical approximations used
to solve the 1D gain-dispersion equation.'!® As ex-
plained in the Introduction, this approximation will often
be hard to satisfy because of lack of control over the beam
transverse modes. Only if the wave numbers of the
modes are sufficiently spaced to assure phase matching of
the radiation mode to only one electrostatic mode will this
approximation be valid. However, because of the simpli-
city of the final expression (69) and its similarity to the
1D expression (42), we use in the present chapter this
form of the 3D plasma effect FEL gain-dispersion relation
in a discussion of the 3D collective effects on the FEL
operating parameter.

Since in the tenuous beam limit 6,L << the full 3D
gain-dispersion equation reduces to the 1D expression
(42), we need to consider the modification of the FEL
gain parameters by plasma-3D effects only in the collec-
tive regimes. Starting with the low-gain collective regime,
we Laplace-transform (69) by calculating the poles and
residues of (69) in a first-order Taylor expansion in terms

of «,.'"  Calculating the power input from
P(L)=[C(L)}? one finds
AP . 2753 = =
Do)~ BLFE5,), (732)
F(8,8,,)= —— (sinc*[(8+8,,)/2]
28,
—sinc’((6—06,,)/2]} , (73b)

where sincx =sinx /x, 6=06L, and 6,, =6,,L.
The maximum gain is attained at a reduced detuning
parameter value 6~ —6,, and is

N
P(0) 20,

(74)

If we may assume that the 3D effects on k, are small—
k,~« and the major effect is on 6,, (which is always re-
duced relative to 6,)—we may conclude that the 3D
effect is increasing the gain relative to the 1D model pre-
diction.

In the high-gain regime the customary assumption al-
lowing analytic solution of the gain-dispersion relation is
synchronism with the slow beam plasma wave 0~ —0,,.
Assuming further |s | <<26),,, the equation for the poles
of expression (69) reduces to a quadratic equation. Keep-
ing only the exponentially growing root, one finds!!"!°

% — Lexp[(2«,62/6,,)°L] . (75)
Again, under the assumption k, ~k, the 3D effect will
tend to increase the predicted gain.

Finally, we consider the 3D effect on the threshold con-
dition for absolute instability backward-wave oscillation in

a FEL structure, an effect which may set disrupting
parasitic oscillations in the microwave regime in a FEL
structure designed to operate at short (optical) wave-
lengths. As discussed in Ref. 15, the gain-dispersion
equation of the absolute instability is given by the same
dispersion equation (69) with the transformation
K,— —kK,, 80— —0 and some minor changes of parameter
definitions. Again the dispersion equation can be solved
with the aid of the assumptions 6~6,,, |s | <<26,, re-
sulting in a quadratic dispersion equation for the poles
and yielding the following expression for the backward-
going radiation field amplitude:

C,(L)
C,(0)

=cos[(1k, 65 /6,,)'"?L] . (76)

The threshold condition for oscillation in the lowest-order
longitudinal mode is obtained from the requirement

(1x,62/6,,)'*L = % ,

which permits finite C;(0) for C;(L)=0 (no input back-
ward wave). This can be written as a condition for a
threshold length

0,

2k, 912,

172

L th=T (77)

Again, with the assumption of k, ~k, we may conclude
that the 3D effect is to reduce the threshold for absolute
instability oscillation eruption.

VI. CONCLUSIONS

In this work we developed a general 3D theory of the
FEL in the collective regime which describes the FEL
operation as a process of interaction between two kinds of
modes: the waveguide radiation (electromagnetic) modes
and the beam (plasma) modes. We developed the beam
equation which describes the excitation of the beam
modes by an electromagnetic mode of the waveguide, and
we have shown that in the general case an infinite set of
beam modes are excited during the interaction process.

We developed an approximate gain-dispersion equation
of the FEL system which in the specific case of coupling
to a single beam mode assumes the form of the known
gain-dispersion relation of transversely infinite FEL’s. It
differs from the 1D dispersion relation by the introduction
of the plasma reduction factor which modifies the plasma
parameter 6,, taking into account the finiteness of the
beam. This reduction factor is similar to the one investi-
gated nonrelativistically in the literature of microwave
tubes.? It also differs in the expression for the coupling
coefficient k,, which includes now the beam mode profile
function in the coupled mode overlap integral.

Our analysis can be easily applied to three-dimensional
generalization of many other scattering processes in the
collective regime, like the forward Raman-scattering
amplifiers and oscillators and the backward Raman-
scattering oscillators.!> It can be further extended and
used to model the collective 3D aspects of the interaction
in a comprehensive 3D analysis, which may include mul-
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tiple radiation modes, optical guiding by the beam, and
other 3D effects.

APPENDIX A

We derive here an orthogonality theorem for the beam
modes, proving that they are orthogonal in the sense of
Eq. (45).

Our starting point is the homogeneous beam equation:

g (I'T)
VZTQ-{*- o 2 —H—z —1

=0 . (A1)

Suppose we have found a set of solutions { </I\>,, } and a cor-
responding set of eigenvalues s, (or ik,). Let us write Eq.
(A1) for the nth and mth solutions:

" (rr) A
vid, 40?2 g’g ~1|®,=0, (A2)
(I'T) A
+O | S 1 [ Bn=0 (A3)

Multiplying Eq. (A2) by ®,, and Eq. (A3) by ®,, sub-
tracting the second equation from the first, and integrat-
ing over the cross-sectional area of the waveguide, we find

f f(@mV%@n—~$nV2T$m )dx dy

+JJ

0; -0

HZ

g(fT) 1 } ]

A

X ®, D, dx dy =0 . (A4)

The potentials &,,,6m obey homogeneous boundary con-
ditions on the waveguide walls:

®,(r;)|,=0, (A5)

where b represents the boundaries of the system. Thus by
using Green’s theorem (or integrating by parts) for the
first integral of Eq. (A4), we find

which is the orthogonality theorem given in Eq. (45).

In cases where a uniform beam completely fills the
waveguide, we set g(ry)=1, then we define k%,
=Q2(1/H}—1) and we get from Eq. (A6):

(k}, —k},) [ [ ®,®,dxdy=0, (A7)

which is the orthogonality theorem of Eq. (32).

APPENDIX B

We prove here that in the limit of the tenuous beam re-
gion (6, << ), Eq. (67), which describes the general case
of multi (plasma) mode operation, reduces to the simpler
Eq. (42) with 6,—0, while 6}k, stays finite. We start by
rewriting the orthogonality relation of Eq. (45) in the fol-
lowing way:

o
H,

]f fgrr al ;I\)m(rT)dxdy

—(Q,,Z-Q,%,)f [ @, (B1)

Assuming that k, ~K for all relevant n, then Q,=Q,,,
and one can approximate Eq. (B1) to the following re-
duced orthogonality relation:

AR

This approximation can also be justified by noting that
H? is always smaller than one and is close to zero for
large n. We turn now to rewrite Eq. (67):

(ry)dx dy =0 .

]f fg(rr)a,,(rr)@m(rr)dxdy

=0. (B2

1Cu 2082 |7

s12,] M

C,(s) _ B3
.0 — , (B3)

(0)

|s | <<K, and

(B4)

g (l'T g(rr) 1 where M is the sum written on the right-hand side of Eq.

f f or -0 H - (67). Assuming that 628, << |i0—s |2,
. ":\ that k, ~K for all relevant n, we find after some manipu-

XD, P, dxdy=0, (A6) lations:
|
[ J gter®,er)Vnuter)- & ftrrd ay | | [ [ 8 finatrr)®atrrid ay |
T (i0—s)? G
or
[ [ eter)Vr,(17)-& $:(r7) 6" Ly f 7)o (2198 nalrr)dx dy |dx dy .
<ze s)2 \/a,, 1/ &,

The sum m the parentheses is easily identified as a generalized Fourier expansion of & p(,,,d(rr) in terms of the ortho-

&y pond =3, a, P

gonal set <I> rT /v &, and the weighting function g(rTA) this can be proved by writing down the equality
rT)/\/a,,, multiplying both sides by g (r7)®

m{rr)/ \/ &,, integrating over the cross-sectional area of

the waveguide, and using the reduced orthogonality relation (Bl) Thus (B4) reduces to
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iK

M=—T— [ [ 8(r1)& pinarr)V 1y (x7)-8 $(xp)dx dy (BS)
1J—s
Inserting (B5) into (B3) we find
Cls)  (ig—s)?
Ci(0)  s(i0—s)?—i0ik
(B6)
| Cw ‘ 260

K= K grp )8 o eV (r7)-8 % (r7)dx dy .
P

8P|
Equation (B6) is the well-known gain-dispersion equation of the tenuous beam FEL, and was derived here from Eq. (67).
However, by using the asymptotic orthogonality relation (B2) (asymptotic in the sense that one should assume the limit
k,~K for every n) and following exactly the same analysis that was introduced above, one can reduce also the more

complicated formulation of Egs. (64) and (65) into the limiting case given in Eq. (B6).
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