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Section V. Harmonic emission theory

THREE DIMENSIONAL MODELLING AND NUMERICAL ANALYSIS
OF SUPER-RADIANT HARMONIC EMISSION IN AN FEL (OPTICAL KLYSTRON) *

A. GOVER, A. FRIEDMAN and A. LUCCIO
National Synchrotron Light Source, Brookhuven National Laboratory, Upton, NY, USA

A full 3-D analysis of super-radiant (bunched electron) free electron harmonic radiation is presented. A generalized form of the
FEL pendulum equation was derived and numerically solved. Both spectral and phasor formulation were developed to treat the
radiation in the time domain. In space the radiation field is expanded in terms of either a set of free space discrete modes or plane

waves. The numerical solutions reveal some new distinctly 3-D effects to which we provide a physical explanation.

1. Introduction

The subject of this paper is super-radiant emission of
radiation from undulated electrons in either a uniform
wiggler (FEL structure) or in an optical klystrom struc-
ture. The super-radiant emission scheme is a method for
producing temporally and spatially coherent undulator
radiation without necessarily involving any stimulated
emission of radiation (lasing) {1]. It thus enables to
substantially increase the spectral brightness of inccher-
ent undulator harmonic radiation, though the total
radiative power emitted by the beam is not different
than in the incoherent undulator emission. It produces a
less bright radiation beam than an FEL in which not
only the coherence of the radiation is high, but also the
total power extracted from the beam is substantially
enhanced (by the stimuiated emission process). How-
ever, contrary to an FEL no oscillation threshold condi-
tion needs to be attained in order to obtain super-radiant
coherent harmonic emission, and consequently this
scheme may be useful at short wavelengths (VUV)
where the FEL osciliation condition is hard to satisfy.
For obtaining super-radiance, some means for bunching
the electron beam must be provided in order to make
the electrons emit radiation in phase with each other.
These means is usually a high intensity external laser
which illuminates the electrons in the undulator at the
fundamental or one of the low order undulator harmonic
frequencies. Alternalively, the bunching means can be
an FEL which operates with the same undulator at the
fundamental or one of the lower order undulator
harmonic frequencies.

Experimental study of super-radiant harmonic radia-
tion was only reported by a French research group
based on an optical klystron structure [2]. In many of
the recently reported FEL experiments (in all of which
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lasing took place in the fundamental harmonic
frequency) also intense harmonic emission was observed
[3,4]. We assert that this harmonic emission was prob-
ably super-radiant and consequeatly coherent. How-
ever, the features of this radiation were not studied in
these experiments. An experimental program is under
way in Brookhaven National Laboratory, National syn-
chrotron Light Source where super-radiant harmonic
emission is intended to be studied using a uniform
wiggler (FEL) structure and an external modulating
laser. This experiment is the main motivation and main
mode] for the present theoretical analysis.

To clarify the definitions used in this article we
delineate the distinction between the three different
kinds of undulator based radiation schemes (sponta-
necus undulator radiation, super-radiant emission and
lasing) by comparatively listing their definitions in table
1. We illustrate the two main configurations of super-
radiant radiators in figs. 1a and 1b, and in table 2 we
list the frequency and linewidth parameters of the vari-
ous radiation fields involved.

Fig. 1a depicts the optical klystron super-radiant
emission scheme which was used in Orsay {2]. This
configuration consists of three sections. In the first
“medulation” section energy (velocity) modulation of
the electron beam takes place when the beam is syn-
chronized with the ponderomotive force of the modulat-
ing laser beam, which is radiating at frequency w, near
the line center frequency of one of the low (mth) order
undulator-harmonic frequencies (for example the funda-
mental m = 1 harmonic). The laser is assumed to have a
coherence time or pulse duration (7, } which is larger
and fully overlaps the eclectron beam pulse (of T,
duration). The electrons then pass through the second
dispersive section, where their energy moedulation turns
into phase (or density or current) modulating (bunch-
ing) at the frequency of the modulating laser and its
harmonics (n). In the last “radiation” section the
bunched electrons pass again through an undulator
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Table 1
Classical definitions of radiation schemes

(1) Undulator synchrotron radiation {(FEL spontaneous emis-
sion): The temporally incoherent radiation of electron en-
tering into a wiggler /undulator at randorn.

(2) Super-radiant free electron radiation: the temporally
coherent radiation of bunched electrons oscillating in a
wiggler /undulator in phase with each other.

(3) Free electron lasing: The coherent emission of bunched
electron radiating in phase into the same frequency and
spatial domain of the radiation field which produced the
bunching,.

where they emit their undulator synchrotron radiation
in phase with each other (super-radiant emission). As is
shown in the third row of table 2, the super-radiant
frequencies are at the amth harmonic frequencies of the
fundamental undulator frequency w,. The incoherent
undulator radiation (fourth row) occurs at all odd
harmonics (/=1,3,5,---) of «,. Since super-radiant
radiation can take place only at frequencies in which
the electrons emit spontaneously, both » and m must
be odd as well. Consequently if m=1 not all the
undulator radiation frequencies can be excited super-
radiantly. For example, for m = 3 undulator harmonics
1=5,7,1,13,17, -+ will not radiate super-radiantly

Table 2
Frequencies involved

Frequency Notation/definition  Linewidth
Fundamentai _ hgr
undulator B T B -
z
- .
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= 2¢lk e e
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Maodulating
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coherent
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modulator w, = nw, (= nnmuw . e
" "'( v ) w}! wﬂ
Ith order
incoherent
harmomc Awy, _ 1
of wiggler Wy =l @, N,

(coherently). As is evident from the table, the super-
radiant radiation is spectrally different from the in-
coherent harmonic undulator radiation also in its much
narrower linewidth (temporal coherence). It can thus be
distinguished from the undulator radiation background
by means of a high resolution spectrometer.
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Fig. 1. Schemes for super-radiant (bunched beam) coherent harmonic generation.
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Fig. 1b illustrates an alternative configuration for
super-radiant harmonic emission, as chosen in the NSLS
experiment. It is based on the realization that the mod-

- ulation, density bunching and radiation do not neces-
sarily have to take place in separate sections. The basic
idea here is that with nowadays technology even a
simple uniform wiggler can be produced with strong
enough magnetic field, so that not only efficient energy
modulation and radiation will take place in it, but i
would also provide sufficient dispersion effect to pro-
duce a substantial density bunching along the entire
wiggler. Energy modulation, phase bunching and radia-
tion take place all along the wiggler; however most of
the energy modulation takes place in the upstream part
of the wiggler where the laser beam is tightly focused
and most intense, the phase bunching takes place mostly
in the central part of the wiggler, after substantial
energy modulation was achieved in the first part; and
most of the super-radiant radiation takes place in the
last downstream part of the wiggler, after substantial
phase bunching was obtained. This process is, to a large
extent, the same as the one which takes place in a free
electron laser, except that in the FEL we are concerned
only with the coherent radiation, which is emitted at the
same frequency as the modulating laser beam and there-
fore can interfere constructively with it. In the present
problem we are interested in the coherent emission at
the higher harmonics of the laser beam, which of course
cannot interfere with the laser beam and with each
other.

2. Definition of the physical model and the mathemati-
cal-numerical problem

The work, reported in the present publication, con-
sisted of two parts. The first part involved the develop-
ment of a physical model and an appropriate formula-
tion for spread characterization of the undulator super-
radiant ¢mission problem. In the second part of this
work, the physical model was reduced into a mathe-
matical problem which can be readily and efficiently
solved by numerical computation. The numerical code
developed is general enough the account for the non-
negligible three dimensional features (of both the elec-
tron beam and the radiation fields) in the real experi-
mental schemes depicted in figs. 1la and 1b.

The physical problem, in its most general expression,
essentially consists of solution of the coupled Maxwell
equations:

OE (1)
VXH=(€? +J

and the classical force equations:

dy e

L = _—"_»5 E,

dr me? @)
92 _ _(E+uxB

dr = e( v ).

Here we neglect the possibility of space charge effects
by ignoring the Poisson equation (this was considered
elsewhere [5] within the framework of a one dimen-
sional simplified model. and its neglect is well justified
for all practical experimental parameters in the optical
regime). Expressing the electromagnetic fields in terms
of the vector potentials B=w XA, E= —J04 /3t te-
sults in an alternative Hamiltonian formulation, a some-
what simpler set of classical force equations instead of

2y
dy e 04
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Here p_.=p — ed is the electron canonical momentum,
and A=A4,+4,+4, is the total vector potential
field, composed of the wiggler, modulating laser beam
and generated radiation field respectively.

For practical experimental parameters in the optical
regime the detailed 3-D solution of the coupled sets of
equations can be substantially simplified by two model
assumptions;

{1) The electron trajectories are not effected by the
emitted radiation field.

(2) The electron transverse coordinates (trajectories) are
only effected by the wiggler field.

The first assumption excludes the analysis from the
high gain super-radiant emission regime. This regime,
considered in a 1-D simplified model in ref. [3], is
impractical in most relevant super-radiant experiments
in the optical regime. The second assumption is also
well justified. Of course the transverse coordinates
trajectories are unaffected by the relatively weak emitted
radiation field, which was stated already in the first
assumption to be too weak to have any effect over the
electrons which generated it. But also the modulating
laser beam field does not affect the transverse trajecto-
ries of the clectrons; the transverse field of the modulat-
ing wave only produces very high frequency small am-
plitude transverse quiver, and the longitudinal pondero-
motive force, which is the result of the beating of the
laser field with the wiggler field modulates the axial
velocity of the electron and affects only its axial coordi-
nate (phase bunching). .

Pue to the decoupling of the electron modulation
problems (eqs. (2) or (3)) from the electron radiation
problem (eq. (1)), made possible by assumption (1), one
can separate the physical problem of super-radiant un-
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Table 3
3-D code model features

(1) Initial spatial spread {o,, o,)

(2) Initial angutar spread (ox','oj.-, Zgwxr Zowp)

(3) Initial energy spread and tuning (o, ¥)

(4) General modulating mode (wg , 2., Wo,s Zw,)

(5) Excited radiation described in terms of discrete modes
(Hermit Gaussian)/plane waves (angles}

{6) Optical parameters: Power/radiant intensity/brightness
and the corresponding spectral parameters

{7 Possible extension: Magnet field variation and error

dulator radiation into two parts: the modulation prob-
lem and the radiation problem. These are solved sep-
arately in sections 3 and 4 respectively.

Based on the mathematical formulation of the physi-
cal problem on its two parts, a computer numerical
code was written which solves the force equations to
find the trajectories of electrons which enter the interac-
tion region at arbitrary initial conditions. The code
consequently computes the required optical parameters
of the electrons radiation field by performing an ap-
propriate statistical averaging over the initial conditions
distribution of the electron beam, The 3-D features of
the code, listed in table 3, are quite extensive in both the
electron beam and radiation field parameters. The model
allows arbitrary dimensions, angular spread and energy
spread of the electron beam. Describing the various
electron distributions in terms of Gaussian functions
(which is a particularly good approximation for storage
ring beams), the model atlows separate focusing in the
two transverse {x, y} dimensions with different beam
waist spot sizes ¢,, 0,, and different waist positions z,,,
Zy. Also the medulating laser beam (taken to be a
fundamental Hermit Gaussian mode) can have arbitrary
x and y focusing parameters (which can be experimen-
tally realized with cylindrical optical components). The
characterization of the emitted radiation was for-
mulated both in terms of free space discrete modes
(Hermit Gaussian set) and plane waves. Both spectral
(partial temporal coherence) and phasor (full termporal
coherence) formulations were used. In the computations
presented in this report we used the formulation and
notation of phasors and plane wave expansion.

Though the physical model is more general, we pre-
sently applied the the numerical solution of the electron
trajectories to the uniform wiggler structure of fig. 1b.
Straightforward extension is possible to include arbi-
trary magnet field small variation introduced by design
or due to manufacturing errors. It can also be similarly
extended to describe more complex magnetic field
structures like in fig. la.

3. The electron trajectories problem

It follows from the introductory discussion that the
electron transverse trajectories are simply the trajecto-
ries of an electron undulating and freely propagating in
a uniform wiggler in the absence of any radiation fields.
The transverse coordinates x, () =X,(f) + x5 (1), ¥,(6)
=F,(1) +y,, (1), are composed in general of an aver-
aged (over undulation periods) motion, and an undu-
lation motion (x,, y.;)- In a planar wiggler y,;=0,
and:

Xj = x_,lD + CBJO¢xJO(I - 'rjO)l (43)
~ aw M
Xy, = -exmsm(szj(t)), (4b)
¥, = Yo+ Bty (= 4o)s (4c)
A aw
B.i= £ os( kyz,(1)). (4d)

The transverse average motion is very important in
our 3- modelling. It is responsible not only for spread
in the longitudinal emission spectrum (as in the 1-D
model), but also due to the transverse finiteness of the
modulating laser beam, the average transverse motion
may effect substantially the energy modulation (bunch-
ing) force experienced by the electron. In egs. (4) we
took for the average transverse trajectory simple straight
line propagation, determined by the initial spatial and
angular displacements of the electrons off the beam axis
(X105 $e,r Vioo ¢y,-o)' This assumption is correct for a
transversely uniform wiggler, which is a good approxi-
mation for a practical storage ring based super-radiant
emission experiment with a short wiggler. Extension to
a wiggler with non-negligible transverse gradient of the
magnetic field is straightforward by simply replacing
the straight line average trajectory (4c) by the ap-
propriate sinusoidal betatron trajectory in the y dimen-
sion [6].

The modulating laser beam field is taken to be a
general fundamental Hermit Gaussian mode with inde-

Fig. 2. Axial and transverse cross-sectional schematics of the
electron beam and the modulating radiation beam.
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pendent x and y focusing parameters:
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Note that taking this 3-D medel field, already affects
even electrons on axis, which now experience an electro-
magnetic wave field with varying amplitude and phase
along the interaction length. Certainly electrons propa-
gating off axis experience a modulation field much
different from the 1-D case.

The longitudinal trajectory of the electron z.(r) is
determined by the combined effect of the modulating
laser beam and wiggler fields. We have found that by
expressing the force equations (3) in terms of the relativ-
istic proper time r, it can be reduced exactly (without a
v > 1 approximation) into a pendulum equation for the
electron phase [7]:

ﬁ _ 1(_ﬁ)(m—l)/2 eEm(Xj(f), Jﬁf‘(r))a

dr * me e
X[J(m—n/z(“)_-f(mﬂ)/z(“)]
XSin[\pmj+@mj(xjyjzjwm)], (6a)

Ak, +mk,

PR A L (6b}

[J(m-—l)/Z(u) _J(m+])/2(u)] b.)sz
- [(km+kw)‘](m—l)/2(u)
_(km_kw)‘](m-t-l)/l‘(u)] mcz-y=c0nst}- (GC)
with
Voo, = (ko + mh, ) 2,(1) — wot,
¢ 4t
I;I].Yj({’)

T=

= proper time,

Table 4
No beam-spread example
A,=10cm z,=03m
N,=22(L,=22m) P, =% MW
a, =431 m=3
A, =0.5320 pm n=1,35"79 (1=3,9152127}
zg=05m No angular, spatial and energy spread
(O ai m ﬂ'i
UE o —— = —
2
8k cBy 4 1+42/2

This set of equations needs to be solved with the
initial conditions: ¢ (y=0)=,= —wly; 1, (1="0)
=Y,q0} zj(rIO)=0, It is basically a pendulum equa-
tion with slowly varying amplitude and phase, which
depend on the electron transverse trajectories. The fast
longitudinal quiver {which is the essential source of the
odd harmonic undulator radiation emussion when K <
1) was averaged away in the derivation of eq. (6) (off
the force equations), leaving the various Bessel function
factors, and producing the average constant of the
motion of eq. (6c) [§].

A fast integration numerical solution code called
PENTOK was written to solve the differential equations
(6) using the Gear integration method [9]. The program
was run on the BNL CDC 7600 computer and we show
in figs. 3 and 4 some exemplary computation results
based on the parameters of table 4 data of the table
relates to a uniform wiggler structure as shown in fig.
1a. The schematic laser beam and electron beam focus-
ing parameters are illustrated in fig. 2. For the sake of
simplicity zero spread parameters were assumed in this
first example. The electron beam propagates on axis
with diminishing narrow width and no emergy spread.
The laser beam (at the frequency of a doubled Nd-YAG
laser) is itluminating the electrons in the wiggler at the
third {m = 3) harmoaic of the fundamental undulator
frequency. It is assumed to be circularly symmetric and
focussed at the up-stream part of the wiggler at z,, = 30
cm.

Fig. 3 displays the positions in energy-phase space of
36 electrons, initially equi-spaced in phase, shown at
four points along the wiggler: z=0, 0.5, 1 and 2.2 m.
The electron beam energy tune for this run (y =784.64)
corresponds to maximum bunching at the end of the
wiggler which was found to be 0.32% higher than the
1-D synchronization energy (yg = (1 + @5)A,/(2mA,,)
= 783.14). This 3-D effect is explained in sect. 5. In the
first part of the wiggler (up to z = 1 m) the electrons are
modulated mostly in energy, and their phases do not
change much. Only in the last part of the wiggler phase
bunching, induced by the dispersive propagation along
the wiggler, becomes significant. We also observe that
in the last part of the wiggler most of the electrons

V. HARMONIC EMISSION THEORY
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Fig. 3. Energy phase-space diagram of electrons at four different points along the wiggler for beam energy tuning to maximum phase
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Fig. 4. Continuous energy phase-space diagrams of electron trajectories along the entire wiggler for beam energy tuning to plane wave
resonance condition y = yq.
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experience a positive phase drift which is a result of
operaling at vy > yg.

The synchrotron oscillator period of the electron
inside the pendulum potential well (the wiggler length
at which a well trapped electron would complete a full
revolution in phase space) was found 1o be z, =
7.1 m, based on the optimistic assumption that a uni-
form laser beam field equal to the maximum intensity in
the waist point can be kept along the entire wiggier
length. Though the laser beam Rayleigh range (1 m) is
shorter than A ,../4, substantial phase bunching was
obtained because of the highly dispersive propagation
along the wiggler in the low laser field regions at the
end of the wiggler. We observe in fig. 3 that in the
present example an almost maxima! phase bunching
takes place at the end of the wiggler, but the maximum
bunching point was not yet reached. Evidently satura-
tion int the super-radiant harmonic emission level would
require a slightly longer wiggler.

Fig. 4 illustrates in a continuous line presentation
the phase space trajectories of 18 electrons at beam
energy vy = vr- Clearly less bunching effect takes place
at this energy. The continuous line phase space curves
presentation of fig. 4 also reveal a curious behavior. The
electrons near the center of the pendulum potential well
(“ bucket™) first decelerate and after some distance along
the wiggler they accelerate. The same kind of move-
ment, but in the reverse order is exhibited by the
electrons in the bucket borders (y = - 0.5, 1.57). The
center bucket electron trajectories might have been con-
sidered erroneously to be a section of slightly more than
half a period of synchrotron oscillation phase-space
revolution. Such an hypothesis would be incorrect since
the wiggler length (2.2 m) is shorter than the lower
bound estimate of half the synchrotron period (3.55 m),
and it would not explain the behavior of the electron
near the bucket borders. This curious behavior is a real
3-D effect which we termed “the Gaussian phase shift
jolt effect”. It is explained in terms of a simple mecha-
nical pendulum analogy in fig. 5.

The Gaussian phase jolt effect is related to the phase
shift @ (eq. (5)) of the Gaussian mode of the modulat-
ing laser beam. An electron going on axis, starting from
a point at which the laser beam still converges towards
its waist, will experience first a small negative temporal
phase shift in the penduium equation force (6a) (as
compared to the constant phase ponderomotive force
produced by an ideal harmonic plane wave whose phase
front coincides with the Gaussian phase front at the
waist point, and shifts by +#/2 at + o). This phase
shift turns to be positive after the waist position, The
maximum phase shift that would take place as the
electron moves from — o0 to oo is w. This is a very slow
phase change, however half of it occurs in the section
—zp <z <zg which is smaller in our case relative to
the synchrotron (pendulum) oscillation period! In the

Szt
z=z7,tzp

Fig. 3. Mechanical analogue diagram of the Gaussian phase
“jolt effect”. Only the highly stable and unstable particles
experience reversal of foree direction throughout the process.

pendulum equation time scale the slow Gaussian phase
shift looks like a very fast movement of the center of
oscillation of the pendulum force (“jolt™). This behavior
is depicted is the mechanical analogue picture of [ig. 3
by three “iest particles”. The drawing clearly illustrates
why predominantly the stable point and unstable point
particles are most susceptible to the jolt effect, which
reverses the direction of the force applied on them as
they go through the zero phase shift (Gaussian beam
waist) point. The other particles experience only a small
refative change in the force applied on them, which at
no place reverses the direction of the force they experi-
ence and the direction of their motion. Though some-
what of a mathematical curiosity, we suspect that this
3-D effect may have as practical implication in effecting
the efficiency of high order super-radiant harmonic
emission, which is strongly dependent on the electron
density near the phase of the center and ends of the
bucket.

4. The electron radiation problem

The study of the dynamics of the electrons in the
3-D fields of the wiggler and the laser beam produced
interesting and expectedly useful results, but our main
thrust in this work is to study the radiation problem.
For analyzing the radiation problem there are two kinds
of formulations that one can use. One approach is a
spectral formulation in which the fields and currents are
decomposed in frequency domain by a Fourier trans-
form:

o

E(r, w)= f_ E(r, t)e'“ dy, {7)
J(r. w)= fioo J(r, r) e de (8)

v. HARMONIC EMISSION THEORY
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The other approach — the phasor formulation — is
based on decomposition of the fields and currents into a
Fourter series, which consists of a dc term and an
infinite sum of discrete terms at the external force
frequency and all its harmonics:

E(r.()=Re Yy E(r. nw,) e e (9)

n=1

o0
J=J +Re Y J e "o, (10)

n=1
This formulation is rigorously applicable to any nonlin-
ear response problem which is independent of time
{temporal Lranslation symmetri¢), when a single
frequency harmonic force is applied to the system. It 15
a good approximation for the present problem when
finite pulse effects can be ignored, so that the laser
heam can be considered a continuous harmonic coher-
ent wave, and the electrons can be modelled by an
infinite continuous beam; and furthermore, the elec-
trons shot noise (current fluctuation due to the corpusc-
ular natore and random spatial distribution of the elec-
tron beam) is ignored.

With either of these formulations we have yet o
suggest a formularly bridge between the microscopic
(single electron) approach used in the previous chapter
to characterize the electron propagation, and the macro-
scopic (fluid current or current field) definition used in
the Maxwell equations (1) and in egs. (8) and (10).

We have developed the spectral approach in some
detail in a previous publication [7). We consequently
will only describe here the main results of this formula-
tion, which help to understand the spectral characteris-
tics (temporal coherence) of the super-radiant radiation.
After the spectral characteristics are understood, it is
preferable 10 use the phasor formulation, in order to
describe the emitted radiation with minimal parameters,
and in order to simplify the numerical computation.

To connect the single electron approach results to
the field approach we first express the current field as a
sum of delta functions:

N
7= ¥ ~eq((r=5(n). (11)

i-
N(1) is the number of electrons in the system up to time
t. In the spectral formulation we usually deal with
signals of finite duration, and N would be in the
present problem the total number of electrons in a
pulse. When dealing with random stationary processes,
like the incoherent undulator radiation emission, N can
be taken to be the average number of elecirons entering
the interaction region during a characteristic time of ihe
random process statistics. In {ree electron spontaneous
radiation schemes with a continuous electron beam {or
long pulse), this characteristic time may be taken in
single electron interaction problems (excluding cooper-

ative interaction regimes like amplified spontaneous
emission) to be the undulation period 2m/4w,. Eq. (11}
can be now substituted in eq. (%) to produce an expres-
sion for the spectral current of the beam:

. d v

J(r,w)=—e}, 8(r, —rJ_j)L—_e“"'i(‘), (12)
j=l 2

which can be used in the Fourier transformed formulas

of Maxwell equations.

Even though they are now time independent, the
Fourier transformed Maxwell equations with the cur-
rent source term (12) are still a difficuli to solve set of
3-D partial differential equations. The problem may be
considerably simplified by expanding all the fields in
terms of an orthogonal complete set of modes of the
electromagnetic structure {free space in the present
problem}. Again we have a choice to make, whether to
use a discrete set of modes (e.g. Hermit Gaussian modes)
or a continuous set (e.g. plane waves). The first choice is
more favorable if we have reasons 1o believe that the
emitted radiation can be well described by a small
number of discrete radiation modes. We will make this
choice in the context of the present discussion on the
speciral formulation results; but in the subsequent
phasor formulation discussion and in the numerical
computations, the other choice (plane wave expansion)
is taken.

Substituting in the Fourier transform of the Maxwell
equations (1} the general expansion of the radiation
field in terms of an infinite set of discrete orthogonal
modes, one can derive explicit expressions for the ex-
pansion coefficients by taking advantage of the modes
orthogonality and using the expression for the discrete
particles current (11):

E(r, w)=2&'q(w)€q(r), (13a)

(0) =~ g%, (o). (13b)
N

aw,= ¥ AW, (), (13¢)
j=1

v L) = 1w
AW () = _ef: E;‘('}.(l))e fop (1) di.
0

(13d)
where Eq are the expansion modes and &, - their
normalization powers.

This general solution of the radiation problem has a
simple physical interpretation which is iliustrated in fig.
6. The amplitude of each radiation mode in the infinite
surn is proportional to an infinite sum of contributions
to this mode by the different electrons in the beam,
Aﬂqu ; (=1 N). These terms have the dimension
of energy but they are complex numbers. The real part
of A#,, can be interpreted as the work done by elec-
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Fig. 6. Schematic illustration of wave packet emission into a
transverse radiation mode by single electron. The diagram
depicts an example of a four pericd wiggler and corresponding
four period optical wavepacket.

tron €; on the mode ¢ during the the electron transit
time £;(L,)— fq; By conservation of energy, this work
is equal to the energy in the longitudinal wavepacket
emitted by the electron into mode g. Fig. 6 displays two
wavepackets emitted by two electrons e, €;, which
enter and exit the wiggler at different times. The length
of each wavepacket is the slippage distance along the
wiggler — N,A, {considering now emission at the
fundamental undulator harmonic frequency). In fre-
quency domain the two wavepackets contribute ad-
ditively to the total spectral field of the mode, and their
contributions add constructively or destructively if the
spacing between the two wavepackets {e(f,{L,}—
ta( L)) is correspondingly an even or odd integral
multiple of half the wavelength of the spectral radiation
component under consideration. The argument of the
“complex work” parameter 611%? ; measures the phase
of each wavepacket relative to the phase of the radia-
tion mode, so that the algebraic sum in eq. (13b) mea-
sures the coherens contribution of all electrons to the
mode amplitude at frequency «. Note that if the phases
of the different electrons stay random along the entire
interaction length, this sum will result in, on the aver-
age, a vanishing contributions as expected. Only when
the electrons get bunched in phase either right at the
entrance or at least within the interaction region, their
spectral radiative contributions can add constructively
to build a nonvanishing spectral component of the
mode amplitude.

The solution {13) is in fact a complete general solu-
tion of the radiation problem, which can even give the
entire time dependent radiation field at any point in
space after an inverse Fourer transform is applied to
eq. (13a). The complex work elements in (13d} can be
straigthforwardly computed numerically by substituting
in it the electrons trajectories r(1) and velocities v;(f)
which were computed in the first part of the interaction
problem (previous chapter) and performing the time
integration. However, such representation of the final
solution is too general, consumes immense computation
time, and is difficult to display. More limited and
concise representation in terms of a small number of
optical parameters is necessary in order to make the

solution useful for practical implementation.

It is costumary in optics to characterize the basic
optical properties of a partially coherent radiation source
in terms of the spectral brightness parameter of the
source and other parameters that can be derived from
it, like the radiant intensity, the power and the corre-
sponding spectral parameters. The spectral energy
brightness of a pulsed source can be described in gen-
eral in terms of the Wigner distribution of the fields
{10]. When we assume that only a single mode is excited
(which means also that the radiation is spatially coher-
ent) the only parameter left to characterize the spectral
properties of the radiation is the momentary spectral
power in the mode which is expressed in terms of the
Wigner function ch [7:
dP ZF
o= W w0,

L s
qu(m,1)=—2;f ae

X<Eq(w+ %)E;(w— %)) e
(14)

This parameter can be calculated once the spectral
amplitude of the mode (13b) is computed for a range of
frequencies.

The spectral brightness computation is described in
some more detail in ref. [7]. Fig. 7 describes qualita-
tively the on-axis radiation spectral brightness distnibu-
tion in time frequency phase space, comparing the
incoherent emission limit (fig. 7a) to the ideal tight
bunching limit {fig. 7b) for the example m = 3. The
radiation pulse duration is approximately equal in both
cases to the clectron pulse duration T(= Ty, ) plus the
slippage time N,T, (which is usually negligible even
though in the figure it is exaggeratedly long). However,
the spectral width of the super-radiant radiation sub-

Time-~Frequency Phase Spoce Picture

(w,_} ur (wp) w
wel > (a=3) wgt
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“r AL LR
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E ‘ '1 T+NGTy

T N,T,

{a} No Densily Modulation {b) Tight Densily Medulation

Fig. 7. Time-frequency phase-space picture of spontaneous
and super-radiant emission into a transverse radiation mode.
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stantially shrinks from w,/N,, to 27/T, which for the
parameters of table 4 and an electron pulse duration
T=05 ns corresponds to a significant reduction in
time-frequency phase space area of 43 x 10% This
number gives some indication on the enhancement in
spectral brightness when superradiant emission is set.
Note though that in practice, full bunching is never
obtained and therefore there will always be some in-
coherent spontaneous emission measured together with
the coherent super-radiant emission. On the other hand
note that fig. 7 does not describe the other four dimen-
sions of phase space, and that in the ideal bunching case
the spectral brightness improvement factor is even larger
(by a factor mN,,), because there is no emission then at
any angle at frequencies different than nw, the lower
frequency emission at higher angles within the relativis-
tic radiation cone (of angle 1/v,) disappears due to
destructive interference, and all the emitted photons can
be only measured in the forward direction {within a
diffraction limited radiation cone). The disappearance
of the f=1, 5, 7, -- - harmonics in the on-axis spectrum
is depicted in fig. 7b by the broken line regions.

The spectral formulation is helpful for a simulta-
neous description of the (temporally) incoherent and
coherent radiation and for studying the transition from
one limit to the other, when the emission process be-
comes more and more super-radiant as the bunching is
enhanced. However, if we are predominantly interested
in the coherent radiation, and after understanding al-
ready that it is emitied in a very narrow bandwidth
around the laser harmomic frequencies, and that its
coherence length is Fourier transform limited by the
finite duration of the electron beam pulse, it is more
converient to switch over to a phasor formulation,
neglecting the finite pulse effects, and ignoring the shot
noise. In the phasor formulation we decompose the
fields and currents into a infinite sum of terms oscillat-
ing at the modulating laser frequency w, and its
harmonics (9) and (10). For a discrete charged particles
current (electron beam) the current phasor components,
obtained from periodic Fourier series decomposition of
eq. (11) are:

Ny, o

e ‘
T

Tm j=1 UZ}

- (1s)

= 2e v o
A ORI P

T i34 T

The use of the electron trajectories r{1), u{¢} com-
puted before in the single electron formalism of the
previous chapter (including the inverted longitudinal
coordinate trajectory function t = ¢;(2)}, makes it possi-
ble to have an explicit formal expression of the phasors
current fields (15). In these expressions N(T,) is the
average number of electrons entering the interaction

length in one optical period of the laser (shot noise
fluctuations are ignored). The current phasors (15) to-
gether with the set of time independent partial differen-
tial equations obtained by substitution of the fields’
phasor decomposition (9) in the Maxwell equations (1),
form now a well defined mathematical problem of 3-D
partial differential equations with a source term.

To proceed on in solving the set of partial differen-
tial equations we can expand all the fields in terms of
either a discrete or a continuous set of orthogonal
modes of free space (as in the spectral formulation). In
fact the spectral formulation solution can be directly
transformed into a phasor formulation notation by
applying the formal substitution

N 1 N,
i=1 =1

Since we prefer 1o use in the phasor formulation a
continuous mode {plane wave) expansion, we will not
use presently the transformed discrete modes decom-
position (13). The expansion of the radiation field in
terms of plane waves (written already in the phasor
notation) and the solution for the continuous expansion
coefficients are given by

- 1 [s+] .
E= 2f dlanzfc(ql_,z,nmm)éaoéc clq-r,
(2m)" e ,,
{16a)
: MO B
E gL, 2, nw,) = 4%éqlézawq(mm), (16b)
1
AWq(nwm)=? Eﬂﬂgq(nwm)’ (16C)
m =1

~ L . .
A[/V}q(nwm) _ uef!j( )épo emmmlflq-,:‘(l)é: Uj,(f) df,

fo,

(16d)

where &% is the Poynting vector power density normal-
ization of the mode, and the summation over ¢ is a
summation over two orthogonal polarization states. This
solution is completely analogous to the discrete mode
expansion solution {13).

Using a Wigner distribution in the space dimensions,
eqs. (16) can be used to compute the brightness of the
radiation field from which all other radiation parame-
ters can be calculated [11]. This would require however
evaluation of ¢, over a range of g, values involving
exhaustive numerical computation. At present we limit
our optical characterization of the emitted radiation to
the computation of the less general optical parameter of
radiant intensity. Anyway, this parameter is the one
which is usually measured in the synchrotron radiation
lab (with a single pin-hole measurement in the far
radiation field regien), and would be most appropriate
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for comparing to the background incoherent undulator
radiation which is emitted in the experiment simulta-
neously with the coherent radiation. This radiant inten-
sity is expressed directly in terms of the modulus of the
plane wave amplitude by

dP _ o8 1 [0z ) ()
A2 () 2V Ho

where |8, | =(w/c)sin® and @ is the emission direc-
ticn.

The continuous expansion coefficients ¢ {g) (16b)
can be rewritten in a more explicit form in terms of the
current phasor (15b):

c$" g, 2) = W4é1.éz y%]fffdlrf-é;“é”o e
4e 2 yg.[ “dz e

f faxareninn iz,

In the special case of emission on axis (g, = 0) this can
be writlen in the form

es(2) = g forr e NT e (2) 4k d,

(19)
I, (z)=[[dxdyi,(x, y, 2),

where I, , having dimensions of a current, is a vector
parameter which can be interpreted as a continuous
polarization vector like density.

Substituting the discrete particles current phasor ex-
pression (15b) in (19), using the expression of the wig-
gler quiver velocity (4d) for the transverse velocity of
the particle, and averaging over the fast longitudinal
quiver motion {which produces another Bessel function
factor), the excitation current I , finally can be ex-
pressed in terms of a bunching parameter n, which is
simply the Fourier series component of the longitudinal
current at harmonic frequency n normalized to the
de-current:

ne

I_iﬂw'") = %IUE?‘L[JJ]I cin(wm/r}z,ﬂ
0

i, (20)
= = e iminy

where [JJ],=J_1y2(fu0) = jgsery2(fuo), U= 135/
+a.), and ,,; is defined in eq. (6d). The ¥, ’s are
the results of the numerical solution of the pendulum
equation in the first part of this work. The { }; indi-
cates stafistical averaging over the initial conditions of
the electrons in the beam.

The amplitude of the radiation field on axis can now
be expressed in terms of an integral over the density

parameter along the wiggler:

efrem (2) = 3 S lo (<) VLY () d.
1)

Substituting in eq. (17) we obtain an explicit expression
for the radiant intensity expressed in terms of a normal-
ized radiation parameter r,:

d Psg 1 [Fo [ Aw : of Gy : 2
() 015 (2] (75 1m0

2
1 z I /
f‘"(Z)E rj;nn(z )dZ

Clearly the computation of the bunching and radia-
tion parameters is guite simple after the phases ¢, ; are
evaluated by the numerical sclution of the pendulum
equation. Their calculation involves only two additional
numerical computation steps of statistical averaging and
integration.

For the purpose of comparison between the coherent
and incoherent radiation parameters we cite here the
corresponding expression for the radiant intensity on
axis at harmonic / of the incoherent undulator radiation
[12}:

dPyux 1 [ig e, a
(766" 0na™

a0 4\,T “"[D(;;z )[” iV

(22)

(23)
We use this expression for the computation of another
parameter of interest: the ratio between the radiant
intensity of the super-radiant radiation to the radiant
intensity of the incoherent harmonic undulator radia-
tion. This parameter determines how much will the
detector reading go up in the experiment when the laser
beam is turned on, and the radiation emission turns
superradiant. Using eqs. (22) and (23} we find this ratio
to be

dPgp
a2 (- IA
0t o 2 (L), (20
d Py -
df g0

Note that this ratio is proportional to to the current,
since the super-radiant emission is proportional to 12
(field amplitudes add up), while the incoherent radia-
tion is proporticnal to I; (energies add up). Note also
that the experimentaily measured ratio between super-
radiant and incoherent emission can be enhanced by
taking advantage of the temporal coherence of the
super-radiant emission. Installing the detector behind a
narrow band-pass filter or a spectrometer of bandwidth
narrower than the undulator emission bandwidth
w,/(N,), the factor (24) is enhanced by the ratio be-
tween the undulator radiation bandwidth to the filter
bandwidth.

V. HARMONIC EMISSION THEORY
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5. Results of numerical computations

The extended pendulum equation solving code
PENTOK, was employed to solve the set of equations
(6) for a simple example of a cold electron beam with
vanishing spread parameters and the experimental
parameters of table 4. The beam was modeled by 36
electrons, equispaced in their inijtial phases. This
ample-electrons number is four times the highest order
computed harmonic number (n = 9), as required by the
Nyquist criterion. Tt was confirmed to provide an ade-
quate sampling accuracy, by verifying that doubling the
sample electrons number did not change the final com-
puted parameters.

The solutions for the eleciron phases were used in
egs. (20b) and (22b) to compute the bunching parame-
ter m, and the radiation parameter r,. Their dependence
on the interaction length z at harmonics (n=
1.3,5,7,9) are displayed in figs. 8 and 9 for beam
energy ¥ = yoq" = 783.34 (for which the radiation
barameter was maximal at z=L,, = 2.2 m). The values
of the parameters at the end of the wiggler were used to
calculate the radiant intensity on axis (22a) and its ratio
to the incoherent radiant intensity (24). These are listed
in table 5 for the different harmonics.

The bunching parameters at y = Yad = yg {(shown
in fig. 8) are somewhat fower than their values at
Y = Ybuneh = 785.64 for which the phase space diagram
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Fig. 9. The on-axis radiation parameter of various harmonics
corresponding to the parameters of fig. 8.

of fig. 3 was drawn (about 5%, 12%, and 17% reduction
for n=1, 3,5 at the end of the wiggler). Still substan-
tial bunching (n; = 93%, 7, = 61%, s = 49%) is at-
tained at the lower harmonics. The big variation among
the harmonics and the small efficiency of high order
harmonic bunching indicate that maximum phase
bunching and radiation saturation were not yet attained
within the interaction length {as also evident from fig.
4).

GAMMArad(max) = 783.54

ST—-
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Fig. 8. The bunching parameter of various laser harmeonics (n) at condition of beam energy tuning to maximum coherent radiation
on axis y = y, 2%,
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Table 5
Radiometric parameters of the various harmonics

Harmonic Wavelength dp/df2 dPgg /df2

n (D) (A (W /5] APyr/ast

1 & 5320 1.938x10% 12 1.815%10 I,
3% 1773 3905107 17 1.058x10% 1,
5 (15) 1064 1.526x107 13 2.363%10V [,
7 {21) 760 750Tx10% 12 1.964x 10" I,
9 @7 591 4182x10% 1} 5.736%x 10V I

The big variation among the harmonics is even more
pronounced when considering the radiation parameter
(fig. 9). The power law dependence on z, which is
suggested by the linear behavior of the curves in the
logarithmic scales, also indicates that over-bunching
was not yet attained and substantial enhancement
(especially at higher order harmenics) may be cbtained
in an example of a longer wiggler or a more intense
modulating laser field.

The main measurable data is summarized in table 5.
The table indicates that even with a low effective (peak)
current of (fy).; =1 mA, the super-radiant emission
radiant intensity exceeds the spontaneous radiant inten-
sity at laser harmonics as high as »n=9 (undulator
harmonic ! = 27). The detectability may be even further
enhanced by means of a moncchromator. It is, though,
a little hard to estimate the value of (I;).y that in a
specific experiment, will fit the simple model of the
zero-spread cold-beam example of table 4. Peak cur-
rents in storage rings may well exceed the tens of
amperes range, but only a small portion of the beam
current will fit into the phase space acceptance volume
for which a no-spread cold beam model can be taken,

While the simple zero-spread-cold beam example is
helpful for understanding the basic features of the inter-
action, for a full quantitative evaluation of a super-
radiant emission experiment, all the beam-spread
parameters must be included in the computation. This
realistic modelling was indecd implemented in the com-
puter program, but the numerical computations were so
far carried out only in part, and will not be reported yet
in the present publication.

In conclusion of the discussion on the numerical
results, we now explain in some more detail the 3-D
effect which resulted in a2 maximum bunching energy
Youmen appreciably larger than both the “plane wave”
resonance energy yp and the maximum radiation
parameter energy vohg = ym. 1he understanding of this
3-D effect has implications of the interpretation the
experimentally measurable parameters of table 5.

Inspection of eq. {5b) for the Gaussian phase expres-
sion reveals that within the Rayleigh range region a
Gaussian mode behaves like a’ free-space plane wave
with a slightly smaller wave number (larger axial wave-

length). In a first order expansion in terms of |z —
2y | /2 (assuming zg =1zg, 2, =2,, X=y= 0y:
w W 1

ke”=?+%—q;=?—-z;. (25)
Correspondingly also the phase velocity of the wave
Vph = @/ Ky is slightly faster than the speed of a free
space plane wave (c). Consequently, in order to main-
tain synchronism between the electron and the
ponderomotive wave within the Rayleigh range region
{where most of the energy bunching takes place) the
speed of the electrons must also be increased corre-
spondingly.

Examination of the resonance condition k.4 + mk,,
= w/v, reveals that the effect of the Gaussian wave
effective wave number depreciation — 1/zg (25) is the
same as decreasing the wiggler harmonic wave number,
mik,, and it leads likewise to a relative increase in the
resonance energy:

Ay _ 1A

= . 26
Yo o Im zg (26)

This equation results in Ay/yp =5.3x107? with the
parameters of table 4. This agrees reasonably well with
the results of the numerical computations which gave
(Y&, — yp)/Yr = 3.2 X 1077, in support of our inter-
pretation.

To understand why /03" # ypunen we draw attention
to the fact that the strong bunching effect which takes
place at v = yfunen is not very helpful for efficient
radiation into & plane wave on axis {which is the param-
eter measured in eq. (22}). The reason is that the energy
bunching with the “fast” Gaussian wave {k.; < w/c)
produces towards the end of the wiggler a polarization
current with a correspondingly reduced wave number
(higher phase velocity). This current cannot excite effi-
ciently a coherent harmonic frequency radiation plane
wave that propagates on axis at the speed of light ¢
with free space wave number w,/c. To maximize such
an emission, it turned out to be more favorable to
operate at y=ymy" =y so that synchronization be-
tween the electrons and the modulating laser beam is
attained away from the Rayleigh range region, where
the Gaussian phase shift diminishes, and it behaves
more like a free space plane wave. The numerical simu-
lation results indicate that it is preferable to operate off
the maximum bunching condition vy = ygume, despite the
advantage of efficient energy modulation by the strong
field at the Gaussian waist region, because one loses
then more by the bunching of the electrons at the wrong
wave number, which result in destructive interference of
the generated radiation, and consequently reduces the
coherent emission on axis.

A number of practical conclusions may be derived
from this interpretation. Some simple remedies can be
devices in order to enhance the super-radiant emission

V. HARMONIC EMISSION THEORY



176 A. Gover et al. / Super-radiani harmonic emission

radiant intensity on axis, if this is the desirable parame-
ter. In the first place, it seems to be preferable to focus
the laser beam waste at a more forward (up stream)
point, so that near plane wave energy modulation can
take place from the start. Another scheme can be to
taper the wiggler period towards the end of the wiggler,
in order to phase-match the polarization current with a
desirable on-axis harmonic frequency plane wave and
still operate at the conditions of maximum bunching
v =y We note, however, that the maximization of
the radiant intensity is not always the main experimen-
tal goal, and if other parameters are important, the
operative conclusions may be different.

It can be well appreciated that if the wave number of
the harmonic frequency polarization current is too small
to phase match well to a forward going radiation
plane-wave, it can still match well to an off-axis wave
(of axial wave number (w, /¢) cos @), This may lead to
a conclusion that at y = ypueen the total coherent
harmonic radiation in all angles is still high, even though
the emission on axis 15 reduced (relative to a vy = yg
tuning condition). Since the emission from a zero width
current source is spatially coherent in either case, we
may conclude that not only the total power but also the
brightness of the radiation could be larger at v = ygynen-
Since the radiation is still spatially coherent, its larger
divergence is not necessarily a deficiency if optics is
available to collimate or focus it to a desirable beam
spot.

We note in conclusion that the observations we have
just made, may be modified when the coherent radia-
tion is emitted from a beam of a finite width which is
larger than the effective coherence width of the zero
beam-width super-radiant harmonic emitter. In this
latter case, the diffraction characteristics may be de-
termined by an effective aperture which depends on the
electron beam size. We conclude that substantial and

non-negligible 3-D effects are expected in the analysis
of the super-radiant emission interaction, and that these
effects can be studied in the framework of the physical
mode! and computer program we developed. We expect
to report further numerical computation resulis on the
effects of e-beam spread parameters in a future publica-
tion.
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