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Gain analysis of a strong-pump FEL operating at the fundamental
and high harmonics

Y. Pinhasi and A. Gover

Fuculty of engineering, Tel-Aviv University, Ramat Aviv 69978, Israel

An analytical study of a planar wiggler FEL in the cold electron-beam strong-pump regime is presented. Such an FEL can lase at
high odd harmonics due to the periodic variation in the longitudinal clectron velocity, and can also emit superradiant emission at
harmonic frequencies. Based on a parametric interaction approach, we develop an extended gain dispersion equation for a laser
operating at the fundamental or high harmonics taking collective effects (Raman regime) into account. The analysis applies also to
the case @, /(By)~1, where the customary use of the Taylor expansion of V, does not apply. This case is of interest mostly for
mildly relativistic FELs, and allows excitation of very high harmonics.

1. Intreduction

In a basic free electron laser (FEL), the fundamental operation frequency is mainly determined by the
axial velocity ¥, of the electrons, which is often taken to be constant over the interaction region. When the
pump strength is increased, the axial velocity becomes z-dependent, and periodic variation of half the
wiggler's period emerges. Since the electron’s axial velocity is modulated, its spontaneous emission
radiation observed in the laboratory frame is also at higher odd harmonics besides the fundamental
frequency.

Similar higher-harmonic operation can take place in stimulated emission and can be utilized in FEL
amplifiers or oscillators [1]. This can help attaining short-wavelength FEL devices with moderate energy
accelerators.

Previous analysis of the FEL operation at fundamental or high harmonics [2,3} was valid under the
condition a,,/(By) < 1 which allows using a first-order Taylor approximation of 1/ V,(z), where V,(z) is
the longitudinal z-dependent electron velocity in the wiggler. This approximation becomes inaccurate
when the electron beam is not relativistic, as in strong-pumped microwave devices. Moreover, it may give a
wrong estimation of the FEL operation frequencies and gain also at the fundamental harmonic.

The fact that the axial electron velocity in the wiggler is periodic in the z-direction enables expanding
1/V,(z) as a Fourier series. This expansion applies for any a,/( Bv) < 1. In this article we present a
cold-beam FEL gain analysis using the Fourier expansion. An extended and corrected gain dispersion
equation for the fundamental and harmonic frequencies is developed by using the parametric interaction
approach described in ref. [4], and by assuming a fluid model for the electron beam.

2. The kinetics of an electron beam in a strong wiggler

We first solve for the electron velocity in the wiggler in the absence of the electromagnetic signal field.
The signal strength is assumed to be much smaller relating to the wiggler. Hence its effect on the electron’s
axial velocity is negligible. We assume a magnetostatic planar wiggler with a periodic transverse magnetic
induction field of period A, approximated by

B (z)=BY cos(k,z). (1)
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Fig. 1. The z-dependence of the axial velocity over a single wiggling pericd.

The transverse momentum of the electron produced by the Lorentz force F'(z) = —eV,(z) X BY(z) is
proportional to the magnetic potential vector A, (z) of the wiggler:

Pf(z)=-eszw(z') dz’' = —mca,, sin(k,z), (2)

where m is the electron’s rest mass, ¢ is the velocity of light and a,=e#V /(mck,) is the wiggler
parameter. From the last equation, we derive the electron transverse velocity:

Vr(z) =¥ sin(k,z), (3)
where ¥ % = —a_c/v. The axial velocity is derived from the longitudinal momentum:
1 a,\? A
V"(Z)=y—m\’P2_Pf =BC|:1—(ﬁ—‘_;) sinz(sz)] . (4)

The z-dependence of the axial velocity over a single wiggling period is shown in fig. 1. Note that the
axial velocity is modulated with a period that is half the period of the wiggler. This effect leads to the
excitation of odd harmonics of the fundamental frequency. In order to calculate the gain at the harmonic
frequencies, usually the inverse axial velocity

2 -1/2
5oy = 1= () stk o
is approximated by a Taylor expansion:
B[] 1 dew/ (B
Bz(z) H[l 2(18?) ] 1:1 2 1_%(‘1“’/(37))2 COS(kaz) : (6)

This approximation is acceptable only if a,/{8Y) < 1. However, this approximation is not necessary
since what is required for the FEL gain calculation is the Fourier expansion of the inverse axial velocity,

ﬁ ol
> =A,+2 }, A, cos{2nk,z), (7)
B.(2) 0 'El » c08(2nk,,z)
and the expansion coefficients

_ 2 B —j2nk,z 8
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Fig. 2. Taylor and Fourier zeroth-order (a} and first-order (b) coefficient expansion of 8/8,(z).

can be readily calculated numerically using an FFT algorithm. This expansion is accurate for any
a,/(By)=1.

In the present work we use this more general model in order to apply the theory also to cases of
nonrelativistic or moderately relativistic electrons.

Fig. 2 illustrates the difference between the Taylor and Fourier expansions of the zeroth [8/8,], and
first [B/B,);, order. The disparity between these two expansions becomes more severe as a,/(8Y)
increases. The Taylor expansion is no longer a valid approximation of the Fourier expansion for those
values.

3. The excitation eguation

The signal electromagnetic wave is taken to be:
E(r, 1) =3C(2)&3 (x, y) el % 4 cc, (9)
B(r, t)=31C(2)F% (x, y) e % 4 cc, (10)

C,(z) is the slowly varying field amplitude of the signal wave. &% (x,y) and % (x,y) are complex
vectors representing the mode profile and polarization of the transverse electric and magnetic field,
respectively. w, and k, denote the angular frequency and the wave number of the signal wave, and satisfy
the medium’s dispersion relation.

From Maxwell's equations, assuming a small amplitude growth and neglecting the transverse variation
of the mode profile of the electromagnetic wave over the electron-beam cross section, we get the excitation
equation for the slowly varying signal amplitude:

dG(z) 1 e pren o A
o mawe [ Tk ) dxdy= - @etii(2) 1 (x 2), (1)
s -0 — o) 5

where (x,, y,) are the transverse electron beam coordinates, and £, is the normalized power of the mode
given by

4+ ptoo, . . . 1 7€, ~s—
‘@sz%g{f f [é’pi(x’ )’)X‘%pf(x’ y)}Idedy}Ei‘/ﬁ%Aemlgl(xe! yc)lz' (12)
— o — oG

The transverse phasor components of the current density fj(z) that would excite in eq. (11) the signal
clectromagnetic ficld radiation, are the result of the density modulation wave 7,(z), generated by the
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“beating” of the signal and wiggler fields (the ponderomotive force), and a-transverse velocity, eq. (3),
caused by the wiggler:

T (z)= —ei (2)V)(2) = —e¥ ¥, (2) sin(k,z). (13)
Substitution of the last equation into the excitation equation (11) results in

dC(z) = . ed,
dz - 187

PN ¥ (x,, po )i (2) eI g itk (14)

This equation describes the growth of the signal amplitude C,(z), which is observed to be associated
with the spatial bunching of the electron beam #,(z). Gain is achieved when the phase velocity of this
density wave, V,, is approximately equal to the phase velocity of the “ ponderomotive wave” w,/(k, + k).
This well known phase match condition determines the frequency at which the FEL amplifies.

The spatial periodic variation of the axial velocity causes space harmonics in the electron bunching
wave that have different phase velocities. Therefore, phase match can be produced at several signal
frequencies that are the odd harmonics of the fundamental.

4. The electron beam density bunching

Now we solve for the electron density bunching 7,({z) generated by the ponderomotive axial force. Here
the cold plasma moment equations for the electron beam are used. The longitudinal ac part of the current
density is

J(z) = —e[noit(z) + V,(2)Ai(2)], (15)

where n, is the dc charge density, and 5}(z) is the ac axial velocity modulation of the electron beam. After
substituting eq. (15) into the continuity equation,
dJji(z) ..
a7 =jwen(z), (16)
we get a linear differential equation of the first order for the density bunching #,(z):

Lo+ (s v @i - - 5y Sa (17)

This equation can be solved analytically, resulting in

Alz) = o ﬁ Eﬂ J % el@mpk,—(w Ay /( BNz
1 VZ(Z) =l m=—co e

+ oo

(_l)an(ftq_‘i’) ei@naky+lwado /B | 5 (18)
o0

<[

g=1 p=—

where a,=w. A, /(Bk,c) and A, are the Fourier coefficients given in eq. {(8). The Bessel functions are

|2 p
defined by
A
X 2p 12 j i ]
Jm(_ﬁ_) = X_f e—](ap/p) sin(2pk.,z) e—_]Zmpsz dz. (19)
w g
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Explicit solution of the density bunching fi;(z) requires substitution of the axial velocity 5i(z) in eq.
(18). This can be found from the longitudinal force equation,

[l - 5 g

The longitudinal force I:f_‘( 7) is a sum of two forcing terms,

E(2) = —e[ Epa(2) + E(2)], (21)
The ponderomotive field,

Epona(2) = 6,6, ()[eh 00 4 ¢mikimbore]

: (22)

where éim= 7 XBY +¥ X%, and the longitudinal space charge field which is caused by the
density modulation and can be found by solving the Poisson equation:

dE~sc( z) e
_“&z_:_EE""(z)' . (23)
Eq. (20) is a first-order differential equation that is solved much like eq. {17):

i 1 &5 & %o\ | i@mpky—(w do (B

= ~ mpk,—{(w <

He)m [T 5 o, etomeremionn
Yym oy 2t NP

z
Xf
0

where v, = [1 — B2 ' = [1 - (8/4,)*] /2.
The complete set of equations which govern the Interaction, consists of egs. (14), (18) and (21)-(24). In

the next section we derive the gain dispersion relation after a linearization procedure that enables using the
Laplace transformation.

F"i(x) 0 + o0 . a, .
z -1 Jn(—) e l@ngk, +{w Ay /(Be)px dx, 24)
V.(x) ,,131 ,,:v:w( ) q (

5. Gain dispersion relation

Eqgs. (18) and (24) can be simplified by assurmng;
a)  Jle,/p)=1 Vp>1;
b) Jm(ap/p)=0 VYm>0, p>1;
) L/Vz)=A/(Be)=1/V,,.

Using these approximations and taking n = p = 0 the Laplace transform of the density bunching is singled
out:

Als)=J%a zcog;)m ISRy o ) (-1 LAk }
(s) =J¥( 1)9Pm_e X{{,,,:z_quz_:mJM( 1)Jq( D(=1) [s—j(2mkw—(wsA0/(ﬁC)))]2

2 ) = o) (s —j2nk,) }
1 Iy Hp : 5
{+ N P PR TPRINY }

X{C s +ilk,+k, —2(m+ gYk,)] + Cls +j(k, -k, — 2(m +q)k,)] ), (25) |
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where 6, is the relativistic longitudinal space charge parameter defined by: 87 = w?/V} =nge?/
(v? YmEOV )-

Since we are interested to evaluate the FEL gain at one of the harmonic frequencies, and because it is
usually possible to obtain a near-resonance operation with a single harmonic, it can be assumed that the
appropriate detuning parameter |6, | = [k, +(2m + 1}k, — (0, 4,/(Bc))| < |8,,.,| Ym+ n. Sub-
stituting eq. (26) into the Laplace transform of the electromagnetic excitation equation (14), the gain
dispersion relation for the (2m + 1) harmonic frequency is derived:

[Es%z‘(‘i')o—)Lmﬂ { jk +k Joz(a])ﬁ [-fm(al)_Jm+1(“1)”s—j(ks+(2m+1)kw)]

x[ T )5 = (K, + Ko )]
(s jlko+k,))(s— 2m+1) +Jg (‘11)0 [sﬁl(k +(2m+ 1)k, )]

-1

B Twsr(@)[s = ik, — k)] }
(5= 3(ks = ko)) (s = 85,01)" + I @) 82[s — j(k, + (2m + 1)k,,)]

(26)
When k> (2m + 1)k, the gain dispersion relation can be reduced to
G(s) 2
[m]zmﬂ— {S—Jfffo(al)f’ [ (&) = T (a)]?
-1
% (s~ 2m+]) + (o) D (o) I (al)az
{(s—jezml)zw,:(a]wo ()67 ][ (5 = iy 1) + 7211 () 2 () ]

(27)

The last result agrees with the cold beam limit of the kinetic linear model solution for a relativistic wiggle
velocity given in ref. [3].
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