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Abstract 
A three-dimensional study of transverse mode evolution in a free-electron laser (FEL) oscillator is presented. The total 

electromagnetic field circulating in the resonator is represented as a superposition of transverse modes of the cavity. 
Coupled-mode theory is employed to derive a generalized 3-D steady-state oscillation criterion. from which the oscillator 

superrnode can be found analytically in the linear gain approximation. 
The oscillator supermode. which is the eigenmode solution of the oscillator at steady-state, keeps its transverse profile and 

polarization after each round-trip. Relations between the oscillator super-mode and the umplijier supermode are discussed. It 
is shown that they are identical only when the feedback process is entirely non-dispersive and non-discriminating. 

We employ a 3-D nonlinear simulation code based on the same transverse mode expansion to demonstrate the evolvement 

of transverse modes in the oscillator towards formation of a supermode in a simple example. The simulation shows that the 
steady-state result of the oscillation buildup simulation is identical to the supermode predicted by the analytical approach. 

1. Introduction 

Theoretical studies of nonlinear and saturation pro- 
cesses, taking place in the FEL oscillator have been carried 

out by the Nizhni-Novgorod research group [l-3], the 
university of California (Santa-Barbara) [4-51 and the 
University of Maryland (UMD) [6-9). The works were 
carried out in the framework of a I-D model, assuming a 
single transverse mode of electromagnetic radiation in the 
resonator. 

In optical open resonators and overmoded waveguide 

cavities. a three-dimensional model of FEL interaction is 

required for adequate description of the oscillation built-up 
process. It was shown in Refs. [ IO,1 I], that there is a 
combination of transverse modes. which keeps such am- 
plitude and phase relations, so that the field profile of the 
radiation field (except amplitude and phase) does not 
change along the interaction region (“an amplifier super- 
mode”). In an oscillator configuration, the transverse 
dependence of the circulating radiation field is determined 
self-consistently by the amplification and feedback pro- 
cesses and evolves gradually into a steady-state distribu- 
tion (“an oscillator supermode”). 

In this paper we present a coupled-mode analysis of 
radiation field excitation in FEL oscillators. The total field 
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is represented in terms of transverse eigenmodes of the 
resonator in which the radiation propagates. The evolution 
of the radiation in the resonator into an oscillator super- 
mode is studied in the linear and nonlinear regimes, 
employing analytical approach and a 3-D simulation code. 

2. Analysis of a multi-transverse mode oscillator 

In laser oscillators, usually many transverse modes can 
be excited simultaneously and may be coupled to each 

other. Consequently, one should employ a multi-mode 
analysis including feedback conditions in order to formu- 

late the stability criterion for oscillations. Such a criterion 
is derived assuming that linear gain expressions can be still 
employed as the oscillator arrives to steady-state operation. 
This approach is similar to the one employed in general 
laser theory for estimating the threshold gain required for 
self-excitation and oscillation start-up, and for predicting 
the oscillation frequencies (longitudinal modes) in stable 
operation [ 121. 

Assuming a uniform cross-section resonator (usually a 
waveguide). the total electromagnetic field at every plane ;, 
can be expressed as a sum of a set of transverse (orthogon- 
al) eigenfunctions gq:,(_r, y) with related amplitudes C,(z). 
At the entrance to the wiggler, the modes are assumed to 
have initial amplitudes Cq(0) and the total field at : = 0 is 
given by: 
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Qx, y, z = 0) = c Cq(0)z$(.Y, ?‘) . (1) 
4 

Passing through the interaction region of the laser, the 
“slow varying” amplitude of each mode is Cy(z). and the 

total electromagnetic field at the exit of the interaction 
region can be written as: 

(2) 

where kzY is the axial propagation constant of transverse 

mode y. Part of the field is coupled out through the 
resonator out-coupler and the remainder is reflected and 

fed back to the input of the FEL amplifier, as shown 
schematically in Fig. 1. 

In the general case. the reflection mirrors can produce 

inter-mode scattering and there may be cross-coupling 
between the reflected modes. After a round trip in the 

resonator the total field circulated back into the entrance of 
the interaction region is: 

I( is the total round-trip length of the cavity, and C,(lc) are 
the mode amplitudes after a round-trip in the resonator and 

are given by: 

C,(l,) = c P,,.C,.(&). (4) 
Y’ 

where pyy. are complex reflection coefficients, expressing 
the intermode scattering of transverse mode q’, to mode q, 
due to the resonator mirrors or any other passive elements 
in the entire feedback loop. The expression for the total 

circulated field is found from Eqs. (3) and (4): 

lG(x. y, i = Ic) = C [ 2 py,.C,.(Lw) gq(.x, v) e”JL 1 (5) Y 4’ 
When the oscillator arrives to its steady-state regime of 

operation, the initial field at ; = 0 must be equal to the 

circulated field after a round-trip z = l,, i.e.: 

E(x,)1,Z=O)=E(~.V.;=I,). (6) 

By substituting in Eq. (6) the expressions (I) and (5) for 
the fields, and scalar multiplying both sides of the equation 
by the eigen-function gq(x, y). one obtains the steady state 
oscillation condition: 

Cy(0) = e’“;*” C p,,.Cy.(L_) (7) 
4’ 

It was shown in the coupled-mode analysis of the FEL 

amplifier carried out in Refs. [ IO.1 I], that the amplitude of 
the transverse modes at the output of the FEL interaction 

region can be written in terms of the gain matrix r(Lu ) of 
the FEL: 

C(L,) = lx_ )C(O) (81 

Substituting Eq. (8) in Eq. (7). we derive a set of equations 
for the amplitudes of the modes in steady-state operation: 

Cy(0) = e’“zU” C pyy. C T,.,,(Lw)Cy..(0) (9) 
4’ 4” 

The last set of equations (9) can be written in a compact 
matrix form: 

[eJk;‘, pl&) - IlC(0) = 0. (10) 

where the matrix K;. is a diagonal matrix with the 
wavenumbers k;,, on tts diagonal. The condition for a 
nontrivial solution for C(0) is vanishing of the deter- 
minant: 

leJK;‘Lpr(L,)II = 0. (II) 

This is a generalized oscillation criterion for the case 
where a number of transverse modes are excited in the 
resonator. It is an extension to the criterion derived for 
single transverse mode laser oscillators [ 121 (where the 
gain, wavenumber and reflection coefficient are scalars), 
p,T,(L,, ) e”Jc = 1. 

3. The “supermodes” of the FEL oscillator 

To derive the field profile of the steady-state eigenmodes 
of the oscillator (supermodes), we employ a linear trans- 
formation which transforms the coupled system of modes 
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Fig. 1. Schematic illustration of a free-electron laser oscillator. 
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to an uncoupled one [ 13-141. In every cross-section, each 

of the transverse (free-space or waveguide) modes can be 

written as a linear combination of a new set of uncoupled 
eigenmodes with amplitudes U(z). The relation between 
the two representations at z = 0 is given through the linear 

transformation: 

C(0) = TU(0) . (12) 

This transformation is used together with Eq. (IO) to 

derive the steady-state condition for the supermodes: 

CT(O) = T~‘[e’“;‘~pr(L,)]TU(O) (13) 

The above equation ( 13) is satisfied when the similarity 

transformation T- ’ [c’~,‘~ pr(L,)]T produces a diagonal 
unit matrix. In that case the linear transformation T 

represents the superposition of cavity modes (of amplitudes 
C,(O)) at ; = 0 that keeps its transverse features every 
round-trip in the resonator. 

Unlike the amplifier case. the supermodes of the oscil- 

lator do not, in general, keep their transverse profile 

unchanged along the resonator. Only when the feedback is 
non-dispersive, and all the modes are reflected indis- 

criminatively and without interscattering, the transforma- 
tion matrix T is exactly the transformation required in 
order to derive the supermodes of the free-electron laser 

amplifier. 

4. Transverse mode evolution in the FEL oscillator 

In order to demonstrate the evolution of the electro- 
magnetic radiation field in a multi-transverse mode free- 

electron laser oscillator into a supermode, we employ a 
three dimensional computer program simulating the FEL 
amplifier operation in the linear and non-linear regimes 
and an appropriate algorithm for feedback process thus 

simulating the oscillation built up process round-trip after 
round-trip until steady state is achieved. The FEL amplifi- 

cation code is based on a modal expansion of the total 
electromagnetic field in terms of the transverse waveguide 
modes as in Eq. (2). It solves self consistently a system of 
electron force equations and electromagnetic mode excita- 
tion equations [ 151. 

We first show the calculation of the supermode in a 

specific example based on the analytical theory in the 
linear regime. The example presented here is of the 
electrostatic accelerator free-electron maser (FEM) now 
being developed in Israel [16,17]. Fig. 2 illustrates the 
small-signal gain curves of the fundamental TE,,,, and the 
degenerate TE,, and TM?, modes, excited in the FEL 
amplifier operating in the linear regime. The results of 
single mode gain calculations (disabling coupling between 
the modes in the gain calculations) are given as dashed 
lines. Since the TE,, and TM,, modes have the same 
wavenumber. they operate in the same frequency range, 
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Fig. 2. Small-signal gain curves of the FEL amplifier. 

and can strongly couple to each other. The gain curve of 
their resultant supermode is shown as a continuous line. 
This mode, found from couple-mode theory, was identified 

in this particular case as the linearly polarized LPz, mode 

of the rectangular waveguide [ 181, which is purely polar- 
ized in the wiggling dimension. Inspection of the gain 

curve reveals that the highest gain is obtained at a 
frequency f = 116 GHz, where the linearly polarized mode 

LPZ, exhibits maximum gain. 
We now report also a complete nonlinear numerical 

simulator of the process of radiation build-up in the FEL 
oscillator. Starting from a low level of initial power, the 
radiation obtained at the output of the FEL amplifier at 
each stage is fed back to its input, as described by Eq. (7). 
assuming that there is no cross-coupling between the 
modes due to the mirrors of the resonator. The phase shift 

for the degenerate TE,, and TM,, is assumed to be 2m7r 
(the phase shift of the TE,,, is determined by its wave 
number and the length of the feedback loop). Neglecting at 

this time multi-longitudinal mode competition, we assume 
operation at a single frequency corresponding to the 

maximum linear gain of the TE,, and TM,, modes and 

uniform power reflectivity of Z = IpI’ = 90% for each of 
the transverse modes. Internal waveguide losses are neg- 
lected. 

At the first round-trip, the fundamental TE,,, mode and 
the degenerate TE,, and TM2, modes were assigned equal 
initial power and phase. The initial power was determined 
to be sufficiently small to avoid nonlinear effects on the 
first traversals. Graphs of the power carried by each of the 
individual modes relative to the total power circulating in 

the oscillator are shown in Fig. 3. The phase relation 
between the degenerate TE,, and TM?, modes is also 
drawn. 

The evolution of the single-pass gain of the individual 
modes as a function of round-trip number is shown in Fig. 
4. During several round trips, the radiation power is still 
small and the FEL is operating in the linear regime. The 
gain of the coupled TE,, and TM,, modes is self adjusted 
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Fig. 3. Relative circulating power and phase evolution of frans- 
verse waveguide modes starting from equal power and same phase 

in an FEL oscillator. 

until the power is shared in a combination that corresponds 
to the LP2, supermode. The non-synchronous fundamental 
TE,,, mode does not contribute much to the interaction. As 

the circulated power grows, the oscillator enters the 
nonlinear regime. and the gain decreases. In this regime, 
the amplitude growth of the modes restrains until satura- 
tion is reached. Saturation is characterized by a constant 
FEL gain, equal to the transmission losses of the cavity (in 
the present simulation the gain G = I /3? = 1 .I ). Observe 
that the phase difference changes until the TE2, and TM>, 
modes lock in anti-phase. This demonstrates the transverse 
mode evolution towards generation of the LP,, supermode, 

which is an anti-phase combination of the TE,, and TM,, 
modes. This supermode is the steady-state eigenmode of 

the FEL oscillator. 
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Fig. 4. Gain evolution of transverse waveguide modes starting 

from equal power and same phase in an FEL oscillator. 

It is important to note that the process of the supermode 
build-up starts well before the onset of saturation. Contrary 
to the longitudinal mode competition process, which is an 
entirely nonlinear (saturation regime) effect [l-91, the 
transverse mode interaction process takes place also in the 
linear regime. 

The simulation confirms numerically the prediction of 
the analytical model. that when the feedback is non- 

dispersive. the oscillator supermode at steady-state is 
identical to the ampl$er supermode. and produces the 
same supermode solution (the LP2, mode) that was pre- 
dicted with the analytical model. 
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