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Theoretical Investigation of a Free-Electron Maser
Operating with a TEM Transmission Line

losef M. Yakover, Yosef Pinhasi, and Avraham Gover, Senior Member, 1EEE

Abstract—The possibility of using the transverse electric mag-
netic (TEM) transmission line in free-electron masers {(FEM) is
discussed. It is shown that at the centimeter and long-millimeter
wavelengths such transmission lines allow one to combine the
advantages of an open cavity and a waveguide-based resonator.
A particular case of an FEM-based on the use of a shielded
two-wire transmission line is investigated theoretically. A math-
ematical approach that allows one to calculate transmission-line
parameters important to the FEM application is developed. It is
based on the use of the integral equation technigue and on a new
representation of the Green function of the internal region of a
circle, which was obtained in this paper. Numerical analysis of
effective mode area, wave impedance, and attenuation constant
was made for the odd TEM mode, which is excited in FEM
operation. The FEM under research at Tel Aviv University was
considered as an example. The frequency dependence of gain
for an FEM operating in the linear regime was calculated. That
the obtained gain value is much higher than the ohmic losses
in the transmission line shows the possibility of using the TEM
transimission line in this FEM.

1. INTRODUCTION

REE-ELECTRON lasers (FEL) and masers (FEM) [1]-[3]

are powerful sources of electromagnetic radiation. Their
principle of operation allows the construction of devices that
can radiate an electromagnetic power in a wide spectrum
from microwaves to the ultraviolet regime. Flexible tunability
and high coherence of radiation make FEL's and FEM’s
‘attractive sources for scientific, medical, and future industrial
applications.

As in conventional quantum lasers FEL's and FEM's usc a
resonator to generate electromagnetic radiation. The resonator
is placed inside of a magnet stack, a so-called wiggler,
that provides a strong periodic magnetic field. Fig. 1 shows
schematically [4] two possible configurations: (a) an open
Fabry-Perot cavity and (b) a waveguide resonator. Electrons
passing through the wiggler oscillate and radiate an electro-
magnetic wave in a resonator mode that has a strong electric
field component in the wiggling direction. The operating
frequency is determined by the synchronism condition [5] and
depends on the e-beam kinetic energy, period, and strength of
the wiggler magnetic field and on the resonator parameters.

FEL's designed for the infrared, visible, and uitraviolet
spectrum regions use the Fabry-Perot resonator operating
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Fig. 1. Schematic drawing of the FEL resonator, (1) Open cavily configuri-
tion. (b} Waveguide cavity configuration.
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pormally in the fundamental free-space Gaussian mode. In this
resonator configuration, the synchronism condition is always
fulfilled, but the waist size of the Gaussian mode (for a fixed
resonator Fresne! number) increases as the square root of the
operating wavelength. At millimeter wavelengths and into far
infrared regime, the waist size of the Gaussian mode becomes
in many design cases larger than the desirable wiggler gap,
and an open cavity is no longer suitable for use in an FEM.

This difficulty can be avoided by using a waveguide res-
onator. It allows one to reduce the transverse dimensions of
an operating mode bellow the wiggler gap size, while attaining
higher gain because of the improved filling factor. But in this
case, another difficulty appears: The synchronism condition
can be satisfied only for e-beam energies exceeding some
value depending on waveguide sizes and transverse mode
number. At millimeter waves and in the infrared regime,
this problem does not cccur as long as the wiggler gap is
many wavelengths wide and the waveguide is overmoded. But
at centimeter waves, the sitvation is more difficult because
at such wavelengths the synchronism condition is satisfed
(for conventional wigglers and moderate energy) only for
waveguides having cross-sectional dimensions exceeding the
wiggler gap.

This design difficulty prompted us to propose a shielded
TEM wave wansmission line as a basis for an FEM res-
onator, operaling at centimeter and millimeter waves. Such
a transmission line resonator combines the advantages of
both an open cavity and a waveguide based resonator, ie.,
the synchronism condition is satisfied for any e-beum energy
because the TEM mode has no cutoff, and o shield limits
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the transverse dimension of the operating mode as desirable
to obtain high filling factor and, consequently, higher gain.
The gain is further increased because of higher magnetic field,
which can be accepted by reducing the wiggler gap. Moreover,
employment of the TEM transmission line as an RF cavity
of the FEM enables tuning of the operating frequency of
the device over a wide range (for example, by changing the
acceleration voltage). We note that ficst results of an TEM-
FEM experiment based on a similar transmission line were
reported recently {6].

The shielded two-wire transmission line, which is well
known and widely used in communication, is suitable for
the proposed FEM application. This paper deals with the
analysis of transmission line characteristics that are specific
for the FEM application. On the basis of this analysis, the
expected FEM parameters are estimated. The unique features
of the proposed cavity enable designing compact and powerful
FEM’s tunable over wide frequency Fanges at the cm and mm
wavelengths.

II. FEM CONSIDERATION

Let us consider an FEM based on a shielded two-wire
transmission line placed inside a gap of a planar wiggler,
as shown in Fig. 2. The transmission line is formed of two
- identical wires of circular cross section, which are surrounded
by a cylindrical metal shield. The axes of the wires are located
in the diameter plane of the shield symmetrically with regard
to its axis.

Let us assume that the e-beam axis coincides with the axis of
the shield. The magnetic field of a wiggler forces the electrons
to oscillate in the z-direction. In FEM operation, the odd TEM
mode will be excited effectively. If the amplitude of electron
oscillations is small, it can be supposed that the electric field
of the operating mode does not change in the region occupied
by electrons.

Taking into account all mentioned assumptions, the main
FEM parameter, i.e., gain, can be calculated using the follow-
ing well-known, single-mode gain-dispersion equation [7], [8]
for the FEL operating in the linear regime’

(s — 719)2 + 9;‘3,.

Ol = WB)? + 6%) <4Q

(1}
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is the reduced space-charge parameter, 7 is a plasma frequency
treduction factor, and
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' Time dependence is presented as exp (1),
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Fig. 2. Cross section of a shielded two-wire transmission line placed between
the wiggler plates.

is the detuning parameter, ¢ = /=1, r, is the radius of e-beam,
Iy is the e-beam current, L, is the wiggler length, w is the
angular frequency of the FEM radiation, k,, = 21/X,, kg =
2n/A, 0 = /uofeo, o, €0,¢ are, respectively, the wave
number, the wave impedance, permeability, permittivity, speed
of light in free space, e is the electron charge, m is the electron
rest mass, Jy, J; are Bessel functions, and
eBy i

i =t B= /1= 1/
kmmc, K wl-i-afu/? ‘6 /7

E
Be=VI-1/3%, y=1+ %5, Vo=cB,

w @ z lfa 2]7%/2
«= gz (5) [1 -1(3) }

3., is the wiggler magnetic induction, Ej is the kinetic energy
of electrons, and A.,.. is the effective mode area of the
operating mode. The effective mode area is determined by

/ |Ex(z, )| da dy

|E:(0,0))2
where the integration is carried out over the transmission line
cross section, and E,(0,0) is calculated on the transmission
linc axis where the e-beam passes.
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Fig. 3. Nommalized effective mode area versus afb.

The extraction efficiency ng of the FEM can be estimated
by the following formula [4] -
_’_Y__,yf EK‘Ei 6
v-1 w In,

Using {6) one can estimate the extraction efficiency of the
FEM and FEL directly from the bandwidth of the small-signal
gain curve calculated in the linear regime. We should note
that when the FEM is operating in the low-gain-Compton
regime, the extraction efficiency giving in (6), can be found
from the simplified expression ng ¢ 1/2V,,, where N,, is the
number of periods in the untapered wiggler [4]. Typically,

T = —

the extraction efficiency is of the order of few percents

if an untapercd wiggler is used (see, for example, Table
III). Shortening the wiggler, and thus improving efficiency,
depends on the possibility of attaining gain values much

_larger than ohmic losses. Further efficiency enhancement can

be achieved employing tapered wiggler [9] and depressed
collector {10], [11] schemes (operation of FEL with total
efficiency exceeding 30% was reported in {9}).

1. TRANSMISSION LINE ANALYSIS

As can be seen, in order to calculate the FEM gain, one
needs to know the electric field distnbution in the transmission
line cross section, For the TEM mode, this problem reduces
{12] to the solution of the two-dimensional Laplace equation

&(p =0 ]

which, for the case of the odd TEM mode, should be supple-
mented with the boundary conditions

wls, = ~¢l,, =V, @lsa=0. (8)
These boundary conditions correspond to the oppositely
charged (up to potentials £V') wires placed within a grounded
shield.

This transmission line was analyzed in a number of works
(13]1-[15]. Standard transmission line parameters, such as
wave impedance, capacitance per unit length, and attenuation
constant, were computed in these papers. But the effective
mode area for this transmission line was not calculated before,

We will solve (7) using the integral equation technique.
Applying Green’s theorem and taking into account boundary

-

(L8]

conditions (8), we get the following integral equation

f ds' K(r,7)a{r') = V, re S (9
5
where
K(r,r') = Gl ) = Glrui'ym = ') (10)

and
G(r i, ¢') _

_ 1 | R* + T'g'r"g/R"‘ = 2rr'cos (¢ — o) (1)

Tar " 2402 — 21! cos (¢ — )

is the Green function of the Dirichlet problem for the internal
region of the circle [16] of radius R, o is the surface charge
density on the wire.

We solve the integral equation (9) using the Galerkin method
expanding o in a Fourler series

(r) =Y Ay cos (ux),

where x is the polar angle in the local polar coordinate system
(p, x), whose axis coincides with the axis of the wire [see Fig.
2(b)], A, are unknown coefficients, and the summation over
pis for p = 0,1,---, M. '

As a result of this procedure, we get a system of linear
algebraic equations (SLAE's)

re s (12)

M
Y Ap Ty = 2o (13)
Y
having matrix elemenis
2 2
T, w =a / dx / dy’ cos (ux) K (r, v’ ) cos (u'x"}
0 0
r,r €35 (14)

Here, 4,0 is the Kronecker delta.

The main difficulty in calculating T, ,.+ is that the centers of
the polar coordinate systems (p, x} and (r, ) do not coincide,
To avoid this difficulty, a new representation for the Green
function (I 1) was found. The expression (11) can be rewritten
as a power series, which for the case of p < b, o’ < b has
the form

, p< \Feos k(x ~ x')
G(r,¢;7-,¢)—— —znp>+2 ( )—A—

3 (IR%) C()sk(i—q’;)}} (15)
where
T = \/b2 +p? —2bpeosy, pe = min(p,p’)
p> = max(p, p').

Further transformations were made using the expressions
following from the summation theorem of Bessel functions

PR . ~( p\* exp(—ikx)
Exp(ib'd))f = F(U + 1);( [)) [‘(JL + I)F(U —k + l)
(16}
exp (ivp) (w 1 = ED (w4 k) exp(ikyx)
B Fg( ) T{w)C{k+ 1) ()
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-y

CONVERGENCE OF THE GALERKIN METHOD l:%ﬁ[[jC'EUI,lATING THE TRANSMISSION LINE PARAMETERS
afb
2 S5 8
y Z q i z q ) A q -
Ohm | dB/m - Ohm | dB/m o Ohm | dB/m -

! i:s.m 10964 | 79634 | 10506 | 1.1343 | 38910 | 48.656 | 1.8502 | .18021
2 21500 | 10971 | 79999 | 105.01 | 11450 | 40305 | 48468 | 1.9581 | 21138
3 215.00 | 10975 | 79886 | 104.62 | 1.1633 | 37984 | 45344 | 23259 | .12885
4 215.00 | 10975 | 79385 | 10461 | 1.1634 | 37860 [ 45311 | 23148 | 12337
5 . 79885 | 10461 | 1.1634 | 37828 | 45235 | 23314 | .11686
6 37826 | 45232 | 23310 | 11587
7 37825 | 45230 | 23317 | 11507
8 37825 | 45230 | 23317 | .11489
9 11478
10 11475

where p < b and T'(z) is the gamma function. As a result, the
representation in (18), shown at the bottom of the page, of the
kernel (10) of the integral equation (9) was achieved, allowing
for the integration of (14) analytically. Solving the SLAE, one
finds the surface charge density ¢ on a wire, allowing the
calculation of transmission line parameters.

The effective mode area, given by (5), was found by
calculating the electric field uvsing the Green theorem and
expressions (15)-(17). The result is expressed in terms of the
SL.AE solution in (19), shown at the bottom of the page, where

z=—2 (20)

‘.Tﬂ'.A()

is the wave impedance of the odd TEM mode.

The attenuation constant in the first order of perturbation
theory having small parameters w; and wg, is determined by
formula [L7]

Re(wl)/ ds3[H.|? + 2d51|HT|2
S3 51

9= 3 @b

where wy (w) is the surface impedance of the shield (wires),
H ., is the tangential component of the magnetic field found for
= wy = 0, Py is the power through the cross section of the
transmission line. Omitting the mathematical transformations,

, 1 2 coskycoskx =/ a\kcosky'
K(r,r)zé;-[ln(%/a)-!-z——-———xk -3 (5) =
k=1 k

= a* o= 7 a\"T(k+m)
N ; (2b)* kD (k) :L:’o (53) C(m+1)

cos (kx) cos (mx')

(—a/b)"™t™ cos (my) cos (m'x’)

oo b 2k[‘2(k+1) k k
-2 (ﬁ) k ZzF(m+1)[‘(m’+1)[‘(k-m+1)F(k—m’+1)

k=1,3,5-- m=0m'=0
rr eS8 (18)
A«'m = 4(:01) 2 (19)
It} ay
Za | 240{(6/R)? = 1) = T Au[5 + (b R)?) - ,ZA“(B) }
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TABLE Il
FEM PARAMETERS

tlerator
Electron beam energy E, =70 keV
Beam current Lh=1A
Wiggler
Magnetic induction 8, =300-500 Gs
Period A, =44cm
Number of periods N =17

we present here only the resulting expression
1 |[2Re(w)a & 2 b\
= e+ =
] i PR sl e

k+1 k+1 '

Z Z A,‘A#:(%)HF

pu=0p'=0

N (1 +8,0)(1 + 8,00)
T+ DTG A DTk —p+ V=7 £ 17

+ Re(wz2) D (1+8,0)4%

p=0

(22)

where

Re(w)) = Vwuo/20), Re(ws) = Jwpo/20:, a1 (03)

is the conductivity of the shield (wires).

IV, NUMERICAL RESULTS

The computed results presented in Table [ illustrate the
stable and fast convergence of the developed method as the
parameter M is increased [M is the number of cosines kept
in sertes (12)). Three transmission line parameters, the wave
impedance Z, the attenuation constant ¢, and the normalized
effective mode area A.,, = A, /mR?, calculated for b/R =
5, R =10 mm, f = 5 GHz, are presented in this table. One
can see that the convergence of Z is faster than of A,,,. The
explanation for this is that the wave impedance Z and the
attenuation constant g, unlike A, are variational functionals
(18], which are stationary at the exact solution of (9).

Studies of dependence of effective mode area on geomet-
rical parameters of the transmission line are most important
for FEM application. The dependence of A.,, versus a/h,

-calculated for various b/ R, is presented in Fig. 3. This figure
shows that A,,, decreases menotonically for /R <.5 and
has a minimum for /R > .5. In the case of small a/b, the
electric field concentrates strongly in the vicinity of the wires,
while the electric field in the center of this transmission line
is weak. So, A.,, increases when af/b - 0. In the limit
a/b ~ (R~ b)/b, which can be reached only for b/ >.5,
the electric field concentrates in the space between the wires
and the shield, so A.,, again increases.

As can be seen from (1), to achieve large gain, the effective
mode area should be small. The curves of Fig. 3 show thit

.
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Fig. 4. Normalized effective mode area. (8) Wave impedance, (b) sttenuation
constunt, and (¢} versus the distance betwesn wires.
values of A,,, as small as desired can be reached by choosing
b/R < .5 and by increasing «/b. It should be realized thut
the distance between the wire and the transmission line center
must be larger than the sum of the e-beam radius and the
amplitude of electron oscillations. This is required in order
for the e-beam to pass through the transmission line withow
interceplion. .
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-
TABLE Hi
ComparisoN BETWEEN THE ESTIMATED FEM PERFORMANCES WHEN EMPLOYING TwO-WIRE TRANSMISSION LINE OR RECTANGULAR WAVEGUIDE
Two wire shielded Rectangular
transtnission line waveguide
a=] mm
Dimensions b=5mm 22.15%47.55 mm?
R=10 mm
Waveguide charactedstics Mode TEM TE,,
Cut-off frequency 0 3.152 GHz
A 300 mm? 526.6 mm?
FEM operating frequency
{where maximum gain is 5.65 GHz 487 GHz
- obtained)
FEM performances Maximum gain 1.7 22
Bandwidth (at 3 dB level) =300 MHz =300 MHz
Extraction cfficiency =3 % =3 %
Saturation power =2 kW =2 kW

Geometrical parameters of the transmission line can be
found from Fig. 4(a), where the dependence of A,,, versus
distance (b — a) between the wire and the center of the shield,
calculated for R = 10 mim and different b, are presented. Other
parameters necessary for FEM resonator design are the wave
impedance Z and the attenuation constant g {given in Fig.
4(b) and (¢)]. The attenuation constant was calculated for a
frequency of f = 5 GHz and o) = 107 1/Ohm - m, o3 = 4 -
107 1/0hm - m. One can note that Z increases monotonically,
while g has a minimum. It is important to note that q is close
to its minimum over a rather large range of {b — a).

Linear gain calculations were made for parameters of the
FEM, which was recently operated at Tel Aviv University
{19], [20] (sece Table II). This set of parameters results in
an amplitude of electron oscillations of the order of 3 mm.
According to this, we have taken b—a = 4 mm and b = 5 mm.
From the curves of Fig. 4, we obtain the following values for
the transmission line parameters: A.., = 300 nm?, Z =200
Ohm and g =1 dB/m. The frequency dependence of the FEM
gain expressed as a ratio is shown in Fig. 5. As we see at the
operating frequency f = 5.65 GHz, the gain is much larger
than ohmic losses of the transmission line, and successful FEM
operation is possible.

To demonstrate gain enhancement when using a TEM
transmission line, we also calculated the gain curve of the
mode excited in an FEM when a 22.15 x 47.55 mm? rect-
angular waveguide is used. The effective mode area for this
case, calculated from (5). is A.,, = 526.6 mm2. Here it
Is necessary to expand the gap of the wiggler resulting in
reducing the magnetic induction to 300 Gs (instead of 501
Gs). Observe that the gain is much reduced because of the
tower power filling factor and poor wiggler's strength. Table

Transmisslon fne |
TEM mode

4 45 5. 55 13 &5 7
Frequency , GHz

Fig. 5. FEM gain-frequency response.

III compares estimated FEM performances when employ-
ing the two-wire shielded transmission line or rectangular
waveguide.

V. CONCLUSION

We proposed and studied a free-electron maser operating
with a shielded TEM transmission line. Such a transmission
line at centimeter and millimeter wavelengths combines the
advantages of an open cavity with those of a waveguide-based
resonator, i.e., the lack of frequency cutoff in the transmission
line enables FEM operation at any e-beam energy, and a shield
allows reaching a strong electric field concentration in the
region occupied by electrons (high filling factor). Continuous
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tuning of an FEM over a very wide frequency range is
therefore possible.

A numerical analysis of the transmission line parameters
was made on the basis of the integral equation technique;
we obtained in this paper a new representation for the Green
function of the internal region of a circle. We found that there
is a wide range of geometrical parameters of the investigated
transmission line in which the attenuation constant is close
to its minimal value and the effective mode area is small,
leading to high gain.

Linear gain calculations show that large gain values on
the order of !0 can be achieved. These gain values are
much above the ohmic losses in the transmission line. They
allow for the design of a compact FEL oscillator with a
short wiggler and, consequently, attain higher efficiency. The
analyzed transmission line is, therefore, of great practical
importance for high gain, continuous tuning FEM applications.
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