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Abstract 
In this work spontaneous emission is investigated in a waveguide free-electron maser, taking into account previously 

untreated interaction effects in the vicinity of the waveguide cutoff frequency. 
Our study is based on the exact waveguide excitation equations, formulated in the frequency domain for a single 

electron moving in a planar magnetostatic wiggler. An analytical solution of the amplitude of the excited waveguide 
mode in the frequency domain was obtained using the Green function technique and allows us to calculate the spectral 
density of the radiated power and the time-dependent radiated field with good accuracy using a numerical inverse 
Fourier transform. 

The obtained solution shows that for TE-modes the spectral density of the radiated energy tends to infinity at the 
cutoff frequency of a lossless waveguide. The character of this singularity is, however, such that the total radiated energy 
is finite. The radiated electromagnetic field in the time domain has the form of very long (of the order of tens of 
characteristic times on the scale of Ldc, where L, is the wiggler length and c is the speed of light) pulse, lagging behind 
the electron, at the carrier of cutoff frequency, in addition to two finite wave packets, corresponding to the two 
synchronism frequencies. 

The results of a numerical calculation of the radiated energy spectral density and of the radiated electromagnetic field 
in the time domain are presented. 

1. Introduction 

Free-electron masers (FEM), operating at centimeter 
and millimeter waves, usually utilize waveguide resona- 
tors. The distinguishing feature of waveguides is that 
each of its eigenmodes has a cutoff frequency and, there- 
fore, waveguide dispersion is nonlinear. It leads to the 
well-known fact that waveguide FEMs have in some 
range of e-beam energies two synchronism frequencies 
[l] (instead of one synchronism frequency for an open 
cavity configuration having linear dispersion). 

In the vicinity of the waveguide cutoff frequency 
the group velocity of the electromagnetic wave, the 
wave number and the wave impedance of TM- 
modes tend to zero, and the phase velocity and the 
wave impedance of TE-modes tend to infinity. It 
should be expected that such waveguide properties 
should have a significant effect on the FEM radiation 
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near the cutoff frequency. Analysis of super-radiant un- 
dulator radiation emission in a waveguide at beam line 
grazing conditions were published recently [2,3]. Never- 
theless, to our best knowledge, these specific effects of 
FEM interaction near waveguide cutoff are not treated 
as yet. 

In FEM oscillators, which are based on a waveguide 
resonator and intended to operate at the upper syn- 
chronism frequency, there may often be a situation in 
which the low synchronism frequency is close to the 
waveguide cutoff. In this case, parasitic FEL radiation 
near waveguide cutoff frequency may be excited and may 
interfere and draw away energy from the oscillation at 
the main frequency. 

The purpose of this work is to study the electromag- 
netic radiation of a single electron or a short bunch of 
electrons moving in a planar magnetostatic wiggler tak- 
ing into account the above-mentioned effects near the 
waveguide cutoff frequency. The emission from a finite 
bunch of electrons can be readily calculated by coherent 
or incoherent summation of the field or spectral energy 
density, respectively, that are calculated here, depending 
on the electron beam statistics. 
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2. Waveguide excitation equations 

Consider a regular metallic waveguide placed inside 
a planar wiggler, as shown in Fig. 1. Even though Fig. 1 
depicts a rectangular waveguide, all the formulae pre- 
sented in this section were obtained for a waveguide of an 
arbitrary cross section. It is assumed that the waveguide 
is matched at both ends, so that no reflected waves exist. 

A single electron moving in the planar wiggler can be 
represented by an electric current density 

J(r, t) = - eU(Zi) 6(?( - .~i) S(y - yi) 6(Z - Zi(t)), (1) 

where e is the charge of the electron, 

u(z) = ~Jz)z~ + Re[u,exp( - jk,z)], ul = - j 7x, 

(2) 

is the instantaneous velocity of the electron, xi, yi, zi are 
the coordinates of the electron position at a time t, x0 and 
z. are the unit vectors along the x- and the z-directions, 
respectively, v, is the axial velocity of the electron, 
a, = eB,/(k,mc), y = 1 + E,l(mcz), k, = 27c/l,, B, and 
i,, are the magnetic field and the period of the wiggler, 
Ek is the kinetic energy of the electron, m is the electron 
rest mass and c is the speed of light in free space. We also 
assume that the electron oscillates in the x-direction, so 
that the transverse component uI of the electron velocity 
has only a x-component. 

The electric field 8(r, w) radiated by the electron can 
be found by solving the Helmholtz equation in the fre- 
quency domain:’ 

(A + kg) b(r, w) = - jk,c,,.@, w), (3) 

where k. and so are the wave number and the wave 
impedance of free space, 

S(r, (0) = - ?ei6(.X - Xi)6(y - yi) exp[jot(z)]u(o), (4) 

s = dz’ 
t(z) = - 

” tl:(z’)’ 
(5) 

and t = 0 corresponds to the time moment when the 
electron enters the wiggler. 

Solution of Eq. (3) was found by applying the Green 
function technique and it has the form 

d(r, w) = jkoqo c(r, r’; co)..@‘, W)dr’, (6) 

’ Values denoted by tilde are determined for o > 0 and are 
related (see Ref. [4]) to the Fourier transform by the following 
relationship: ,?(r,~) = 2A(r,w)u(w), where A(r,o) is Fourier 
transform of A(r, t). u(w) is the step function. 

Y Wiggler plates 

(a) 

lb) 

Fig. 1. Waveguide placed in a planar magnetostatic wiggler: (a) 
longitudinal cross-section, and (b) transverse cross-section. 

where G(r, r’; w) is the solenoidal part of electric-type 
dyadic Green function of a waveguide. In further analysis 
we used the Green function representation, derived in 
Ref. [S] and having the form of a series in terms of 
waveguide eigenmodes 

ifi+, r’; w) = -!- 
2&o 

E,‘(r) 0 E; (r’), z > z’, 

El (4 0 Ed (r’), -7 < z’, (7) 

where q is the eigenmode number, Z, = so k,/ko and 
Z, = c,~ ko/k, is the wave impedance for TM- and TE- 
modes, respectively, k, = (l/c) ,,/qi is the eigen- 
mode wave number, wq,c is the cutoff frequency of the qth 
eigenmode, and Ed and E; is the electric field of qth 
eigenmode propagating in the positive and negative z- 
direction, respectively. These fields are normalized over 
the waveguide cross-section S as follows: 

IE,&(r)12ds = 1. (8) 
s 

Substitution of Eq. (7) into Eq. (6) leads to the general 
expression of the electric fields radiated by the electron at 
the exit of the wiggler: 

= - ; -GE,+ (x, Y, Lv) E;(r)..@, w)dxdydz, 

(9) 

IV. LONG WAVELENGTH FELs 



318 I.M. Yakover et al. / Mucl. Instr. and Meth. in Phys. Res. A 393 (1997) 316-322 

and at the entrance of the wiggler, 

8; (x, Y, 0; 4 = U; E; (x, Y, 0) 

= - ; Z, E; (x, y, 0) is L, 

E,’ (r) . J(r, co) dx dy dz, 
s 0 

(10) 

where U,* are the amplitudes of the excited eigenmodes, 
L, = N,1, and N, are the length and the number of 
wiggler periods. 

Further considerations are concerned only with for- 
ward waves. Substituting expression (4) into Eq. (9), and 
assuming v, = const. and that the amplitude of the elec- 
tron wiggling is small, we obtain’ 

(11) 

Z, 
s,(o)=-g 

[ 

exp(jO+Lw) - 1 expCjB_L,) - 1 
O+L - 

FL, 1 > (12) w 
- - 

where x, y are the average transverse coordinates of the 
electron, and B * = w/v, 5 k, - k, is the detuning para- 
meter. 

3. Spectral density of energy 

The expression representing spectral density of energy 
was found using Wiener-Khinchine theorem and expres- 
sion (9); it has the form 

(13) 

Excitation equation (11) shows that the amplitude of 
the radiated eigenmode and, consequently, its spectral 
energy density reach their local maxima at the synchron- 
ism frequencies, for which 6’+ = 0. Another interesting 
range of frequencies that was not treated previously is 
that in the vicinity of waveguide cutoff. Analysis of Eq. 
(13) based on the excitation equation (11) and the expres- 
sion of Z, leads to a conclusion that in the vicinity of 
waveguide cutoff dW:/dw vanishes as k, for TM-modes; 
it tends to infinity as l/k, for the TE-modes. At first 
glance, this singular behavior of a single electron radi- 
ation does not make physical sense, but l/k, = 
c/,/w is an integrable function of w, and there- 
fore, the total energy radiated by the electron stays finite. 

‘Note that these expressions are similar to those presented in 
Ref. [2,3]. However, our derivation is different and is based on 
more genera1 Green function technique. 

Numerical calculations were made for the parameters 
of the prebunched e-beam FEM operating at the Tel 
Aviv University [6]. This FEM utilizes a wiggler with 
i, = 44.4 mm, N, = 17, B, = 300 Gs, and operates in 
the TElo mode of a rectangular waveguide having cross 
section dimensions a x b = 47.55 x 22.15 mm’. We made 
calculations of spectral energy density for three typical 
energies: Ek = 40 keV, for which the FEM has no 
synchronism frequency, Ek = 58 keV has two syn- 
chronism frequencies, and Ek = 90 keV has one syn- 
chronism frequency (see Fig. 2 where the dispersion 
curves of the waveguide TEL0 mode and e-beam lines are 
presented). 

Figs. 3(aHc) show the value ~~oSlo(w)~2/Re(Z10) 
which is proportional to spectral energy density, cal- 
culated versus normalized frequency 0 = w/w~~,~, where 
olo,C is the cutoff frequency of the TElo mode. One may 
note that in the vicinity of the cutoff frequency d W lo/do 
tends to infinity. As for other frequencies, the spectral 
energy density reaches a significant values only near the 
synchronism frequencies (see Figs. 3(b) and (c)). 

4. Radiated field in the time domain 

In this section we present the results of simulations of 
the radiated electromagnetic field in the time domain. 
The time-dependent electric field at the exit of wiggler is 
given by the inverse Fourier transform 

=Re k 
[ I 

m 8: (x, y, L,; w) exp( -jot) do 1 . (14) 
0 

Substituting expressions (9), (11) and (12) into Eq. (14) 
we obtain 

= J&(X, Y, ‘W,,(% Y, 0) 
s0awe2Lw 

2v  y  

I 

f 

co 

X S&4 exp C - j (wt - k, WI do, (15) 
0 

where x and y are the coordinates of the observation 
point. 

Figs. 4(a)(c) display the results of the computation of 
the integral (15) showing the emitted field versus nor- 
malized time f = t/(L,Jc) for the same FEM parameters 
as in the previous section and for three values of e-beam 
energy: EL = 40 keV (Fig. 4(a)), EL = 58 keV (Fig. 4(b)), 
and El, = 90 keV (Fig. 4(c)). 

One can see that the radiation pulse starts at the time 
f = 1, when a high-frequency radiation, having a group 
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Fig. 2. Normalized frequency ii, = w/w 10,e as a function of normalized wave number I: k = k,,/(o , o, ./c) for the waveguide TE, ,, mode, 

and I? = (o/v, - k,)/(wl,,,/c) for the e-beam mode. 
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Fig. 3. Spectral density of radiated energy (in arbitrary units) versus normalized frequency CT, = w/cIJ~,,~: (a) EL = 40 keV, (b) 
El, = 58 keV and (c) EL = 90 keV. 
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Fig. 3. (Continued). 

velocity close to the speed of light, arrives at the exit of For energy values 40 keV, corresponding to the ab- 
the wiggler. Further pulse evolution depends strongly on sence of a synchronism frequency (Fig. 4(a)), a precursor 
the e-beam energy. pulse is emitted in the time interval 1 < f< t; (where 
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f= 1 is the time moment when the fast photons electron exit time from the wiggler). The modulated car- 
propagating at speed c and generated at the wiggler rier pulse with frequency chirp, decreasing from very 
entrance arrive to the wiggler exit and tI = c/v, is the high frequencies down to the value corresponding to 

E=40 keV 
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Normalized time 

8- 1 I , I 
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/ I I I I 
2 4 6 8 10 12 14 16 18 20 

Normalized time 

Fig. 4. Radiated electric field (in arbitrary units) at the exit of the wiggler versus normalized time f = f/(&/c): (a) Ek = 40 kcV, 
(b) E, = 58 keV and (c) El, = 90 keV. 
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Fig. 4. (Continued). 
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minimum detuning parameter 19+. At time fI, a high- 
intensity and short duration peak of the radiated field is 
observed, and at f > t; the radiated field has the form of 
a long decaying carrier pulse at the cutoff frequency. The 
reason for the long decay time is that near waveguide 
cutoff the group velocity is very small, so it takes a long 
time for the wave, radiated by the electron at the begin- 
ning of wiggler, to reach the wiggler end. 

At an energy of EL = 58 keV (two synchronism fre- 
quencies) in the time interval 1 < f < t; the radiated field 
has the form of an increasing amplitude carrier pulse at 
the higher synchronism frequency (see Fig. 4(b)). When 
f1 < f < fi (& = c/vrc, 1, vlo, 1 is the group velocity of the 
TElo mode corresponding to the lower synchronism 
frequency) the radiated pulse is at the lower synchronism 
frequency and its amplitude decreases. After r > t;, one 
observes a long decaying carrier pulse of a relatively low 
amplitude at the cutoff frequency. 

At an energy of EL = 90 keV (producing only one 
syncronism frequency) the radiated field in the time inter- 
val 1 < f < tI has the form of an almost rectangular 
carrier pulse at the synchronism frequency (see Fig. 4(c)). 
After f > t;, the radiated carrier pulse is at the cutoff 
frequency, and its amplitude oscillates slowly with an in- 
creasing period and, as in the previous cases, decays to zero. 

The reported simulations indeed indicate an enhanced 
excitation mechanism of FEM radiation near the cutoff 

frequency. Analyzing the presented results we conclude 
that because the spectral density of the radiated energy 
near waveguide cutoff tends to infinity, the radiated field 
in the time domain has the form of very long pulse, 
lagging behind the electron, at the carrier of cutoff fre- 
quency, in addition to finite wave packets corresponding 
to synchronism frequencies. Spontaneous emission near 
cutoff (where the group velocity of excited waveguide 
mode is close to zero) has a long slippage time and may 
affect the radiation buildup process in the FEM oscil- 
lator. 
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