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SIMULATION AND ANIMATION OF ELECTRON MOTION IN THE PONDEROMOTIVE
POTENTIAL OF LASER BEATS

Z. SHEENA, A. GOVER and S. RUSCHIN
Faculty of Engineering, Tel-Aviv University, 69978 Ramat-Aviv, Israel

The behavior of an electron in the beat wave field of two counter-propagating pulsed CO, laser beams, operating at different
frequencies is usually studied by solving the equation of motion of the electron numerically. These solutions give the energy spectrum
of the electrons at the end of the interaction. The present paper describes a computer program that animates the motion of the
electron, giving a real-time picture of its motion during the entire interaction process. This program can be used to understand several
trapping mechanisms of an electron moving in a ponderomotive field superimposed on a dc axial field. The first one is the case in
which the electron is created inside the ponderomotive field. In this case the program can be used to show visually that such an
electron can get trapped only if its energy is around the synchronization energy and its phase corresponds to the trap phase. In the
second case the program can be used to understand the trapping mechanism for the case in which there is a temporal rise in the
ponderomotive field. For the case in which an abrupt axial field jump is used to trap the electron in the ponderomotive wells,
numerical simulations show periodicity in the relation between the trapping fraction and the energy of the electron. This periodicity
and also the trapping mechanism can be clearly understood using the animated motion of the electron together with the varying
ponderomative potential. The program can also be used to understand the detrapping of trapped electrons in the case where thereis a

temporal fall of the field.

1. Introduction

The equation of motion of an electron in a combined
axial and ponderomotive field does not have an analyti-
cal solution. This equation can only be solved numeri-
cally. When using such numerical solutions it is hard to
display the whole picture of the ficlds combined with
the position and energy of the electrons for complex
dynamic mechanisms such as the ones described in refs.
[1,2}. The need for a computer program that not only
solves the equation of motion of an electron in a
ponderomotive field, but animates its motion during the
whole process rose when we could not explain an effect
of periodic behavior of the electron trapping efficiency
as a function of the injection energy. This effect ap-
peared as a result of an ordinary numerical simulation
made for the case in which trapping was achieved using
an abrupt axial field jump [1,2]. The work began by
developing a program that simulates the motion of an
electron in a time independent ponderomotive field,
then it was expanded to simulate cases in which the
ponderomotive field varies with time and ended by
developing a program that animates the motion of an
electron for the complex case mentioned above

2. Theory

The governing equation of motion of an electron in a
ponderomotive field superimposed on an axial electric
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field is the axial force equation [3,4]:
d( ymwo
0m0) ek, (2) - eE, (1)

de
xXeos{(w;—w, )t —{k;+k,)z}, (1)

where E,, is the externally applied axial field and E,, is
the ponderomotive field, which for the laser beat elec-
tromagnetic wiggler is given by:
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&, é,., P, P,, w,, w, are the polarization unit vectors,
powers and waists of the signal and wiggler waves
respectively. The resonance electron velocity v, is given
by:

W, — W,
%= ks +k,’ ®
and the resonance phase \, is given by:
E
S | ax
Y, = sin (—Ep ) {4)

Only electrons which are inserted into the ponderomo-
tive field with an energy around vy, and a phase around
y, are trapped inside the ponderomotive buckets. Elec-
trons achieving the resonance energy v, within the
interaction region do not get trapped since they follow
open orbits in phase space. Instead of trapping, they
experience the phase area displacement mechanism [3,4]
and exchange energy in an opposite direction relative to
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Fig. 1. Electron conservation of energy diagram.

the trapping process. Fig. 1 shows the conservation of
energy diagram of an electron in the combined
ponderomotive and decelerating dc fields. The diagram
is shown as viewed in the rest frame of the ponderomo-
tive potential. In this moving frame ali the fields are
static and the system is conservative. Electrons with a
constant energy injected into a constant ponderomotive
field are reflected and cannot get trapped in the
ponderomotive buckets as shown in curve a. In order to
trap the electrons inside the buckets either the ampli-
tude of the laser fields has to rise gradually as shown in
curve b or alternatively the energy of the electrons has
to go down steeply during the approach of the electron.
Such a change in the potential energy of the electron
can only be attained by a force which looks time
dependent in the moving frame of the beat wave rest
frame. If the time variation of the field in this frame is
fast relative to one period transit time, a nonconserva-
tive abrupt reduction of the electron energy takes place
and consequently the electron is inserted into the trap.
In fig. 2 we display the computer simulation results for
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Fig. 2. Electron trapping efficiency against the relative electron
energy using an abrupt axial field of 1000 V/m.
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Fig. 3. Axial field and potential along the interaction length.

the trapping efficiency achieved by the spatial field
variation shown in fig. 3 (which corresponds to a fast
temporal feld variation in the moving frame). The
ponderomotive field was 230 V,/m superimposed on a
dc axial field of 65 V/m, with a maximum axial abrupt
field of 1000 V/m, and the electrons were assumed to
be injected without energy spread. In the following
sections we will deal with the reason behind the periodic
behavior of the efficiency variation as a function of
electron energy.

3. Computer program

The computer program described in this paper runs
on an IBM PC-AT personal computer and is written in
Quick Basic version 4. The program solves the differen-
tial equation of motion of an electron (eq. (1)) and in
parallel displays on the computer monitor screen its
instantaneous position in the energy diagram in the
frame of reference of the beat wave as shown in fig. 1.
At every moment the program updates the ponderomo-
tive field and the axial field, then it updates the position
of the electron relative to these fields, giving a moving
picture of the electron and the fields acting on it. The
user of the program has the option to lower or raise the
animation speed making it possible for him to view
complex and fast processes in slow motion. Three dif-
ferent programs were written in order to simulate the
following trapping mechanisms:

1) The first program animates the simple case in
which both the axial and ponderomotive fields are time
invariant. In this program the user has the option to
change the relative initial energy of the electron making
it possible for him to animate the simple trapping and
PAD mechanisms.

2) In the second program the user has the option to
choose a linear temporal rise or fall in the ponderomo-
tive field in addition to the initial energy of the electron.
This program helps the user to understand electron
trapping mechanisms caused by a nsing field as op-

VI. NUMERICAL SIMULATIONS
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posed to detrapping mechanisms caused by a falling
field.

3) The third program deals with the complex prob-
lem in which the axial field varies with time in the
moving frame which cotresponds to the spatial varia-
tion of potential shown in fig. 3 which is a model for the
field variation in the experimental setup of refs. 1,21

E, =500 0<t<ty,
E, =500/cost (5 x 107 (1= 1)) n<i<iy,
E, =30 t, <t <ty

where E,, is the axial field in V/m and 7 is the time in
seconds.

In this program the user has control of the relative
initial energy and phase of the electron. As will be
shown in the next section the resultant trapping is a
combination of a trapping mechanism and a subsequent
detrapping mechanism.

4. Sample runs

In this section we will describe several runs that
demonstrate the help of the animation program * in
understanding the physics of complex processes. Each
one of these runs simulates the actual parameters of the
experiments made at our laboratory [2]. The constant
parameters used in the simulation are given in table 1.

1) Run program FRM1 (animation speed = 50, ini-
tial energy = (.5 eV). This exercise demonstrates trap-
ping of an electron created inside the ponderomotive
field. The electron moves with the ponderomotive wave
while oscillating at the synchrotron frequency. Using
any initial energy between 0 and 1.0 eV which is the
trap depth in this case gives the same result, while using
an initial energy higher than 1.0 eV demonstrates the
PAD mechanism scenaric in which the electron is re-
flected backwards by the ponderomotive potential. This
last exarnple represents a typical case in which trapping
is impossible when an electron enters an existing time

* Copies of the animation program are available upon request
from the authors.

Table 1

Simulation parameters

Signal power 350 kW
Wiggler power 200 kW
Signal wavelength 9.2938 pm
Wiggler wavelength 10.591 pm
Laser beam waist 1.4 mm
Axial electric field 50Y,/m
Resonance energy 1088 eV

Table 2

Initial conditions and trapping resulis from FRM3

Initial 0 <t <1, 0<r<ty

ENSIBY Trapping Trapping Trapping Trapping
initial fraction  initial fraction
phases at ¢ phases at Iy

36 0-0.1,2.9-63 0.59 29-59 0.49

39 1.8-53 0.57 1.9-4.6 0.44

4.0 1.4-5.0 0.59 1.5-4.0 0.41

41 1.1-4.7 0.59 1.2-35 0.38

42 0.6-4.2 0.59 0.8-31 0.38

44 0-3.5,56-63 0.70
4.6 0-2.3,34-63 094

0-2.3,6.0-6.3 (.48
0-1.6,42-6.3 0.62

independent conservative field and ponderomotive
potential.

2) Run program FRM2 (animation speed = 50, ini-
tial energy =1.05 eV, ponderomotive field variation
ratio with time = 0.05% /ns). This exercise demonstrates
that when the ponderomotive field rises with time trap-
ping is possible although the initial energy is higher
than the trap depth of 1 ¢V. On the other hand using an
initial energy of 0.95 eV and a ratio of —0.02% /ns
causes a trapped electron to get eventually detrapped
after several synchrotron cycles.

3) Run program FRM3 (animation speed = 50, ini-
tial energy = 3.6 €V, initial phase = 5 tad). This exercise
shows a mechanism in which trapping is achieved by
using a high axial field of 500 eV. In this case the
electron remains trapped during the whole process in
which the axial field varies as given in the previous
section. On the other hand using the same initial energy
with an initial phase of 6.1 causes trapping at the
beginning (at time 0 <t <1;) followed by detrapping in
the period when the axial field goes back to 50 V/m (at
time £, <t <1!3). Using a combination of initial energy
and phase as given in table 2 results in a periodic
trapping fraction as a function of the initia! energy of
the electron as shown in the same table.

5. Conclusions

The examples described in this paper demonsirate
that animation offers the researcher a new tool with
additional dimensions for better understanding of the
physics of many processes that are involved in the FEL
problem. In particular we demonstrate its use for under-
standing the periodic behavior of trapping efficiency as
a function of injection energy into the beat wave for the
case of trapping by an abrupt axial field variation.
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