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An analysis of excitation, gain-coupling and evolution of transverse electromagnetic medes in a waveguide free electron laser is
presented. We use a formalism of coupled-mode analysis to find the gain-dispersion equation of the coupled waveguide modes and
diagonalize the system to find the eigenmodes (*supermodes”} of the coupled system and their gain,

We demonstrate the use of the method to find the mutual gain of the coupled TE; TM;, modes which are degenerate. A
noteworthy finding is that the gain of the supermode is higher than the gain of either of the separate waveguide modes when

ealculated in a model where coupling is neglected.

The analytically caiculated results are compared to the results of a numerical 3-I FEL code.

1. Introduction

The extended one-dimensional linear model of the
free electron laser (FELY is a useful and quite satisfac-
tory model to describe the interaction between the
electromagnetic wave and the electron beam in this
device [1-3]. This model assumes a single electromag-
netic transverse mode and a finite cross section of the
electron beam. The coupling between the radiation
wave and the beam is proportional to the “power
filling factor”, defined as the ratio between the beam
cross section area and the effective electromagnetic
mode area.

The small signal gain analysis of a variety of FEL
schemes leads in the framework of the extended 1-D
model, to the same gain-dispersion relation [6,7). This
relation is valid for warm- and cold-electron-beam ef-
fects, and covers both the FEL low- and high-gain,
single-particle (Compton) and coliective (Raman)
regimes.

In optical open resonators and overmoded wave-
guide resonators a more adequate 3-D model of the
FEL interaction is necessary. Such a model for a FEL
operating in the nonlinear regime was suggested in
[8—101. In this and other analysis [11-13], the trans-
verse electromagnetic field was expanded in terms of
the free-space Hermite—Gaussian modes.

A self-consistent theory which includes effects of
finite cylindrical waveguide geometry was presented in
ref. [14]. A simplified model was proposed in ref. [15].
In a linear 3-D model developed in refs. [16-18], the

0168-9002,/92 /$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

transverse dependence of the electromagnetic field is
represented by a Fourier series of plane waves leading
to a gain-dispersion matrix.

In this paper we employ a coupled-mode analysis
for solving the excitation and evolution of transversc
modes in the FEL and calculating the eigenmodes of
the coupled system. Here the electromagnetic wave is
expanded by the transverse eigenmodes which are cou-
pled through the e-beam current. Taking a parametric
interaction approach, we derive a coupled set of gain-
dispersion equations which describes the FEL interac-
tion in the linear smali-signal regime. The system i$
diagonalized to find the normal modes (“supermodes”)
of the FEL, and calculate their gain. This general
analysis can be adopted for any waveguide or free-space
FEL scheme.

The analysis given here relates to the case of cou-
pled transverse modes that are degenerale in their
longitudinal wavenumber k.

2. The excifation equation

The transverse electric and magnetic fields can be
expressed in terms of forward (+g) and backward
(—gq) going waveguide eigenmodes [19-21]:

E_j_(r: t) =%Zc+q(z)é’l +q(xl y) c“'j(k“‘l*m‘(}
q

+ C_q(z)é.L—q(x; y) e ithayzm 0D
+c.c., M
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Hl(r‘ t)y = % Zcﬂr(z)jvi +q(x: y) g Ytk =~

q
4+ C—q(z)‘i’i _,,(X. ¥) ¢ itk z )
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where C,(z) is the slowly varying amplitude of wave-
guide modc q, 8’“(x y}and Z’ 41, ¥) are complex
vectors representing the tranwcrs:. profile and polar-
ization of the ¢lectric and magnetic ficlds of the mode,
w, and k_, denotc the angular frequency and wave-
number of modc g, and satisfy the dispersion relation
VOIS

Thc total power transfer in the electromagnetic

wave is given by:

P(2)= LIC, ()P, +IC_ ()P, (3)
q

where 2, is the normalized power of transverse mode

q:

P, =P

+q -4

4

The excitation equation for the slowly varying am-
plitude of waveguide mode g can be derived from the
Maxwell equations by imposing the boundary condi-
tions of the waveguide walls:

dC,(z L f(r). &
e A LR ACDLER
(%)

The last equation is an exact formula describing the
evolution of traveling waveguide modes excited by the
current density J{r) along the interaction region.

In a FEL, the tranverse phasor component of the
current density J5 () is a product of the density modu-
lation wave n(r) and the wiggling transverse velocity

7
FL(r) = —hem ()7 (x, y) €7k, (6)

Substituting the last equation into the excitation equa-
tion (eq. (5)) results in:

dC,(z) € iy T2
— =t i 2y “ff”(’)

x[%’ff(x, ») (] drdy. (D

The amplitude growth of a waveguide mode g, is
observed to be associated with an overlap integral
between ils transverse profile &7 (x, y) and the spa-
tial space charge density modulation A,(r). The density
bunching will be caiculated from the electron-beam
fluid equations.

SRef [ [&.,(x ) x#](x, )] -2dx dy.

3. The electron-beam fluid equations

In a FEL, the velocity modulation and conscquently
the space charge density modulation arc generated by
the longitudinal ponderomotive force. The whole proc-
ess is described by the lincarized plasma moment cqua-
tions. In a small-signal analysis, the ac perturbations
are assumed to oscillate at a single angular frequency
w, = w, — w,,. This takes into account also an electro-
magnetic pump FEL scheme where @, is the angular
frequency of the wiggler wave, For a magnetostatic
wiggler w,, = 0. Wc also assume that there is no change
in the electron-beam cross section profile during the
interaction. Thus, in the following equations only the
development along the z dircction is considered. The
longitudinal ac part of the current density is given by:

Ji(z) = —e[nyii(2) + Vi 2)]. (8)

Here n,, is the dc charge density, and £i(z) is the axial
velocity modulation of the electron beam. From the
continuity equation we get:

di}(z)
dz

After substituting eq. (8) into the continuity equation
(eqg. (9), a linear differential equation for the density
bunching is derived:

= —jwen(z). ¢

Mo de;
) - :(2) (10)

V[, dz

5(2) —J
z(
The velocity modulation Ez'(z) which is required in
the last equation can be found from the small-signal
form of the axial force equation:

d . LW
d—gvi(z)—lpz;l‘z(f-')

e . -
= E  J(z)+E_(2})]. 11
'Y;')’sz(J[ pund( ) sc( )] ( )
FEach waveguide mode indepdently interacts with
the transverse components of the electron velocity to
produce a combined longitudinal ponderomotive field:

Epona(2) = ZCq(Z)gi,""”(x, yye ittt (12)

where g’”"’ =73, KB +TV* x.@‘lt]

The space-charge field E\c(z) which is caused by
the density modulation, can be found by solving the
Poisson equation:

LD L Lo (13)
dz €y

The FEL interaction is fully described by the linear
set of eq. {7} and the cold-beam plasma fluid equations
(eqs. (1)-(13)).
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4. The coupled-mode dispersion equation

After some extensive algebraic steps, the FEL inter-
action equations can be reduced to a set of lincar
differential equations of the third order for the slowly
varying amplitude of mode g:

3 il
’ - 2 ki d
C2) = 20,55 C,(2) + (6 - 03) 37C,(2)
= ZQafrf'Cq'(z) e I, (14)
'

Here we use the following parameter notations.
(a) Detuning parameter:

Wy

6, = v —(k,, tk,)

Z

(b} Space charge parameter:

2 2
pr=r __T0°
[T 2 7
Vioo vivmeVi
(c} Gain parameter: Q= xw.ﬂﬁ, where the cou-

pling parameter 15 given by
o Z>
kay = g (Kaa T ) [ [ £ NEE" 6 9)
]

x[73(x, v) &% ,(x. y)] dx dy, (1)

and f(x, y) is the e-beam transverse profile.

) Ak, =k, — k.

Assuming that there are no prebunching effects, i.e.
Aifz=0)=8z=0)=E(z=0)=0, one can derive
the gain-dispersion equation for the gth transverse
mode from a Laplace transformation in the z variable
of the FEL interaction equations:

Z(5) =G, (5)C,(z=0)
+ Y G (S)C, (s +ibk, 0 ), (16)
qa'#q
where G,.(s) is the well known single-mode gain-dis-
persion relation developed previously in refs. [6,7]:
(s—i8,)" + 62

[(s 367 +02] —04,
5| (s —i8,) +3p] —Qy
It describes amplitude growth and phase development
of the gth-order mode due to self-excitation. The
mutual interaction between the gth-order mode and

another g’ # ¢ mode which is excited by it, is expressed
by:

Gul) =

(17)

Qqq' )
s|(s-ia,) +62] - @,

The evolution of each transverse mode along the
interaction is obtained from the solution of the set of

qu'(s) = (18)

coupled mode cquations (eq. (16)). However, in order
to find the FEL gain at a certain frequency, it is not
nccessary 1o solve for alt the waveguide modes, Only
modes that arc ncarly phase matched to each other
interact cfficicntly, and necd to be taken into account
in the coupled-mode gain calculation. These modes
can be identificd by inspection of their single mode
gain curves and observation of overlap at some fre-
qguencies. In a case of a finite set of modes, the
coupled-mode dispersion cquations {eq. (16)) can be
presented in a compact matrix form:

&(s)=T(s)C(z=0). (19)

The amplitude growth and phase development of the
entire radiation ficld is thus expressed in terms of the
initial values C{z = 0) of the transverse mode expan-
sion at the entrance to the interaction region, and a
gain-dispersion matrix [(s).

Note that the free-space or waveguide modes are
not in general the normal modes of the FEL system.
Namely, if one starls with a certain transverse mode at
z =10, it does not keep its transverse electromagnetic
field profile and polarization along the interaction
length. One can look for a new set of independent
modes that are eigenmodes of the FEL system, and
which are characterized by the feature that except for
magnitude and phase, their field profiles and polariza-
tion do not change along the propagation coordinate z.
These eigenmodes of the coupled system would be the
steady state eigenmodes of the FEL oscillator if the
resonator mirrors do not scatter the transverse modes
to each other, or reflect them discriminatively.

5. The FEL “supermodes” - degenerate case

The derivation of the FEL normal modes consists of
finding the eigensolutions of coupled differential equa-
tions (eq. (14}). Standard procedures for coupled-mode
analysis can be utilized for this purpose [22]. However,
since these standard methods were developed to solve
a coupled first-order set of equations, it helps to trans-
form the set of third-order differential equations, which
describes the FEL modes excitation, into a new set of
coupled first-order equations by definition of state
variables [23).

For simplicity we limit our attention in the present
paper to the special case of coupled waveguide modes
which are degenerate in their longitudinal wave num-
ber k.. This can be of interest, for instance, in a FEL
based on a rectangular waveguide where a number of
excited waveguide modes may be degenerate, namely
have the same wavenumber k,, and consequently have
the same detuning parameter . (There is always de-
generacy between the TE and TM modes; if the wave-
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guide cross section dimensions have integral ratios
there can be many more degenerate modes).

In the case of degenerate modes we may skip the
step of defining statc variables and start from the
third-order coupled differential equations st {eq. (14)).
It can be written in a simple matrix form:

3 d3

—C(z) - 2j0
a3 C(2) ~ U5

d
C(z)+(6§—93)~£C(z)

-Qc(z). (20)

2
z

The mode coupling is expressed by the matrix Q, which
consists of gain parameters @, - defined previously.

In every waveguide cross section, any FEL system
normal mode can be written as a superposition of the
uncoupled modes. The two representations can be
related at each point through a linear matrix transfor-
mation:

C(z)=TU(2). (21)

This transformation together with eq. (20} is used to
derive a new set of differential equations for the slowly
varying amplitudes of the supermodes U(z):

3 2

d
U(2) ~ 20— U(z) + (67 - el)av(z)

dz?
T QT U(2). (22)

If the similarity transformation T~ 'QT produces a
diagonal matrix on the left side of the above equation,
eq. (22) is a complete set of uncoupled equations and
U(z) is said to be the slowly varying amplitude of the
ith FEL supermode. The diagonal matrix elements are
the eigenvalues A; of the gain parameter matrix Q and
fulfill the algebraic equation: |Q — Al{ = 0. The column
vectors ¢; in the matrix T are the eigenvectors which
satisfy the relation Q= A f,.

The dispersion relation for the slowly varying ampli-
tude of the normal mode i is found after a Laplace
transformation of the last equation. Noting that if
there are no prebunching effects, the initial conditions
at the entrance of the FEL interaction region are

ElUz=0] =3 [U(z=0] =0,

the gain-dispersion relation is directly found:

~ %(S) B (3_36)2—'_65
HERTTEE) R (RS B

(23)

Thus for the case of degenerate coupled modes, the
dispersion relation (eq. (23)) for the FEL normal modes
resembles the single-mode gain-dispersion equation
(eq. (17)) except for the gain parameters A; which are
in this case the eigenvalues of matrix (.

6. Two-mode coupling

We demonstrate the coupled-mode formalism de-
scribed in the previous section on a waveguide FEL in
which only two modes are excited. In this case the set
of eq. (20) consists of two equations which are coupled
through a 2 X2 gain parameter matrix Q, and two
supermodes need to be identified. First the eigenvalues
of the matrix Q are found from a quadratic determi-
nantal equation:

’\|,2=%[Qn +Q@n (0 - sz)z +40:0Q |-
(24)

These are the “gain parameters” of the FEL normal
modes needed in the expression for the gain-dispersion
relation {eq. 23)) of the normal modes.

The relation between the slowly varying amplitudes
of the uncoupled modes and the FEL normal modes is
expressed by the transformation T which contains the
etgenvectors of Q in its columns:

C,(z)] [le Ay — Q|| Ul2)
Cy{z) M-Qn @y Uy(z)

Note that one element of each eigenvector is deter-
mined arbitrarily. This leaves some latitude of choice
in the linear waveguide mode combination to make up
the normal-mode solutions.

In certain cases {e.g. when the electron beam width
is narrow relative to the profiles of the modes) the
relation Q| =0,,0p» — @@y =0 is satisfied (see
eq. (15)). In this case A, =0, + Q4 and A, =0. In
general we obtain the important result that one of the
supermodes has gain that is higher than that of either
separate waveguide modes when calculated in a
single-mode gain analysis.

. (29)

7. Numerical results

The numerical gain calenlations presented here are
of the millimeter wave free-electron maser (FEM) pro-
posed by FOM for thermonuclear fusion [24,25]. This
FEM is based on an electrostatic accelerator and de-
signed to attain 1 MW cw from a 2 MeV, 10-20 A
electron beam at a frequency band of 150-300 GHz.

The rf cavity is an overmoded rectangular wave-
guide in which several transverse modes may be ex-
cited. Since the FEM utilizes a magnetostatic planar
wiggler (A, = 4 cm}, only modes with an electric field
component in the transverse wiggling transverse direc-
tion will be excited. The contribution of the mode to
the interaction is also determined by its field intensity
at the center of the waveguide where the electron
beam passes. For the case of a narrow beam, modes
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that are nuli at the center of the waveguide may not be
excited effectively. The modes found to be within the
frequency range of operation of the FOM-FEM and
exhibit substantial gain are the TE,,, TE,, and TM,
modes.

In a rectangular waveguide with cross section di-
mensions a X b, transverse modes TE,,, TM, ~are
degenerate in their longitudinat wave number &k, if
they have the same k | ., = [(mm/a)* + (nw /b))
This points out that the TE,, and TM,, modes will
operate at the same frequency and they can both be
excited simultaneously. Moreover, these modes will be
coupled to each other by the e-beam of finite cross
section. It is thus necessary to use a coupled-mode
theory for solving for the accurate gain in the fre-
quency domain where they exhibit gain.

For the parameters of the FEL listed above, it is
found that all other waveguide modes are far from
being phase matched and their gain curves do not
overlap. Non-synchronous modes do not contribute to
the interaction with the e-beam and need not to be
taken into account in the coupled-mode analysis.

Fig. 1 illustrates the gain curves of the TEy,, TEy
and TM,; waveguide modes as a function of the oper-
ating frequency. The results of the single mode gain
calculations for modes TE,, and TM,, are given in
dashed lines and their resultant supermode gain calcu-
lated from the coupled mode formalism is shown in a
continuous line. Higher-order modes correspond to
operating frequencies below the range of the present

6 “SUPERMODE"

. GAIN

98.6 215 316
12i 265 345
Frequency [ GHz
Fig. 1. Gain curves of transverse modes in FOMs free electron

maser (FEM).

design. Evidently, substantially higher gain is attained
in the more accurate coupled-mode model.
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