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Intraband radiative transitions can occur in a semiconductor with an artificial periodic structure
(superlattice). The “lattice momentum” of the periodic structure makes possible the conservation of
momentum during the electronic transition. When the electrons in the band are drifting in an electric field,
an intraband population inversion may occur, providing optical wave amplification. Under conditions where
the Landau damping of the semiconductor carrier’s plasma wave is low, phase-matched coupling may
occur between the plasma wave and a Floquet component of the electromagnetic wave and result in a high
rate of power transfer from one of the waves to the other. These effects are discussed and analyzed
quantum mechanically and suggestions are made with regard to possible device applications (amplifier,

modulator) in the infrared regime.

PACS numbers: 72.30., 78.20.J, 42.80.K, 52.40.D

INTRODUCTION

The interaction of electrons in the conduction band of
a semiconductor with electromagnetic wave which is not
energetic enough to produce interband transitions is usu-
ally very small when collisions are negligible. An elec-
tron cannot make transitions inside the conduction band
involving an absorption or emission of a photon, be-
cause the momentum of the photon is always smaller
than the momentum change which involves the electronic
transition. Appreciable coupling between the electro-
magnetic wave and the electron collective plasma oscil-
lation is also impossible because the electromagnetic-
wave propagation constant is usually much smaller
than that of the plasma wave.

Interactions of the kinds just mentioned can be made
possible if an artificial periodic structure is imposed
on the semiconductor crystal. The “lattice momentum”
of the artificial periodic structure may provide the
missing momentum and allow the interaction.

Assume a semiconductor structure with some artifi-
cial periodicity in the z direction as in Fig. 1. The
electromagnetic modes of the structure are given by
the Floquet (or Bloch) theorem:

E(r): Z;Em(x’y)expi(wt_[gmz)’ (1)

where B, =B, +m(2n/L)m=1,2,...), 8, is approximately
the propagation constant of the wave in the absence of

FIG. 1, Example of periodic structure in which interaction
occurs between E-type electromagnetic mode and drifting
carriers.
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periodic perturbation {8, ~n(w/c)cos¢], n is the index of
refraction, and L the periodicity.

If L is short enough, then some components (space
harmonics) of the electromagnetic field [Eq. (1)] may
have high enough momenta to allow intraband transitions
as in Fig. 2 or to couple to a plasma wave. An expres-
sion similar to Eq. (1) applies also for the electron
waves, and provides additional means of interaction.
However, this effect will not be analyzed in the present
paper and we assume that the periodic perturbation
affects primarily the electromagnetic field.

The analysis that follows can also be viewed as a
quantum- mechanical extension of a classical analysis
of traveling-wave interaction! of semiconductor carriers
in the collisionless regime. 2

THE DISPERSION EQUATION

Following the procedure of Ref. 2, the interaction
between the electromagnetic wave and the electrons
will be analyzed using a one-dimensional model and
coupled- mode technique. We concentrate on one of the
space harmonics which propagates in general like
E,expi(wt - Bz). The z component of this field modulates
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FIG. 2. Schematic intraband radiative transitions in one di-
mension. The dots represent electron density.
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the charge carriers, producing space-charge current
density J,(z) = J{w, 8) expi{wt — 82)

Jz:inp(wy BE,, (2)

where y, is the plasma susceptibility to be found later.
E, is the local field which is experienced by the plasma:
E,=E_,+E,,, where E,, is the plasma space-charge
tield given by the Poisson equation (rationalized mks
units system is used throughout this article):

- iBEpz = (1/€)p = iB(Xp/e)Ez- (3)
We, hence, obtain

E,=¢E,, @)

e;‘s 1+ x,/e, (5)

where € is the dielectric constant of the semiconductor
(which is real in the present approximation).

Equations (2), (4), and (5) give
Twy

J":1+xp €

E,.. (6)
This last result represents the linear plasma response
to an external field E_,. It includes as a special case
the plasma dispersion relation ;! =1 +x,(w, 8)/e=0.

This follows from requiring that J, be finite with zero
external field E,=0 in Eq. (6), which can occur only
when the denominator 1+Y,/¢ vanishes.

For completing the coupled modes analysis we need
an expression for the electric field E_, which would
be induced in the structure by a current J,. Following
Refs. 1 and 2 we use the heuristic Pierce expression

2
S
E.- S, ™
1

where S is the interaction cross-section area and 8
=hy+ 2n/L is the propagation constant of the first-order
space harmonic in the absence of charge carriers (real
number). K, is the interaction impedance! which is
characteristic to the electromagnetic mode

| Ezy |2
K = TB?F (8)
and P is the total power in the electromagnetic mode.

The dispersion equation of the coupled modes is ob-
tained by imposing self-consistency on Egs. (6) and (7).
This yields

K SBwf y,@,8)
F- B Try,@ B/ v ©
QUANTUM-MECHANICAL TREATMENT

From this point on, our analysis departs from pre-
vious treatments®™* due to our use of quantum-mechani-
cal response theory to find the susceptibility x,{(w, 8)
instead of different classical approximations. This will
result in new expressions for the traveling-wave inter-
action gain, which agrees with the classical expression
only at the limit 8; — 0. Indeed, the quantum-~mechanical
limit is of practical importance since the classical lim-
it and the Boltzmann equation do not apply in the case
of the large momentum transfer %8, achievable with
present state of the art of periodic structures
fabrication. 3¢ )
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Standard quantum-mechanical linear response theory
is utilized to calculate the plasma susceptibility x,{(w, 8).
The carriers (electrons) in the conduction band are
approximated as free carriers with an effective mass
m. Collisions are negligible and wT>>1, where 7=1072
sec is the collision relaxation time. In our model the
periodic structure affects electromagnetic wave only
and not the electrons. This can be achieved if there is
only periodic optical index modulation, and the donor
impurities doping is such that the conduction band is
flat. In the general case also the electrons will have a
Floguet-Bloch expansion and provide an additional mech-
anism for interaction with the electromagnetic wave,
which will not be elaborated on in the present article.

We start by solving the Liouville equation

i =IH, 0] (10)
where p is the electron density matrix and // the total
single body Hamiltonian. The unperturbed Hamiltonian
is simple /"’ =p*/2m and its eigenfunction solutions
are |K) = V"1/2 exp(ikr), so that 4O 1K) =& (k) |K) = *R?/
2m k) and p@ 1K) =f,(k) | k), where f,(k) is the statistical
distribution function.

The electromagnetic linear perturbation Hamiltonian
is # V=~ (e/2m) - (pA + Ap), where A(r,t) = A(B) expi (wt
- Bz) is the field vector potential, and we chose a scalar
potential gauge ¢ =0. A perturbation expansion is
assumed for p and Eq. (10) is solved for the first two

terms p»’ 4+ p'"). This results in

<k|p(1)‘k+q>

_ern_fi(k+B)-fk)
mAEw— (g - ) —

where 7 is positive and infinitesimal. (The analysis can
be extended to include collisions, in which case

n=Fk/7 is finite and kept throughout the rest of the analy-
sis. In the present paper we will simplify the presenta-
tion by confining to the collisionless regime and taking
at some subsequent point n+0.)

(k+ 2B)A(B) exp(iwt) 6,5 (11)

The induced current is found from

I(r,H)==e TrlpV 35 () +p VI (r1)],

where
J3D(2) = 4{p/mb(x - x9) + 8(r ~ £)pe/m]
and
e
I = o AES(r~r,).

Using Eq. (11), the following expression results:
J(w, B)

en? falk + B) — £y (k)
mV Y w = €= Ex) — i1

X (k+ z8)[(k+ 28) - Alw, B)],
where ny = (1/V)3, f, (k) is the free-carrier density.

2
=2 A, ) -

(12)

We finally obtain the susceptibility x,(w, 8), defined
by Eq. (2), by substituting A = (;/w)E, in Eq. (12) and
eliminating the longitudinal-longitudinal term. After
some mathematical manipulation one obtains
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__ e fulk+B) - fo(k)
Xp(w, B) =~ W?ﬁwo‘ ((fhs_cgk)—i??'

Expression (13) can now be used in Eq. (9) to solve
the coupled-wave dispersion equation. We may readily
solve Eq. (9) using first-order expansion? of 3: 8=8,
+A@ (By is the propagation constant of the electromag-
netic component with no coupling).

lp g (w, 8)
AB = 3K SPjw Ex;m . (14)

In particular,

= lp o2 Im
ImB—gKisﬁlw ,1+x €| . (15)

In Eq. (13) the summation over k is replaced by an
integration and the limit n+ 0 is taken, resulting in

___é s, Solke+By) = fo(k)
Rt~ G Of s G 16)

2
tmy = f d [ fy(k+ By) — o) 6w

- ((f-k*ﬂi_((:k)]' (17)

These last two equations can now be used in Eq. (15)
to find the gain g=2 Imp of the electromagnetic mode.

.(13)

In general the distribution function fy(k) is the Fermi
distribution which under appropriate conditions can be
approximated by the Boltzmann distribution. When a
de field is applied, f,(k) may become a quite complicated
function. An equilibrium distribution, shifted by the
amount of the drift momentum 7%k, =muv, (where v, is the
carrier drift velocity), is commonly used as a first-
order approximation, with some experimental justifica-
tion. " We will assume that Boltzmann statistics apply
and use a shifted Maxwellian distribution

@n)'n (k- kp)*
0= 7Py o (- ). )

where 7%k%,/(2m) =k, T and T is the carrier’s tempera-
ture, kz is the Boltzmann constant, and k; is in the z di-
rection (Fig. 1).

Equation (15)—(17) with the distribution function (18)
give
Img=~oa

X Im[G(gb) - G(§a)1
{1- G¥/BIRe[G(5,) - G(&)TF + 1 /BYIM{G(z,) - G(&)TF

(19)

where y3=wlm?/ilkyy, wi=ne/me, a=twK /B, &,

= (kg = ky)/ken, and £,= (By— kg)/ksn. k, and ky=k, + By

are the couple of state vectors between which transitions
occur (see Fig. 2) and are connected by the condition of
energy conservation which is imposed by the 6 function

in Eq. (17): #2(%2 - B2/ (2m) = Fiw.

The plasma dispersion function is defined (for real
argument ¢) as

ReG()=1"1%(p) [ exp(- x*)/(x - 1) dx, (20)
ImG(z) =— /% exp(- £%). (21)
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FIG. 3. The plasma dispersion equation for real argument,

It is plotted in Fig. 3 and tabulated in Ref. 8.

It is interesting to note that Eq. (9) reduces to the
expression derived in Ref. 2 in the limit 8; —0, which
appears to be the classical limit. Note also that Img
is positive (which corresponds to gain) when ImG(L,)
<ImG(g,), i.e., according to Eqs. (21) and (18) when
folky) > fy(k,). This may be viewed as the population in-
version condition for transitions from b to a (see
Fig. 2).

To demonstrate the effect let us examine an example.
Consider a structure as in Fig. 1 made out of GaAs
and some GaAs alloy (say GaAlAs). The dielectric con-
stant can be expanded in a Fourier series €(z)=¢le,,
+2¢; cos(2n/L)z). The interaction impedance for this
structure is derived in the Appendix and given by Eq.
(A2): Ky = (1/n)(1/e0)'/(1/58}) (sinp/cos ) (ery/erg)2. We
assume €-)=12, €,/¢,=0.05, L=300 A, the mode “zig-
zag” angle is chosen as ¢ =65°, the electron effective
mass is m/m=0.08, n,=8x10" cm/3 T=50°K,
ky=1.4x10° cm™, w=3.5%10" secl. Equations (19)
and (A2) yield a gain g; = 2(ImB) =1 cm™.

It should be recalled at this point that until now, we
have examined the electromagnetic-wave interaction
through its first-order space harmonic only. In Ref. 3
we proposed an approximation which accounts for the
contribution of the other space harmonics in an additive
way. Appreciable contribution should be expected from
the - 1 space harmonic which has propagation param-
eter By ~— B;. Equation (19) and an equation similar
to Eq. (A2) apply for this interaction too, ® For the
particular example above, we find that the interaction
via the — 1 harmonic contributes attenuation g_;=0.5

m™!, The total gain in this case is therefore g =0. 5
cm™,

This predicted gain will probably be masked by the
background infrared absorption in GaAs, which may not
be the case with other materials and more optimal pa-
rameter combinations. GaAs structure may, though,
be most appropriate for experimental observation of the
effect (as function of current) because of the developed
state of the art of this material, *$

Inspection of Eq. (19) indicates that higher gain may
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be possible at higher carrier concentration »n; and at
lower temperatures T. However, under these condi-
tions the electron plasma becomes degenerate and
Fermi-Dirac statistics should be used instead of the
Boltzmann statistics. This is not attempted in the pres-
ent paper.

PHASE-MATCHED PLASMON-PHOTON COUPLING

Inspection of Eq. (19) and Fig. 3 reveals that ex-
ceedingly large gain (or loss) should be expected if the
denominator of Eq. (19) is made very small. However,
this denominator is exactly the square of the absolute
value of €;! [Eq. (5)], and the parameter values w and
By at which it tends to vanish ¢;'(w, 8;) ~0, very nearly
satisfy the plasma dispersion relation and thus are
appropriate to the free-plasma-wave propagation. So
the gain (or loss) of an electromagnetic wave is high
when the propagation constant of one of its space har-
monics is close to that of the system’s plasma wave.
The physical meaning of this is that the electromagnetic
wave is phase matched to the system’s plasma wave
which leads to a high rate of power exchange between
the two waves.

To have |¢;!| small, its real and imaginary parts
must simultaneously become small,

1- (/B Re[G(8,) - G(4,)) =0, (22)
(&*/BHIm[G(g,) - G(g,)] ~0. (23)

Since ¢, > ¢,, a necessary condition for satisfying the
first condition [Eq. (22)] is ¢,>1 or ¢, <-1, because
only then can one have Re[G(Z,) — G(£,)]> 0 (see Fig. 3).
In order to satisfy the second condition too [Eq. (23)],
it is necessary to have also l¢,l, | £,1>> 1. Physically
this means operation at the “tail” of the carrier dis-
tribution function where the Landau damping of the
plasmon is small,

Coupling of an electromagnetic wave to a plasma
wave can occur together with population inversion
(24, £» <0) or without population inversion (Z,, ¢,>0). In
the first case there will be transfer of energy from the
plasma wave to the electromagnetic wave, and vice
versa in the second case. Practically it is hard to find
physical conditions for plasmon coupling with optical
gain, because this requires carrier distribution with
thermal spread which is much smaller than the drift
velocity. Examples of strong optical attenuation, on the
other hand, due to plasmon coupling are much more
readily found.

Assume again a GaAs structure as in Fig. 1 with
€ =12, €/¢,=0.05, L=1040 A, m/m,=0.08, n,=5
X10'" em™, T=350°K, ky=0, w=>5.04x10' sec™!, and
¢ =20°. From Eq. (19) one finds that the electromag-
netic wave is strongly attenuated in this condition. The
net attenuation is g=—24.5 cm™. Furthermore, this
effect can be observed as a very sharp absorption peak,
since any small change in ¢ (for example, by changing
ky) will break the “phase matching” and will turn the
denominator of Eq. (19) from a very small number to
an appreciable one, thus decreasing the attenuation |g].
It must be noted that even higher attenuation with more
convenient parameters are possible when we chose ¢,
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larger; however, in this case the effect of collisions
should be accounted for, which will not be attempted in
the present article.

CONCLUSION

We presented in this article a quantum-mechanical
analysis for the interaction of an electromagnetic wave
in the infrared regime with a free-carrier plasma in
periodic semiconductor structure. We demonstrated
by examples the possibility of optical gain and the possi-
bility of phase-matched electromagnetic-wave—plas-
mon coupling, in periodic structure, These examples
were presented just to demonstrate the suggested ef-
fects and are not optimized with respect to materials,
structural parameters, and physical conditions.

We may mention that appreciable progress has taken
place and is still expected to take place in the develop-
ment of very-short-period artificial periodic structures
(superlattice). %% At the present state of the art it seems
that periodic structure of the kind suggested in Refs.

2 and 3 (where only the surface is periodically per-
turbed) may be more readily achievable than the struc-
ture of Fig. 1 of this article. Nevertheless, we chose
to present the principles of the effects discussed
through the example of the structure in Fig., 1, be-
cause the lateral variation of the electromagnetic space
harmonic in structures with periodically perturbed
surface is quite strong and the application of the one-
dimensional analysis to that case may have a limited
validity. The structure of Fig. 1, though easier to
analyze, may be harder to produce, The consistent ad-
vancement in the technology of superlattice growth®
may provide means for its fabrication, A slightly differ-
ent embodiment of the device (Fig. 4) may be more com-
patible with the present state of the art of superlattice
growth. It may also be a more efficient structure since
it is possible to get a larger component of the electric
field along the current flow and periodicity direction.
Approximative extension of the previous analysis to
this structure indicates (for the particular example of
attenuation) a fewfold increase in attenuation which can
be achieved in this structure,

Experiments in electromagnetic-wave interaction
with semiconductor plasmas in periodic structures may

+V

FIG. 4. A superlattice structure for traveling-wave amplifica-
tion or attenuation.
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be interesting for the investigation of solid-state plas-
mons, drifting carriers distribution, and conduction-
band structure. From the device application point of
view it may be possible to utilize the optical gain for
devices in the infrared regime but achieving net gain

(in excess of the free carrier and fundamental lattice
absorption) may be rather difficult. The effect of phase-
matched plasmon coupling appears attractive as a fast
and efficient modulation mechanism in the infrared
regime.
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APPENDIX

To calculate the interaction impedance [Eq. (8)],
one must know the amplitude of the electromagnetic-
wave space harmonic Er. The electromagnetic modes
which propagate in a dielectric waveguide as in Fig. 1
can be described as two-plane-waves propagating in
“zigzag” by reflection from the boundaries. Hence, we
may solve Ez; for an infinite structure which is periodic
in z and apply it to the structure of Fig. 1.

Assume that the dielectric constant is periodic in the
z direction so that

€z)=¢ 2o €, exp(im2nz/L).

M= =

The Floquet wave solution is E(r) =}, E, expi(wf- q,r),
where q,,=q, +m(21/L)*8,, €, is a unit vector in the z
direction, and lq,!~nw/c= Ve, w/c. Then if one keeps

3950 J. Appl. Phys., Vol. 46, No. 9, September 1975

only the first-order Fourier expansion of the dielectric
constant in the Poisson equation v [e(z)E(r)]=0, a very
simple set of equations results:

6"OclmEm + 6,.1 (qum-i + qum#l) =0. (A1)

We substitute 2 =1 in Eq. (Al), and assume q,*E,
<«<qq*E,. Also we assume that 27/L > |q,| so that q
~B,=(qy*&,)e, is in the z direction. It results that E,
= ~ (er/€ry) * Ezy. The electromagnetic-mode power
which is carried through cross section S perpendicular
to éz is approximated by the power of the zero space
harmonic, so that p=3(e,/1)EZcose -5, where cosd
=(e,'q)/lql. From Eq. (8) one readily obtains

_1/p\Y2 1 sin’¢ fer\?
aea(e) e (@) a
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