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A theoretical and numerical investigation of the effects of azimuthal and radial spreads of canonical 
momentum on an electron beam focused by a magnetic lens in the presence of space-charge forces 
is presented. The particles are inserted with an initial Gaussian distribution in the transverse space 
and in the momentum coordinates or with a uniform initial current distribution. The particle 
trajectory equation is derived for parameters of an arbitrary applied fields configuration with 
cylindrical symmetry, and a nonvanishing initial canonical momentum. In the absence of an initial 
momentum spread particles launched above a critical radial distance from the axis exhibit a 
phase-space tearing effect in the electron distribution. The inclusion of initial canonical momentum 
spread in the model allows for skewed trajectories with strong centrifugal force which prevents the 
appearance and overshadows the effect of strong space-charge forces near the axis, which are 
responsible for the phase-space tearing effect. 0 199.5 American Institute of Physics. 

I. INTRODUCTION 

For many applications such as microwave tubes,’ free- 
electron lasers (~TLs),~ high-energy injector linacs,3 and oth- 
ers, a low-emittance high intensity beam is an essential re- 
quirement. For FEL experiments, the e-beam is 
preaccelerated, bunched, focused, then matched to the main 
acceleration section in order to inject it into the wiggler.4 The 
beam quality requirements inside the wiggler are in general 
very stringent: the beam in the low-energy section is typi- 
cally dominated by space-charge forces. Electron-beam 
transport through this section may spoil the beam quality as 
evidenced by emittance growth due to space-charge forces; 
this limits the gain that can be expected for a given set of 
parameters. In many cases the beam emittance could play a 
significant role in the device behavior. Azimuthal and radial 
spreads of the canonical momentum that were generated 
close to the cathode influence the individual electron trajec- 
tories. This effect yields subsequent current-density phase- 
space distributions which differ from those estimated by 
models which do not consider these spreads. A model based 
on particle equations of motion which are used to derive the 
particle trajectories for a general field structure is presented 
in this paper. The present treatment considers the problem of 
a continuous, azimuthally symmetrical beam taking into ac- 
count azimuthal and radial spreads of canonical momentum 
and space-charge forces. This is an extension of conventional 
models which consider the phase-space coordinates (r,p,.) 
only. Here we also allow a spread in the azimuthal momen- 
tum pe. We introduce also a method of treating the space- 
charge forces for any given particle distribution. This model 
permits analysis of a beam with any initial charge distribu- 
tion and therefore can be used to study the emittance growth 
problem. Focusing of an e-beam with an initial uniform dis- 
tribution or Gaussian distribution is studied as an example. 
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Electron trajectories, phase space, and current-density evolu- 
tion are presented and compared for both distribution func- 
tions. 

II. EQUATIONS OF MOTION 

The motion of an electron is governed by the Lorentz 
force equation 

I;= -e(E+vXB), (1) 
where p= ymv is the relativistic kinetic momentum and m is 
the electron rest mass. The total normalized energy of the 
electron is given by 

y= ( 1 - p7 - 1’2, (2) 
with p=Ivl/c, where v is the electron velocity and c is the 
speed of light in vacuum. Here and throughout this paper, the 
overdot denotes derivative with respect to t and the prime 
denotes derivative with respect to z. In this force equation, E 
and B are macroscopic fields that are generated by external 
coils, charges, and currents. 

The radial component of the force equation (I), in cylin- 
drical coordinate system, is 

ymi--ymrt!?2+jmi=-e(E,+rbB,+E~-u,B~), (3) 

where Ef! and Bb, are the electron-beam self-fields. 
It is convenient to take z as the independent variable and 

replace the time derivation by 

d d 
z=VZ Z’ (4) 

Using this relation and the axial component of the force Eq. 
(1) in Eq. (3) results in 

e rrr = - 2 (v,B,r8’+v,B,rr’8’+E~-v,B$) 
vu, 

+ rC2. (5) 
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The field components in this equation, B, and B,, describe 
the magnetic (solenoidal) field in the radial and axial dimen- 
sions, respectively. These components are applied externally 
and are functions of r and z. 

The angular velocity is obtained from the conservation 
of the canonical angular momentum, 

8’(r,z)= 
eBZ(r,z) bo(rO) 

2 YmcP, 
+ 

ymcP,r" 
(6) 

where Le,,(ro) = Pe,ro - eBZo(ro)r$2 is the canonical 
angular momentum at the entrance plane (z =0) and r,, is the 
radial distance from which the particle is launched. We as- 
sume that the electrons in the beam may have nonvanishing 
initial canonical angular momentum, Ltio # 0. Note that 
such electrons never cross the beam axis because of the cen- 
trifugal force and they follow nonmeridional trajectories 
(never cross the axis in the rotating Larmor reference frame). 

The space-charge fields can be derived straightforwardly 
by using an assumption of a slow variation of the current 
density in the axial dimension. The azimuthal magnetic self- 
field is obtained from the axial component of Ampere’s law: 

Bbe(r~Z)= ? /or5J,(5,Z)d(= & Z(r,z), 

where f(r,z) is the total current contained within a circle of 
radius r around the z axis: 

(8) 

The radial electric space-charge field is determined from 
Gauss’ law: 

E3r4 = p-& I 
i&(r,z)dt= ,::‘I’, . 

0 2. 
(9) 

Substituting the angular velocity from Eq. (6) and the self- 
fields of the e-beam given by Eqs. (7) and (9) into the radial 
equation of motion, Eq. (5), yields 

rtt=-[!!$2]2r+[&]2$-~, (lo) 

where i’ll(r,z)=eB,(r,.z)/2ymcp, is the Larmor fre- 
quency, and K(r,z) is the radius dependent e-beam per- 
veance, defined as 

K(r,z)= ym:2p2 [@(r,z)-v,@(r,z)lr 
z 

(11) 

The first term (Lorentz force) in the rhs of Eq. (10) is a 
focusing force while the two last terms (the centrifugal and 
the space-charge forces) are defocusing forces. Equation (10) 
is a general equation of motion which defines the electron 
trajectories in the presence of magnetic and space-charge 
forces of cylindrical symmetry. 

Ill. ELECTRON-BEAM REPRESENTATION 

The algorithms used to sample the electron-beam distri- 
bution, calculate the self-field forces, and represent the re- 
sulting current-density distribution are outlined in this sec- 
tion. Assume that the electron-beam cross section is sampled 
and represented by N, macroparticles. The total current to be 
inserted in Eqs. (10) and (11) which induces fields that act on 
the ith macroparticle located at ri is given by 

(12) 

where Zj is the current that is represented by the jth macro- 
particle located at rj , and ~j(z) is . 

aj(Z>' 
1, for rj<ri, 

0, otherwise. 

Consider now an e-beam with an initial uniform current- 
density distribution in the radial dimension; the total current 
in the beam cross-section area is divided into a large number 
of equally spaced cylindrical shells, each with current 1;. 
with this method of sampling the current at each cylindrical 
shell of the uniform distribution beam is proportional to 
(rF-rT-l). 

For an e-beam with an initial Gaussian distribution, the 
beam at the entrance plane is assumed to be in its waist and 
the normalized Gaussian distribution function is given by 

(14) 
The problem can be simplified by exploiting the azimuthal 
symmetry and transforming fo(x,y,pX ,p,) into a cylindrical 
coordinates system resulting in the normalized distribution 
function 

go(r,p,,p&=-$&exp[ -(&+‘y[‘)]. (15) 

For proper sampling, distribution functions are divided into 
N,= N3 equal area segments where N is the number of mac- 
roparticles in a given dimension. One macroparticle is placed 
at the center of mass of each of the N equal area segments, as 
shown in Fig. 1. 

In this sampling procedure each macroparticle carries 
the same portion of the beam charge, Ii= IbIN,. Conse- 
quently, the current in Eq. (12) becomes 

where 1, is the total current in the beam, N, the total number 
of macroparticles in the model, and n the number of macro- 
particles that are located below ri. The expressions in Eqs. 
(12) and (16) are used for the calculation of the perveance as 
defined by Eq. (1 l), and substituted in the equation of motion 
(10). We note that the Gaussian canonical momentum distri- 
bution functions [Figs. l(b) and l(c)] are also used for the 
case of a beam with uniform distribution function in the 
radial dimension. 
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FIG. 1. The distribution functions were divided into N segments each of the 
same area. One macroparticle is placed at the center of gravity of each 
segment. Distribution functions shown are for (a) the radial dimension, (b) 
the radial momentum, and (c) the azimuthal momentum. 

After calculating the trajectories of the sample macropar- 
titles we need to find a way to recover a smooth current- 
density distribution out of the discrete spiky current-density 
distribution of the sample particles. Due to the azimuthal 
symmetry, the current Ii associated with each macroparticle 
located at ri is distributed uniformly along a circular contour 
so that current density of this cylindrical shell current is 
given by 

JxW,Y ‘I= & S( @-q-r& 
t 

(17) 

This sampling current density can be turned into a smoothed 
current density function by converting it with an appropriate 
spread function, e.g., a Gaussian: 

Xexp _ (x-x’)2+(Y-Y’)2 
2 dx’ dy’. 

Wi 

(18) 
The width of the Gaussian spread function wi is determined 
by a statistical criterion. One would expect that if the circle 
of radius wi encompasses most of the electrons originating 
from the phase-space segment of the initial distribution rep- 
resented by sample particle i, then the distribution due to the 
smoothing process is no greater than the loss of information 
produced by the sampling process. This loss of information 
can be reduced by increasing the number of sampling par- 
ticles until the computed current-density distribution does 
not change. 

After substituting Eq. (17) into Eq. (18) we get 

2rri COS( ~’ - ~) 

2 d@. 09) 
wi 

Solving the integral in Eq. (19) gives the following result 
(which is as expected independent of 4): 

Nt r2+ rf 
J,(r)= C 5 exp - 2 

i=l I i i (20) 
wi 

~oL%r), 

where Zo(pCLir) is the modified Bessel function of the first 
kind with ,ui= 2r,lw’. 

IV. PARTICLE TRAJECTORIES IN A SOLENOIDAL 
FIELD 

The equation of motion is now slightly developed in 
order to solve a specific problem of e-beam transport in a 
solenoidal focusing magnetic field. Assume an axial mag- 
netic field on-axis given by the analytical expression 

B(O,z) = B. 
exp( - z2/2b2) 

1+z2/a2 ’ (21) 

where a and b are constant coefficients.5’6 This distribution 
which models the field of an iron core solenoid axial mag- 
netic field is plotted in Fig. 2. 

The radial dependence of the focusing magnetic-field 
components can be approximated by a Taylor-series expan- 
sion, and expressed in terms of the axial field on-axis and its 
derivatives? 

B,(r,z)=B(O,z) - ( 1/4)B”(0,z)r2, (22) 
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FIG. 2. The axial magnetic field along the z axis. 

B,(r,z)--(l12)B’(0,z)r+(l/16)B”‘(0,z)r3. (23) 

The above expansions of the magnetic field are substituted 
into E,q. (10) to get the radial equation for the electron tra- 
jectories, %(Z) [ I[ 2 B’ I 

l- 

‘“=; g;,;f;r;L;;, i;;;;2;, 

(24) 
where w,(z)=eB(z)/2ymcp, is the local Larmor fre- 
quency. In this equation, third-order terms and higher are 
neglected. The axial velocity of the electron is determined 
from 

p:= Jqqg?J (25) 

where y is constant. Eqs. (ll), (12), (24), and (25) should 
solved simultaneously in order to simulate the electron tra- 
jectories and the beam behavior for a particular configura- 
tion. Note that Eq. (24) differs from the equation of motion 
which was derived in Ref. 5 by the last two extra terms in the 
rhs which are added to allow an initial canonical angular 
momentum spread in the beam which as, as shown subse- 
quently, has an important effect. 

V. SPACE-CHARGE EFFECTS 

We solve numerically Eqs. (1 l), (12), (24), and (25) for 
the following parameters: a uniform 5 keV, 200 mA e-beam 
with a radius of t-,=20 mm. The particles are launched par- 
allel to the axis of a magnetic lens which is located at z=6 
cm. For studying the space-charge effects, zero initial ca- 
nonical momentum spread is assumed (Leo = 0). In Figure 
3(a) we present the trajectories in the case of no magnetic- 
field aberrations (B’ = B”=O) and no space-charge forces. 
When aberrations are included (B’#O, B”#O), particles 
cross the axis at different axial positions; thus the focus point 
is smeared out [Fig. 3(b)]. The outermost particle crosses the 
z axis before the others. 
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FIG. 3. Particle trajectories, in the absence of canonical momentum spread 
(for uniform current density): (a) without space-charge forces and field ab- 
errations; (b) taking into account the field aberrations but still without space- 
charge forces. The dashed line represents the axial magnetic field. 

For a uniform density current at z=O, the e-beam per- 
veance given in Eq. (24) is proportional to r2. When the 
nonlinear terms in the first parentheses are negligible com- 
pared to unity, and in the absence of a canonical angular 
momentum spread, Eq. (24) simply includes two terms, 

r”= -[ j--(z)- !$2]r, (26) 

where k,(z) = w,(z)lu, and kL(z) = o,(z)/u, are the plasma 
and Larmor wave numbers, respectively, with 
6$(z) =eJb(z)leoy&nu,. These linear forces are the 
magnetic-field force which tends to focus the beam and the 
space-charge force which repels the particles. Since the cen- 
tral forces behave like a linear pendulum with a constant 
restoring force for any r<r, , particles in a monoenergetic 
beam which are launched parallel to the axis will follow 
scaled trajectories [i.e., at any z the ratio 
r(z)lr,(z)=constant for each one of the particles in the 
beam] and thus will exhibit a laminar flo~.~ The electron 
beam (sampled in the simulation by 1600 macroparticles) is 
focused to a waist from which it diverges due to the high 
charge densities as shown in Fig. 4(a). The beam waist oc- 
curs at about 10 cm away from the lens center. We denote 
this distance by z, . By adding field aberrations, some of the 
particles (the outermost ones) acquire radial momentum suf- 
ficient to overcome the space-charge repulsion and cross the 

J. Appl. Phys., Vol. 78, No. 1, 1 July 1995 M. Cohen and A. Gover 19 

Downloaded 31 Jul 2007 to 132.66.194.195. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



108.0 

a- 
90.0 g 

. . i 

-20.0 ..+’ i p..* . . . I ( n , - , I , 1 10.0 
0.0 5.0 10.0 15.0 20.0 

20,0 pe[r-bl/pb = 0.00 P+opb= om 

10.0 ) 

j (b) j 
1 

. . . . . . . . . . . _________._____. __ ..-...-.. L 

1 0.0 
-,o,o . . . . . . . . i . . ..__ j _.__. . . . . . . ..L.i . . .._.____ . . . . ..i... L -_/ .......; i . . . . . . . . ,‘\ . ..“-.--. yqo 

0.0 5.0 10.0 15.0 

108.0 
a 

90.0 ;8’ 

z.0 3- 

54.0 2 
3 

36.0 -$ 

8 
18.0 %  

0.0 

FIG. 4. Particle trajectories, in the absence of canonical momentum spread 
(for uniform current density): (a) including space-charge forces but with no 
field aberrations; (b) in the presence of both space-charge and aberration 
forces. The dashed line represents the axial magnetic field. 

axis [Fig. 4(b)]. The beam waist is still located at z, , and is 
surrounded by a weak halo. The particles that cross the axis 
contribute to this beam halo. 

The current-density evolution is shown in Fig. 5. When 
the field aberrations are not included the beam is focused and 
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FIG. 5. The current-density evolution along the 2 axis for a beam with an 
initial uniform distribution function. The left column is obtained in the ab- 
sence of field aberrations and in the right column they are included. 
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the current density reaches a maximum value at z,= 15 cm. 
If the aberrations are taken into account, the current density 
in the beam cross section at z = 10 cm is high at its bound- 
aries (the second plot on the right column of Fig. 5) due to 
the outermost particles which cross other particles trajecto- 
ries. At z = z, = 15 cm a very high current density appears on 
the axis and is surrounded by a halo. 

Downstream the beam waist, at z=20 cm, the beam ex- 
pands and the peak current density decreases at the beam 
core, but the halo still exist around it. Another phenomenon 
that is observed in this case is the phase-tearing effect which 
was reported by Loschialpo et cd5 In this effect the outer- 
most particles cross the axis and the other particles change 
their radial positions in such a way that the ray order is 
inverted. 

If the particles are not distributed uniformly, the space- 
charge force is not proportional to the radial distance r. For 
instance, if particles have initially a Gaussian distribution 
function, the space-charge force in the beam varies as 
[ 1 -exp(-r2/2ri)]lr and achieves its maximum value at 
rc= 1.585rb. For comparison purposes of the Gaussian 
beam and the uniform beam case, we define the effective 
radius of a Gaussian beam [rb in Eq. (15)] to satisfy the same 
peak of intensity and total current as a uniform beam (a top 
hut beam), namely, rb= r,/d. In the present examples, for a 
Gaussian beam we take at z=O a 5 keV, 200 mA e-beam 
with rb= 14.14 mm. As was mentioned before, each macro- 
particle represents the same current fraction of the total beam 
current. The particle trajectories of a Gaussian e-beam pass- 
ing through a thin magnetic lens in the absence of aberra- 
tions and with no initial canonical momentum spread are 
presented in Fig. 6. For the sake of clarity, we plot the tra- 
jectories in a radial range of [-20,201 mm. The particles are 
launched from the entrance plane (z=O) parallel to the axis, 
6 cm behind the magnetic lens. Since the current density is 
not uniform, the space-charge force is not linear with r and 
hence the charge flow is not laminar as shown in Fig. 6(a). 
Many particles surmount the space-charge force and cross 
the axis. If lens aberrations are included [Fig. 6(b)], the ra- 
dial slope of each particle becomes more tilted and the num- 
ber of particles that overcome the space-charge repulsion 
force and cross the axis is increased. Particles which are 
initially located above rc experience less space-charge repul- 
sion than the inner ones. These particles acquire a radial 
momentum large enough to overcome the space-charge 
force, cross other trajectories, or even cross the axis. 

The current density evolution for the Gaussian beam 
case is presented in Fig. 7. One can notice that if there are no 
aberrations (the left column plots of Fig. 7) the particles in 
the beam are still distributed Gaussianally even after passing 
the magnetic lens center, at z = 10 cm. At z = z, the particles 
that acquire a radial momentum large enough to cross the 
axis are responsible, in the present conditions, for the halo 
around the beam core. When the aberrations are taken into 
account (the right column plots of Fig. 7), the Gaussian cur- 
rent density soon changes its distribution and at z = 10 cm, 4 
cm away from the magnetic lens center, a halo has begun to 
form around the beam core. It is found that at z=z,,, and 
away from this point, the beam cross section is more wide 
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FIG. 7. The current-density evolution along the z  axis for a beam with an 
initial Gaussian distribution function. The left column is obtained in the 
absence of field aberrations and in the right column the aberrations are 
included. 

FIG. 6. Particle trajectories, in the absence of canonical momentum spread 
(for Gaussian current density): (a) taking into account space-charge forces 
but still without field aberrations; (b) in the presence of space-charge forces 
and field aberrations. The dashed line represents the axial magnetic field. 

and the current density is a monotonic function of r, as 
shown in two last plots on the right column of Fig. 7. 

of these cases for an e-beam which initially has a uniform or 
Gaussian charge distribution in the radial dimension. The 
e-beam and the magnetic lens parameters are the same as in 
the previous examples. We compare the phase space at three 
different points along the axis: before the beam waist posi- 
tion (z = 13 cm<z,j, at the beam waist position (z =z,= 15 
cm), and beyond the beam waist position (z =20 cm>z,j. In 
all three cases the aberration terms are included. For the sake 
of clarity we present in the phase-space plots only a diluted 
part of the total number of macroparticles that were simu- 
lated. 

VI. EFFECTS OF AZIMUTHAL AND RADIAL SPREADS 
OF CANONICAL MOMENTUM 

In general, if a particle is launched with an initial ca- 
nonical angular momentum, it will never cross the axis. 
When the e-beam has an azimuthal momentum spread, it 
prevents most of the particles from crossing the axis. The 
effect of the azimuthal and radial spreads of the canonical 
momentum can be best shown in phase space. We display a 
partial 2D phase space in which the coordinates are the radial 
position and the radial slope (r,r’) of each particle trajectory 
in a given axial position. If the beam is azimuthally symmet- 
ric, as in the present model, the elliptical phase-space distri- 
bution is the same in any transverse direction, and we can 
define the emittance of the beam at the entrance plane as 

c= vdbl, (27) 
where rb is the beam waist radius and C&l = PbLIPZ is the 
momentum spread half-opening angle. If we assume a trans- 
verse momentum spread of & =2 mrad, then for the beam 
of radius rb=20 mm this spread corresponds to a beam with 
emittance of 407r mm mrad. We simulated three different 
cases. In the first case the beam has no canonical momentum 
spread (p,=O, pe=Oj, in the second case the beam is as- 
sumed to have only an azimuthal canonical momentum 
spread (p,=O, pe#Oj, and in the last case a radial canonical 
momentum spread is added @ ,#O, pe#Oj. We simulate each 

In Figs. 8 and 9 each point represents a single macropar- 
title. Figure 8 presents the results for an initially uniform 
beam distribution. The case where the beam contains no ca- 
nonical momentum spread is shown in Figs. 8(a)-8(c). 
These results were already presented in real space in Fig. 
4(b), and they agree with what was reported in Ref. 5 includ- 
ing a phase-space tearing effect. Note that in this singular 
case we permit r to assume negative values. In Figs. 8(d)- 
8(f) we add an azimuthal momentum spread to the beam. 
The consequence of this spread is a strong reflection of the 
particles away from the axis due to their centrifugal force. 
The particle trajectories are focused to a small radius spot 
centered on axis at z = 13 cm which is closer than the beam 
waist position in the absence of azimuthal spread, z,, . No 
particle crosses the axis. At z= 15 cm all the particles are 
already reflected and the beam expands. The inclusion of a 
radial momentum spread in the beam initial distribution 
[Figs. 8(g)-8(i)] causes the particle trajectories to be entirely 
reflected from the axis at a point which is even farther than 
z= 13 cm and closer to the waist position z, of the cold 
beam. 

The phase-space evolution of a beam with an initially 
Gaussian distribution with no canonical momentum spread is 
depicted in Figs. 9(a)-9(c). These results are already shown 
in real space in Fig. 6(b). In the presence of azimuthal mo- 
mentum spread in the beam, the particles which are not re- 
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FIG. 8. Phase-space evolution for an e-beam with an initial uniform charge distribution at three distances along the axis: (a)-(c) without azimuthal and radial 
spreads, (d)-(f) including azimuthal momentum spread (p,=O, ps#O), and (g)-(i) Including azimuthal and radial momentum spreads (p,fO, ps+O). 

fleeted yet from the axis at z= 13 cm [represented by the 
points in the fourth quadrant in Figs. 8(d) and 9(d)] are dis- 
tributed the same as for the uniform beam case. However, 
there are much more particles that are reflected from the axis 
and the projected phase-space area is much larger than in the 
uniform beam case. The same effect is shown in Figs. 9(g)- 
9(i). From Figs. 8 and 9 it is clear that the effect of the 
azimuthal and radial spreads of the canonical momentum on 
the e-beam focusing characteristics is to produce a phase- 
space area growth and to prevent the phase-space tearing 
effect which was predicted by a model which does not in- 
clude this spread. 

Comparison of Fig. 9 to Fig. 8 indicates that there is an 
excessive growth in the effective phase-space area of the 
Gaussian beam as compared to the uniform distribution 
beam. This can be attributed mostly to the nonlinear space- 
charge defocusing effect which takes place with nonuniform 
electron current distribution. This is seen already at z = 13 
cm, for which even for the cold beam cases the Gaussian 
beam [Fig. 9(a)] exhibits larger canonical momentum spread 
and a highly nonlaminax flow, where the dots in the third 
quadrant in Fig. 9(a) correspond to electrons crossing the 
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axis well before the waist position. There are no such elec- 
trons in the uniform current distribution case [Fig. 8(a)]. This 
excessive canonical momentum spread effect is even more 
pronounced in the case of a beam with initial canonical mo- 
mentum distribution [Figs. 8(d)-8(i) and 9(d)-9(i)], where 
one notes that already at z = 13 cm there are many more dots 
in the first quadrant (corresponding to diverging electrons) in 
the Gaussian beam case [Figs. 9(d) and 9(g)] than in the 
uniform beam case [Figs. 8(d) and 8(g)]. 

In comparison of the cold beam cases [Figs. 8(a)-8(c) 
and 9(a)-9(c)] to the canonical momentum spread cases 
[Figs. 8(d)-8(i) and 9(d)-9( )] i we note that in the latter case 
there are no electrons in the second and third quadrants. This 
is well understood from Eq. (24) which does not admit solu- 
tions for r which reverse sign for any z, as long as the cen- 
trifugal force (the fourth term in the equation) does not van- 
ish. This tends to reduce dramatically the phase-space 
tearing effect predicted in Ref. 5 (namely, an abrupt disor- 
dering of the electron trajectories) because of two reasons: 
(a) much less electrons can arrive to the core of the beam 
near its axis and produce there an excessive space-charge 
force for the other electrons; (b) the effect of this excessive 
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PIG. 9. Ph;ue-space evolution for an e-beam with an initial Gaussian charge distribution at three distances along the axis: (a)-(c) in the absence of azimuthal 
and radial spreads, (d)-(f) with azimuthal momentum spread (p,=O, pe#O), and (g)-(i) with azimuthal and radial momentum spreads (p,#O, pe#O). 

space-charge force near the axis is small in comparison to the 
centrifugal force. 

In Fig. 10 the current-density evolution in the presence 
of azimuthal canonical momentum spread for both uniform 
(left column plots) and Gaussian (right column plots) beams 
is presented. As was stated previously, the charge distribution 
at := 13 cm is similar for both distribution functions. The 
peak current density for an electron beam with canonical 
momentum spread is depressed. The shape of the current- 
density function is characterized by a concave form. Note at 
z = 15 cm for the uniform case the beam has a strong halo 
surrounding a weak beam core, while for the Gaussian case 
the halo is nonexistent. 
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VII. CONCLUSION 

The particle trajectories which are obtained by focusing 
of an electron beam which has an azimuthal and radial 
spreads of the canonical momentum differ from those ob- 
tained in a cold beam. This difference predicts for a real 
beam a current-density distribution which cannot be pre- 
dicted by models that do not consider these spreads. We con- 
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Radial Distance, r [cm] 

FIG. 10. The current-density evolution along the z axis in the presence of 
field aberrations and azimuthal momentum spread. Left column is obtained 
for a beam with an initial uniform distribution function. The right column is 
obtained for a beam with an initial Gaussian distribution function. 
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elude that inclusion of azimuthal and radial spreads of the 
canonical momentum (particularly azimuthal spread) in the 
simulation of beam focusing is quite vital for obtaining a 
reliable prediction of the current distribution profiles of the 
beam at the focus region and thereafter. 
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