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Abstract

Motivated by a frequency assignment problem in cellular networks, we introduce and study
a new coloring problem that we call Minimum Conflict-Free Coloring (Min-CF-Coloring). In
its general form, the input of the Min-CF-coloring problem is a set system (X,S), where each
S ∈ S is a subset of X . The output is a coloring χ of the sets in S that satisfies the following
constraint: for every x ∈ X there exists a color i and a unique set S ∈ S, such that x ∈ S and
χ(S) = i. The goal is to minimize the number of colors used by the coloring χ.

Min-CF-coloring of general set systems is not easier than the classic graph coloring problem.
However, in view of our motivation, we consider set systems induced by simple geometric regions
in the plane.

In particular, we study disks (both congruent and non-congruent), axis-parallel rectangles
(with a constant ratio between the smallest and largest rectangle), regular hexagons (with
a constant ratio between the smallest and largest hexagon), and general congruent centrally-
symmetric convex regions in the plane. In all cases we have coloring algorithms that use O(log n)
colors (where n is the number of regions). Tightness is demonstrated by showing that even in
the case of unit disks, Θ(log n) colors may be necessary. For rectangles and hexagons we also
obtain a constant-ratio approximation algorithm when the ratio between the largest and smallest
rectangle (hexagon) is a constant.

We also consider a dual problem of CF-coloring points with respect to sets. Given a set
system (X,S), the goal in the dual problem is to color the elements in X with a minimum
number of colors so that every set S ∈ S contains a point whose color appears only once in S.
We show that O(log |X |) colors suffice for set systems in which X is a set of points in the plane,
and the sets are intersections of X with scaled translations of a convex region. This result is
used in proving that O(log n) colors suffice in the primal version.
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1 Introduction

Cellular networks are heterogeneous networks with two different types of nodes: base-stations (that
act as servers) and clients. The base stations are interconnected by an external fixed backbone
network. Clients are connected only to base-stations; links between clients and base-stations are
implemented by radio links. Fixed frequencies are assigned to base-stations to enable links to
clients. Clients, on the other hand, continuously scan frequencies in search of a base-station with
good reception. This scanning takes place automatically and enables smooth transitions between
links when a client is mobile. Consider a client that is within the reception range of two base-
stations. If these two base-stations are assigned the same frequency, then mutual interference
occurs, and the links between the client and each of these conflicting base-stations are rendered too
noisy to be used. A base-station may serve a client provided that the reception is strong enough
and interference from other base stations is weak enough. The fundamental problem of frequency
assignment in cellular network is to assign frequencies to base-stations so that every client is served
by some base-station. The goal is to minimize the number of assigned frequencies since spectrum
is limited and costly.

We consider the following abstraction of the above problem which we refer to as the minimum
conflict-free (CF) coloring problem.

Definition 1 Let X be a fixed domain (e.g., the plane) and let S be a collection of subsets of X
(e.g., disks whose centers correspond to base-stations). A function χ : S →

�
is a CF-coloring of

S if, for every x ∈
⋃

S∈S S, there exists a color i ∈
�
, such that {S ∈ S : x ∈ S and χ(S) = i}

contains a single subset S ∈ S.

The goal in the minimum CF-coloring problem is to find a CF-coloring that uses as few colors as
possible. It is not hard to verify that in its most general form defined above, this problem is not
easier than vertex coloring in graphs, and is even as hard to approximate. An adaptation of the
NP-completeness proof of minimum coloring of intersection graphs of unit disks by [CCJ90] proves
that even CF-coloring of unit disks (or unit squares) in the plane is NP-complete. Since this proof
is based on a reduction from coloring planar graphs, it follows that approximating the minimum
number of colors required in a CF-coloring of unit disks is NP-hard for an approximation ratio of
4
3 − ε, for every ε > 0.

1.1 Our Results

We restrict our attention to set systems (X,R) where X is a set of points in the plane and R is
a family of subsets of X that are defined by the intersections of X with geometric regions in the
plane (e.g., disks). We refer to the members of R as ranges, and to (X,R) as a range-space.

1.1.1 CF-coloring of Disks

Given a set of disks S, the size-ratio of S is the ratio between the largest and the smallest radius
of disks in S. For simplicity we assume that the smallest radius is 1. The local density of a set of
disks S is the maximum number of centers of disks in S that are contained in a square of diameter
1. We denote the local density of S by φ(S). For a set of centers X ⊂ � 2 , and for any given radius
r, let Sr(X) denote the set of (congruent) disks having radius r whose centers are the points in X.

Our main results for coloring disks are stated in the following theorem.
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Theorem 1 1. Given a finite set S of disks with size-ratio ρ, there exists a polynomial-time
algorithm that computes a CF-coloring of S using O (min{(log ρ) · (log φ(S)), log |S|}) colors.

2. Given a finite set of centers X ⊂ � 2 , there exists a polynomial-time algorithm that computes
a coloring χ of X using O(log |X|) colors, such that χ is a CF-coloring of Sr(X) for every
radius r.

Tightness of Theorem 1 is shown by presenting, for any given integer n, a set S of n unit disks
with φ(S) = n for which Ω(log n) colors are necessary in every CF-coloring.

In the first part of Theorem 1 the disks are not necessarily congruent. That is, the size-ratio
ρ may be bigger than 1. In the second part of Theorem 1, the disks are congruent (i.e., the size-
ratio equals 1). However, the common radius is not determined in advance. Namely, the order of
quantifiers in the second part of the theorem is as follows: Given the locations of the disk centers,
the algorithm computes a coloring of the centers (of the disks) such that this coloring is conflict-free
for every radius r. We refer to such a coloring as a uniform CF-coloring.

Uniform CF-coloring has an interesting interpretation in the context of cellular networks. As-
sume that base-stations are located in the disk centers X. Assume that a client located at point
P has a reception range r. The client is served provided that the disk centered at P with radius r
contains a base-station that transmits in a distinct frequency among the base stations within that
disk.

Thus, uniform CF-coloring models frequency assignment under the setting of isotropic base-
stations that transmit with the same power and clients with different reception ranges. Moreover,
the coloring of the base-stations in a uniform CF-coloring is independent of the reception ranges of
the clients.

Building on Theorem 1, we also obtain two bi-criteria CF-coloring algorithms for disks having
the same (unit) radius. In both cases we obtain colorings that use very few colors. In the first case
this comes at a cost of not serving a small area that is covered by the disks (i.e., an area close to
the boundary of the union of the disks). In the second case we serve all the area, but we allow the
disks to have a slightly larger radius. A formal statement of these bi-criteria results follows.

Theorem 2 For every 0 < ε < 1 and every finite set of centers X ⊂ � 2 , there exist poly-time
algorithms that compute colorings as follows:

1. A coloring χ of S1(X) using O
(
log 1

ε

)
colors for which the following holds: The area of the

set of points in
⋃
S1(X) that are not served with respect to χ is at most an ε-fraction of the

total area of S1(X).

2. A coloring of S1+ε(X) that uses O
(
log 1

ε

)
colors such that every point in

⋃
S1(X) is served.

In other words, in the first case, the portion of the total area that is not served is an exponentially
small fraction as a function of the number of colors. In the second case, the increase in the radius
of the disks is exponentially small as a function of the number of colors.

1.1.2 An O(1)-Approximation for CF-Coloring of Rectangles and Regular Hexagons

Let R denote a set of axis-parallel rectangles. Given a rectangle R ∈ R, let w(R) (h(R), resp.)

denote the width (height, resp.) of R. The size-ratio of R is defined by max
{

w(R1)
w(R2) ,

h(R1)
h(R2)

}
R1,R2∈R

.

The size ratio of a collection of regular hexagons is simply the ratio of the longest side length
and the shortest side length.
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Theorem 3 Let R denote either a set of axis-parallel rectangles or a set of axis-parallel regular
hexagons. Let ρ denote the size-ratio of R and let χopt(R) denote an an optimal CF-coloring of R.

1. If R is a set of rectangles, then there exists a poly-time algorithm that computes a CF-coloring
χ of R such that |χ(R)| = O((log ρ)2 · |χopt(R)|).

2. If R is a set of hexagons, then there exists a poly-time algorithm that computes a CF-coloring
χ of R such that |χ(R)| = O((log ρ) · |χopt(R)|).

For a constant size-ratio ρ, Theorem 3 implies a constant approximation algorithm.

1.1.3 Uniform CF-coloring of Congruent Centrally-Symmetric Convex Regions

Consider a convex region C and a point O. Scaling by a factor r > 0 with a respect to a center O
is the transformation that maps every point P 6= O to the point P ′ along the ray emanating from
O towards P such that |P ′O| = r · |PO|. The center point O is a fixed point of the transformation
of the scaling. We denote the image of C with respect to such a scaling by Cr,O. Given a point x
and a scaling factor r > 0, we denote by Cr,O(x) the image of Cr,O obtained by the translation that
maps O to x. We refer to C ′ as a scaled translation of C if there exist points x,O and a scaling
factor r > 0 such that C ′ = Cr,O(x). Given a set of centers X and a scaling factor r > 0, the set
Cr,O(X) denotes the set of scaled translations {Cr,O(x)}x∈X .

y’x’

x y

O

C

r,OC

z

z’

Figure 1: An example of a scaled translation of a regular hexagon C, with respect to the point O,
where the scaling factor r is 2. Here the points x, y and z on the small hexagon C are mapped to
the points x′, y′, and z′, respectively, on the larger hexagon Cr,O. The dashed lines correspond to
the rays emanating from O towards the points x, y, and z.

A region C ∈ � 2 is centrally-symmetric if there exists a point O (called the center) such that
the transformation of reflection about O is a bijection of C onto C. Note that disks, rectangles,
and regular hexagons are all convex centrally-symmetric regions.

The following theorem generalizes the uniform coloring result presented in Part 2 of Theorem 1
to sets of centrally-symmetric convex regions that are congruent via translations.
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Theorem 4 Let C denote a centrally-symmetric convex region with a center point O. Given a
finite set of centers X ⊂ � 2 , there exists a coloring χ of X that uses O(log |X|) colors, such that χ
is a CF-coloring of Cr,O(X), for every scaling factor r.

A poly-time constructive version of Theorem 4 holds when the region C is “well behaved”, e.g.,
a disk, an ellipsoid, or a polygon. (More formally, a poly-time algorithm for computing Delaunay
graphs of arrangements of regions Cr,O(X) is needed.)

1.2 Techniques

1.2.1 A Dual Coloring Problem: CF-Coloring of Points with respect to Ranges

In order to prove Theorem 1 we consider the following coloring problem, which is dual to our
original coloring problem described in Definition 1:

Definition 2 Let (X,R) denote a range space. A function χ : X →
�

is a CF-coloring of X with
respect to R if, for every R ∈ R, there exists a color i ∈

�
, such that the set {x ∈ R : χ(x) = i}

contains a single point.

Note that in the original definition of CF-coloring (Definition 1), we were interested in coloring
ranges (regions) so as to serve points contained in the ranges, while in Definition 2 we are interested
in coloring points so as to “serve” ranges containing the points.

We give a general framework for CF-coloring points with respect to sets of rangesR, and provide
a sufficient condition under which a coloring using O(log |X|) colors can be achieved. This condition
is stated in terms of a special graph constructed from (X,R). This graph is the standard Delaunay
graph when X is a set of points in the plane and R is a set of ranges obtained by intersections with
disks. We then study several cases in which the condition is satisfied. Theorem 1 and Theorem 4
follow by reduction to these cases. We believe that Theorem 5 stated below (from which Theorem 4
is easily derived), is of independent interest.

Theorem 5 Let C be a compact convex region in the plane, and let X be a finite set of points in the
plane. Let R ⊆ 2X denote the set of ranges obtained by intersecting X with all scaled translations
of C. Then there exists a CF-coloring of X with respect to R using O(log |X|) colors.

Recently, Pach and Toth [PT02] proved that Ω(log |X|) colors are required for CF-coloring every
set X of points in the plane with respect to disks.

1.2.2 CF-Coloring of Chains

A chain S is a collection of subsets, each assigned a unique index in {1, . . . , |S|} for which the
following holds. For every (discrete) interval [i, j], 1 ≤ i ≤ j ≤ |S|, there exists a point x ∈

⋃
S∈S S,

such that the sub-collection of subsets that contains the point x equals the sub-collection of subsets
indexed from i to j. Moreover, for every point x ∈

⋃
S∈S S, the set of indexes of subsets that contain

the point x is an interval. For an illustration, see Figure 4. We show that chains of unit disks (resp.,
unit squares and hexagons) are tight examples of Theorem 1 (resp., Theorem 3); namely, every
CF-coloring of a chain must use Ω(log |S|) colors, and it is possible to CF-color every chain using
O(log |S|) colors.

Chains also play an important role in our approximation algorithm for CF-coloring rectangles
(and hexagons). Loosely speaking, our coloring algorithm works by decomposing the set of rect-
angles into chains. An important component in our analysis is understanding and exploiting the
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intersections between pairs of different chains. Specifically, we show how different types of pairs
of chains (see Figures 7 and 10) can “help” each other so as to go below the upper bound on the
number of colors required to color chains, which is logarithmic in their size.

1.3 Related Problems

As noted above, minimum CF-coloring of general set systems is not easier (even to approximate)
than vertex-coloring in graphs. The latter problem is of course known to be NP-hard, and is even
hard to approximate [FK98]. The problem remains hard for the special case of unit disks (and
squares), and it is even NP-hard to achieve an approximation ratio of 4

3 − ε, for every ε > 0 (by an
adaptation of [CCJ90]).

Marathe et al. [MBH+95] studied the problem of vertex coloring of intersection graphs of
unit disks. They presented an approximation algorithm with an approximation ratio of 3. Mo-
tivated by channel assignment problems in radio networks, Krumke et al. [KMR01] presented a
2-approximation algorithm for the problem of distance-2 coloring problem in families of graphs
that generalize intersection graphs of disks.

A natural variant of Min-CF-coloring is Min-CF-multi-coloring. Given a collection S of sets,
a CF-multi-coloring of S is a mapping χ from S to subsets of colors. The requirement is that for
every point x ∈

⋃
S∈S S, there exist a color i such that {S : x ∈ S, i ∈ χ(S)} contains a single

subset. The Min-CF-multi-coloring problem is related to the problem of minimizing the number of
time slots required to broadcast information in a single-hop radio network. In view of this relation,
it has been observed by Bar-Yehuda ([B01], based on [BGI92]), that every set-system (X,S) can
be CF-multi-colored using O(log |X| · log |S|) colors.

Mathematical optimization techniques have been used to solve a family of frequency assignment
problems that arise in wireless communication (for a comprehensive survey see [AHK+01]). We
elaborate why these frequency assignment problems do not capture Min-CF-coloring. Basically,
such frequency assignment problem are modeled using interference or constraint graphs. The
vertices correspond to base-stations, and edges correspond to interference between pairs of base-
stations. Each edge (v, w) is associated with a penalty function pv,w :

�
×

�
→ � , so that if v is

assigned frequency i ∈
�

and w is assigned frequency j ∈
�
, then a penalty of pv,w(i, j) is incurred.

A typical constraint is to bound the maximum penalty on every edge. A typical cost function is the
number of frequencies used. CF-coloring cannot be modeled in this fashion because CF-coloring
allows for conflicts between base-stations provided that another base-station serves the “area of
conflict”. Even models that use non-binary constraints (see [DBJC98]) do not capture CF-coloring.
We note that the above models take into account interferences between close frequencies, while we
have ignored this issue for sake of simplicity. We can however incorporate some variants of such
constraints. For example, in the case of unit disks we can easily impose the constraint that for every
point x, the frequency assigned to the disk that serves x, differs by at least δmin from the frequency
assigned to every other disk covering x. By applying Theorem 1 and multiplying each color by δmin,
we can satisfy the above constraint while using O (min {(log ρ) · (log φ(S)), log |S|} · δmin) colors
(and there is an example that exhibits tightness).

Frequency assignment problems in cellular networks as well as the positioning problem of base-
stations have been vastly studied. See [AKM+01, GGRV00, H01] for other models and many
references. Finally, we refer to [HS02, SM02] for further work on CF-coloring problems.

Further Research. Among the open problems related to our results are: (1) Is there a constant
approximation algorithm for Min-CF-coloring of unit disks and disks in general? (2) Is it possible
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to extend our results to Min-CF-coloring with capacity constraints defined as follows: every base-
station is given a capacity that bounds the number of clients that it can serve.

Organization. In Section 2, preliminary notions and notation are presented. In Section 3 we
describe our results for CF-coloring points with respect to range spaces: We describe a general
framework and several applications. In Section 4 we prove our results for CF-coloring of disks
(Theorems 1 and 2), which build on results from Section 3. Tightness of Theorem 1 is established in
Section 6, and Theorem 4 is proved in Section 5. Our O(1)–approximation algorithm for rectangles
is provided in Section 7. In Section 8 we discuss how a very similar algorithm can be applied to
color regular hexagons. Finally, in Section 9 we derive a couple of additional related results.

2 Preliminaries

2.1 Combinatorial Arrangements

A finite set R of regions (in the plane) induces the following equivalence relation. Every two points
x, y in the plane belong to the same class if and only if they reside in exactly the same subset of
regions in R. That is, x and y are in the same equivalence class if {R ∈ R : x ∈ R} = {R ∈
R : y ∈ R}. We refer to each such equivalence class as a cell . The set of all cells induced by R
is denoted by cells(R). With a slight abuse of notation, we view the pair (cells(R),R) as a range
space. To be precise, (cells(R),R) is the the following range space: (a) the ground set is equal
to a representative from every cell, and (b) the ranges are the intersections of sets in R with the
ground set. We henceforth refer to the range space (cells(R),R) as the combinatorial arrangement
induced by R; we denote this combinatorial arrangement by A(R).

a cell

Figure 2: An arrangement of disks. The marked cell corresponds to the regions that are contained
in the middle disk, and only in that disk.

The definition of a combinatorial arrangement differs from that of a topological arrangement
(where one considers the subdivision into connected components induced by the ranges). For
example, Figure 2 depicts a collection of disks. The two shadowed regions constitute a single cell in
the combinatorial arrangement induced by the disk. In the definition of a topological arrangement
these regions are considered as two separate cells. We often consider combinatorial arrangements
of the form (V,R), where V ⊂ cells(R). We refer, in short, to combinatorial arrangements as
arrangements.

2.2 Primal and Dual Range Spaces

Consider a range space (X,R). The dual set system is (R, X ∗), where X∗ = {N(x)}x∈X ⊆ 2R and
N(x) = {R ∈ R : x ∈ R}. One may represent a set system by a bipartite graph (X ∪R, E), with
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an edge (x,R) if x ∈ R. Under this representation, the dual set-system corresponds to the bipartite
graph in which the roles of the two sides of the vertex set are interchanged. Isomorphism of set
systems is equivalent to the isomorphism of the bipartite graph representations of the corresponding
set systems.

Let T denote a set of regions in the plane. We use T to denote a set of regions with some
common property; for example, the set of all unit disks, or a set of axis-parallel unit squares. Given
a set of points X and a region R (such as a disk), when referring to R as a range (namely, a subset
of X) we actually mean R ∩X.

A range space (X,R) is a T -type range space if R ⊆ T . We are interested in situations in
which the dual of a T -type range space is isomorphic to a T -type range space.

Definition 3 A set of regions T is self dual if the dual range space of every T -type range space is
isomorphic to a T -type range space.

For example, it is not hard to verify that the set of all unit disks is self dual. On the other hand,
the set of all disks (or even disks of two different radiuses) is not self dual.

The following claim states a condition on T that is sufficient for T to be self dual when X is a
set of points in the plane.

Claim 1 Let C be a fixed centrally-symmetric region in the plane, and let T be the set of all regions
congruent (via translation, not rotation) to C. Then T is self dual.

Proof: Given a T -type range space (X,R), let Y denote the set of centers of the ranges in R. Let
C(X) denote the set of regions congruent to C centered at points of X. The range space (Y, C(X))
is obviously a T -type range space. To see that this system is isomorphic to the dual range space
(R, X∗), we identify every range R ∈ R with its center. Since C is centrally-symmetric, it follows
that y ∈ C(x) if and only if x ∈ C(y), for every two points x, y. This means that a center y ∈ Y is
in C(x) if and only if the range C(y) contains the point x ∈ X. Hence, for every point x ∈ X, the
set C(x) ∩ Y equals the set of centers of ranges in N(x), and the claim follows. 2

As a corollary of Claim 1 we obtain.

Corollary 6 Let T be a set of regions that satisfy the premises of Claim 1. Then CF-coloring
arrangements of T -type regions is equivalent to CF-coloring points with respect a T -type set of
ranges.

We rely on Corollary 6 in the proof of Part 2 of Theorem 1 and in the proof of Theorem 4.

3 CF-Coloring Points With Respect to Range Spaces

In this section we present CF-coloring algorithms for points with respect to ranges. The colorings
require O(log n) colors, where n denotes the number of points.

3.1 Intuition

We begin by presenting a simple special case of the general framework. In this case we consider a
set X of n points that lie on a straight line and the ranges are intersections of X with disks.

Suppose that we wish to decide which points are colored by the color 1, and then proceed by
deciding which points are colored by the color 2, and so on. Let Xi denote the set of points that
are colored by the color i. Let X<i (resp. X≤i) denote the set

⋃
j<i Xj (resp.

⋃
j≤i Xj). When
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determining Xi, we must make sure that the following condition holds: For every disk D, either (i)
D is served by a point colored j < i (i.e. ∃j < i : |D ∩Xj | = 1), or (ii) D ∩Xi contains at most
one point, or (iii) D contains a point that is not colored yet (i.e. D � X≤i). Correctness follows
because if parts (i) and (ii) do not hold, then the point that will serve d will be colored by a color
greater than i. In fact, a coloring that follows the above rule has the following property: For every
disk, the highest color of a point contained in a disk has multiplicity 1.

The question is how can we guarantee that such an algorithm uses only O(log n) colors. For
example, if every Xi consists of a single point, then obviously correctness holds, but each point is
colored by a different color, so n colors are used. To obtain O(log n) colors, we show that in each
stage it is possible to select at least half of the remaining points (i.e., |Xi| ≥

1
2 · |X \X<i|).

The choice of Xi when the points lie on a straight line is simply to pick every other point. By
convexity, if a disk D contains two (or more) points from Xi, then it must contain all the points in
between these two points. Between every two points in Xi there must exist at least one point not
in X≤i. It follows that the condition required from Xi holds, and hence points on a straight line
can be colored by log n colors.

3.2 A General Framework

We start by presenting a general framework for CF-coloring a set X of points with respect to a
set R ⊆ 2X of ranges, and describe sufficient conditions under which the resulting coloring uses
O(log n) colors. Since every range R ∈ 2X that contains a single point from X is trivially served
by that point, we assume that every range in R contains at least two points from X.

Definition 4 A partition (X1, X2) of X is R-useful if X1 6= ∅ and

or S ∩X2 6= ∀S ∈ R : |S ∩X1| = 1 or S ∩X2 6= ∅.

Algorithm 1 CF-color(X,R) - CF-color a set X with respect to a set of ranges R.

1: i← 0. (i denotes an unused color)
2: while X 6= ∅ do
3: Find an R-useful decomposition (X1, X2) of X. (We elaborate subsequently on the

implementation of this step.)
4: Color: ∀x ∈ X1 : χ(x)← i.
5: Project: X ← X2 and R← {S ∩X2 : S ∈ R, |S ∩X1| 6= 1 and |S ∩X2| ≥ 2}.
6: Increment: i← i + 1.
7: end while

Claim 2 The coloring of X computed by CF-color(X,R) is a CF-coloring of X with respect to R.

Proof: Consider a range S ∈ R. Let i denote the last iteration in which X ∩ S ∈ R. In other
words, in the ith iteration, the R-useful decomposition (X1, X2) of X satisfies either |X1 ∩ S| = 1
or |X2 ∩ S| = 1. In the first case, S is served by the single element x ∈ X1 ∩S (which is colored i).
In the second case, S is served by the single element x ∈ X2 ∩S (which will be assigned some color
i′ > i). Observe that if at iteration i the range space R becomes empty while X is not empty, then
the partition (X, ∅) is R-useful, and all the remaining points can be colored with the color i+1. 2

Note that Algorithm CF-color computes a CF-coloring in which every range S ∈ R is served by the
point x ∈ S for which the color χ(x) is maximal.
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3.2.1 Sufficient Conditions for Using O(log |X|) Colors

Algorithm CF-color uses O(log |X|) colors if in every iteration |X1| = Ω(|X|). We formalize a
condition guaranteeing that |X1| is a constant fraction of |X|. The condition is phrased in terms of
a special graph that is a attached to the range space (X,R). We refer to ranges S ∈ R as minimal
if they are minimal with respect to inclusion. Recall that we assume that for every S ∈ R, |S| ≥ 2
(since ranges of size one are served trivially).

Definition 5 A Delaunay graph of the set system (X,R) is a graph DGR(X,E), defined as follows.
For every minimal S ∈ R, pick a pair u, v ∈ S and define e(S) = (u, v). The edge set E is defined
by E = {e(S)}S∈R.

A Delaunay graph of a set system is not uniquely defined if there exist minimal ranges that contain
more than two points. To simplify the presentation, we abuse notation and refer to the Delaunay
graph of a set system as if it were unique. It can be shown that in the case of points in � 2 and
ranges obtained by intersections with disks, the definition of a Delaunay graph is the standard
definition [BKOS97].

Claim 3 If X1 ⊆ X is an independent set in DGR, then the partition (X1, X \X1) is R-useful.

Proof: Assume for the sake of contradiction that there exists an independent set X1 such that
(X1, X \X1) is not an R-useful decomposition of X. That is, there exists a range S ∈ R such that
|S ∩X1| 6= 1 and S ∩ (X \X1) = ∅. Note that assuming that S ∩ (X \X1) = ∅ necessarily implies
that S ⊆ X1, and so we may replace the first condition (|S ∩X1| 6= 1) by |S ∩X1| ≥ 2.

Let S′ denote a minimal range that is a subset of S (hence S ′ ⊆ X1). By the definition of the
set of edges E in the Delaunay graph DGR of (X,R), it follows that there is an edge e(S ′) between
two points in S ′. But this contradicts the assumption that X1 is an independent set, and the claim
follows. 2

The method we use to show that Delaunay graphs have large independent sets is to show that
Delaunay graphs are planar. Another easy way to show that there exists a large independent set
is, for example, to show that the number of edges is linear.

Claim 4 If in each iteration of the algorithm, the Delaunay graph of (X,R) is planar, then Algo-
rithm 1 uses O(log |X|) colors.

Proof: By Claim 3, it suffices to show that, in every iteration of Algorithm CF-color, the Delaunay
graph has an independent set X1 that satisfies |X1| = Ω(|X|). The existence of a large independent
set X1 in the Delaunay graph DGR(X,E) follows from the planarity of DGR. Planarity implies
that the graph is 4-colorable, and therefore, the largest color-class is an independent set of size at
least |X|/4. (Note that DGR can be 4-colored in polynomial time.) 2

One could easily color planar graphs using 6 colors since the minimum degree is at most 5. This
means that a greedy algorithm could be used to find an independent set of size at least |X|/6.

In the rest of this section we apply Algorithm CF-color to three types of range spaces: disks in
the plane, half-spaces in � 3 , and homothetic centrally-symmetric convex regions in the plane. For
each of these cases we prove that the premise of Claim 4 is satisfied. That is, that the Delaunay
graph of the corresponding range space is planar. Moreover, for disks, half space in � 3 , and
polygons, the corresponding Delaunay graphs are computable in polynomial time, which implies
that Algorithm CF-color is polynomial.
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3.3 Disks in the Plane

Lemma 5 Let X denote a set of n points in the plane. Let R denote the collection of all subsets
of X of size at least two obtained by intersecting X with a disk. Then it is possible to color X with
respect to R using O(log n) colors.

The Delaunay graph that we attach to the set system (X,R) is a exactly the standard Delaunay
graph of a planar point set [BKOS97, Thm 9.6 (ii)]. The Delaunay graph of a planar point set X
is planar [BKOS97, Thm 9.5]. Hence Lemma 5 directly follows by applying Claim 4.

3.4 Half-Spaces in � 3

Given a hyper-plane H (not parallel to the z-axis), the positive half-space H+ is the set of all points
that either lie on or are above H. We denote by H+ the set of all positive half-spaces in � 3 .

Lemma 6 Let X be a set of n points in � 3 . Let R denote the collection of all subsets of X of size
at least two obtained by intersecting X with a half-space in H+. Then there exists a CF-coloring of
X with respect to R that uses O(log n) colors.

We make the following simplifying assumption: The points in X are in convex position. If not,
then all the points of X that are in the interior of the convex hull may be colored by a unique
“passive” color. The coloring of non-extreme points by a passive color means, in effect, that these
interior points are removed. This reduction is justified by the fact that every half-space H + that
intersects the convex hull of X must contain an extreme point of X. The coloring will be a CF-
coloring of the extreme points of X with respect to positive half-spaces, and hence X ∩H + will be
served as well.

Claim 7 Every minimal range in the range space (X,R) is a pair of points.

Proof: Consider a range R ∈ R defined by half space H+. Translate H upwards as much as
possible so that every further translation upward reduces the range defined by the positive half-
space to less than 2 points. Let H1 denote the plane parallel to H obtained by this translation.
Let R1 denote the range corresponding to the positive half-space H+

1 . If R1 contains more than
two points, then either R1 is contained in the plane H1 or all but one of the points in R1 are in the
plane H1. Assume that R1 ⊂ H1. Consider a line ` in H1 that passes through two adjacent vertices
u, v (i.e., an edge) in the polygon corresponding to the (two-dimensional) convex hull of R1 relative
to the plane H1. Tilt the plane H1 slightly where the line ` serves as the axis of rotation. It is
possible to rotate H1 so that the resulting plane H2 satisfies X ∩H+

2 = {u, v}. A similar argument
applies if there is a single point in R1 \H1, and the claim follows. 2

Proof of Lemma 6: Claim 7 implies that the Delaunay graph DGR = (X,E) of the range
space (X,R) is defined by (u, v) ∈ E if and only if there exists a positive half-space H+ such that
X∩H+ = {u, v}. Let CH(X) denote the convex hull of X, and let G′ = (X,E′) denote the skeleton
graph of the convex hull of X. Namely, a pair (u, v) is an edge in E ′ if and only if there exists a
supporting plane H of CH(X) such that H ∩X = {u, v}. It is well known that the skeleton graph
G′ is planar. By definition, the edge set of the Delaunay graph is contained in the edge set of the
skeleton graph. Hence the Delaunay graph is planar and by Claim 4, X can be CF-colored with
respect to R using O(log |X|) colors. 2
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3.5 Scaled Translations of a Convex Region in the Plane

In this Subsection we prove Theorem 5. We first introduce some definitions and notation.
For a closed region C let ∂C denote the boundary of C and let C̊ denote the interior of C. We

next recall the definition of homothecy (c.f. [C69, p. 68]).

Definition 6 A transformation τ : � 2 → � 2 is a homothecy if there exists a point O (called the
homothetic center) and a nonzero real number λ (called the similitude ratio) such that:

1. O is a fixed point of τ (namely, O = τ(O)),

2. every point P 6= O is mapped to a point τ(P ) where: (i) τ(P ) is on the line OP , and (ii) the
length of the segment Oτ(P ) satisfies: |Oτ(P )| = λ · |OP |.

We denote that C ′ is a scaled translation of C by C ′ ∼ C. For a homothetic transformation
τ : � 2 → � 2 , we denote the image of a set S ⊆ � 2 under τ by τ(S). Note that if the similitude
ratio of a homothecy τ is positive, then τ(C) ∼ C.

Definition 7 A range S ∈ R is induced by a region C if S = C ∩X. A range S ∈ R is boundary-

induced by a closed region C if S = ∂C ∩X and C̊ ∩X = ∅.

Recall that for the purpose of CF-coloring, ranges that contain one point as well as the empty range
are trivial. Hence, we do not consider the empty set and subsets that contain a single point to be
ranges. Therefore, we define the range space R induced by a collection of regions C by:

R = {C ∩X : C ∈ C and |C ∩X| ≥ 2}.

It follows that minimal ranges contain at least two points.
Let C denote a compact convex region C in the plane. Let X ⊂ � 2 denote a finite set of points

in the plane. Let (X,R) denote the range space induced by the set of all scaled translations of C.
By Claim 4, in order to prove Theorem 5, it suffices to prove that the Delaunay graph of (X,R) is
planar. To this end we first show:

Claim 8 Every minimal range S ∈ R is boundary-induced by a region C ′ ∼ C.

Proof: Since S is a range, there exists a scaled translation CS ∼ C such that X ∩ CS = S. By
contracting CS, if necessary, we may guarantee that the boundary of CS contains a point from S.
The interior of CS contains at most one point of S. Otherwise, by an infinitesimal contraction we
are left with a range S ′ � S that contains at least two points, thus contradicting the minimality of
S.

We now show how to find a region C ′ ∼ C such that all of S lies on the boundary of C ′. Let
x ∈ S denote a point on the boundary of CS . If S is not boundary-induced by CS, then there is
a unique point y ∈ S ∩ C̊S . We apply the following homothecy τ . Let y ′ denote the intersection
point of the boundary of CS with the half-open ray emanating from x towards y. Set x to be the
homothetic center, and set the similitude ratio to be the ratio |xy|/|xy ′|. By definition of τ , both
x and y are on the boundary of C ′. By minimality of S, it follows that C ′ ∩X = S. By definition
of τ and convexity of C, it follows that C ′ ⊆ CS . If a point z ∈ S is in the interior of C ′, then it is
in the interior of CS , hence z = y, which contradicts y ∈ ∂C ′. It follows that every point in S is in
the boundary of C ′, and the claim follows. 2

We now show that a planar drawing of the Delaunay graph DGR = (X,E) is obtained if its
edges are drawn as straight line segments. Consider two edges (x0, y0), (x1, y1) ∈ E. For i = 0, 1,
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assume that xi, yi ∈ Si, for a minimal range Si ∈ R, where S0 6= S1. Let Ci ∼ C denote scaled
translations of C such that Si is boundary-induced by Ci. If C0 ∩ C1 = ∅, then the segments x0y0

and x1y1 do not cross each other. If C0 ∩ C1 6= ∅, then the boundaries ∂C0 and ∂C1 intersect.
We first consider the case that ∂C does not contain a straight side. Namely, no three points

on ∂C are co-linear. Under this assumption, since Ci is a scaled translation of C, for i = 0, 1, it
follows that ∂C0 ∩ ∂C1 contains at most two points.

If ∂C0 ∩ ∂C1 contains a single point p, then, one can separate the convex regions C0 and C1

using a straight line passing through p. This separating line implies that the segments x0y0 and
x1y1 cannot cross each other.

If ∂C0 ∩ ∂C1 contains two points, denote these points by p and q. The boundary ∂Ci is
partitioned into two simple curves each delimited by the points p and q; one curve is contained in
is ∂Ci \ C̊1−i and the second curve is ∂Ci ∩ C1−i. We denote the curve ∂Ci \ C̊1−i by γi, and we
denote the curve ∂Ci ∩C1−i by γ′

i. Since the interior C̊1−i lacks points of X, it follows that xi and
yi are in γi.

In order to prove that the segments x0y0 and x1y1 do not cross each other, it suffices to show
that the line pq separates γ0 \ {p, q} and γ1 \ {p, q} (intersection of two edges means that the
edges share an interior point, which cannot be p or q). Assume, for the sake of contradiction, that
γ0 \ {p, q} and γ1 \ {p, q} are on the same side of the line pq. These curves do not intersect, and
together with the segment pq, one must contain the other, contradicting their definition.

The case in which ∂C contains a straight side (and so ∂C0 ∩ ∂C1 may contain a sub-segment of
such a straight side), is dealt with similarly to the case that ∂C does not contain a straight side. It
is not hard to verify that in such a case ∂C0 ∩ ∂C1 consists of at most two connected components
(each either straight line or a single point). By picking p to be any point from one component and
q to be any point from the other component, we can apply essentially the same argument used
above.

This concludes the proof of Theorem 5.

4 CF-Colorings of Arrangements of Disks

In this section we prove Theorems 1 and 2 stated in the Introduction.

4.1 Proof of Theorem 1

Part 2 of Theorem 1 is proved as follows. The disk centers X ⊂ � 2 are given. Consider a radius r
(which is not given to the algorithm!), and apply Corollary 6 to the arrangement A(Sr(X)). Let Y
denote the set consisting of representatives from every cell in cells(Sr(X)). The dual range space is
isomorphic to a range space with (i) a ground set X and (ii) ranges induced by Sr(Y ). We extend
the range space to ranges induced by all the disks (of all radiuses). A CF-coloring of the points in
X with respect to the set of all disks is also a CF-coloring of every arrangement A(Sr(X)). Part 2
of Theorem 1 follows now directly from Lemma 5.

We now turn to proving Part 1 of Theorem 1.

A Transformation to Points and Half-Spaces. In what follows, we show that the problem
of CF-coloring of n arbitrary disks in the plane reduces to CF-coloring of a set of points X in � 3

with respect to the set of ranges H+(X) determined by all positive half-spaces containing at least
two points from X.
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We use a fairly standard dual transformation that transforms a point p = (a, b) in � 2 to a plane
p∗ in � 3 , with the parameterization: z = −2ax−2by +a2 + b2, and transforms a disk S in � 2 , with
center (x, y) and radius r ≥ 0, to a point S∗ in � 3 , with coordinates (x, y, r2 − x2 − y2).

It is easily seen that in this transformation, a point p ∈ � 2 lies inside (resp., on the boundary
of, outside) a disk S, if and only if the point S∗ ∈ � 3 lies above (resp., on, below) the plane p∗.
Indeed, assume that point p = (a, b) lies inside (resp., on the boundary of, outside) the disk S
with center (x, y) and radius r. This can be formulated by the inequality: (a− x)2 + (b− y)2 < r2

or −2ax − 2by + a2 + b2 < r2 − x2 − y2 (resp, an equality =, or inequality with >). which is
equivalent to that of, the point (x, y, r2 − x2 − y2) = S∗ lies above (resp, on or below) the plane
z = −2ax− 2by + a2 + b2 (which is the dual p∗ of p), as asserted.

Given a collection S = {S1, . . . , Sn} of n distinct disks in the plane, one can use the above
transformation to obtain a collection S∗ = {S∗

1 , . . . , S∗
n} of n points in � 3 , such that any CF-

coloring of S∗ with respect to H+(S∗) with k colors, induces a CF-coloring of the disks of S with
the same set of k colors.

As shown in Subsection 3.4 (Lemma 6), it is possible to apply Algorithm 1 to obtain a CF-
coloring of the points in S∗ with respect to H+(S∗) using O(log n) colors. Recall that Part 1 of
Theorem 1 states that the number of colors is of the order of the minimum between log n and
(log ρ) · (log φ(S)) (where ρ is the size-ratio of S and φ(S) its local density). To obtain the latter
bound we proceed in two steps: first we assume that the size-ratio is at most 2, and then we deal
with the more general case.

The Tiling. Assume that the size ratio ρ is at most 2. By scaling, we may assume that every
radius is in the interval [1, 2]. We partition the plane into square tiles having diameter 1. We
say that a disk S belongs to tile T if the center of S is in T . We denote the subset of disks in S
that belong to T by S(T ). Note that the union of the disks in any given tile intersects at most 16
different tiles. We assign a palette (i.e., a subset of colors) to each tile using 16 different palettes,
where the disks belonging to a particular tile are assigned colors from the tile’s palette. Palettes are
assigned to tiles by following a periodic 4 × 4 assignment. This assignment has the property that
any two disks that belong to different tiles either do not intersect or their tiles are given different
palettes (so that necessarily the two disks are assigned different colors). By the definition of local
density we have that |S(T )| ≤ φ(S) for every tile T . Since we can color the set of disks S(T )
belonging to tile T using O(log |S(T )|) colors, and the total number of palettes is 16, we get the
desired upper bound of O(log φ(S)) colors.

The general case of arbitrary size-ratio is dealt with by first partitioning the set of disks into
classes according to their radius. The ith class consists of disks, the radius of which is in the interval
[2i, 2i+1). Within each class, the size-ratio is bounded by 2, hence we can CF-color each class using
O(log φ(S)) colors. By using a different (super-)palette per class, we obtain the desired bound on
the number of colors, i.e., O((log ρ) · (log φ(S))).

4.2 Bi-Criteria CF-coloring Algorithms

In this section we prove Theorem 2. The first part of the theorem reveals a tradeoff between the
number of colors used and the fraction of the area that is served. The second part of the theorem
reveals a tradeoff between the number of colors used to serve the union of the unit disks and the
radius of the serving disks.

We first derive the following corollary from Theorem 1.
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Corollary 7 Let S be a set of unit disks, and let dmin(S) be the minimum distance between centers
of disks in S. If dmin(S) ≤ 2 then every arrangement A(S) of unit disks can be CF-colored using

O
(
log

(
min

{
|S|, 1

dmin(S)

}))
colors.

Observe that if dmin(S) > 2 then a single color suffices since the disks are disjoint.
Proof: Obviously φ(S) ≤ |S|. Since a square of diameter 1 can be packed with at most
O( 1

dmin(S(T ))2
) many disks of radius dmin(S(T )), it follows that that φ(S) = O( 1

dmin(S(T ))2
). 2

Let X ⊂ � 2 denote a finite set of centers of disks. Recall that Sr(X) = {B(x, r) | x ∈ X}, where
B(x, r) denotes a disk of radius r centered at x. Let Ar(X) =

⋃
x∈X B(x, r). The area of a region

A in the plane is denoted by |A|. Let Lr(X) denote the length of the boundary of Ar(X). In order
to prove Theorem 2 we shall need the following two lemmas which are proved subsequently.

Lemma 9 For every finite set X of points in the plane,

|A1(X)| ≥
1

2
· L1(X)

Lemma 10 For every finite set X of points in the plane and every ε > 0,

|A1+ε(X)−A1(X)| ≤ (2ε + ε2) · L1(X)

Proof of Theorem 2: We start with the second part. Let X ′ ⊆ X denote a maximal subset
with respect to inclusion such that ||x1 − x2|| ≥ ε, for every x1, x2 ∈ X ′. Observe that

⋃
S1(X) ⊆⋃

S1+ε(X
′). Corollary 7 implies that S1+ε(X

′) can be CF-colored using O
(
log 1+ε

ε

)
colors. The

second part follows.
We now turn to the first part. Let ε1 = ε/6 and X ′ as above. Corollary 7 implies that there

exists a CF-coloring χ of S1(X
′) using O

(
log 1

ε

)
colors. To complete the proof we need to show

that
|A1(X) −A1(X

′)|

|A1(X)|
≤ ε.

Since A1(X) ⊆ A1+ε1
(X ′) and A1(X

′) ⊆ A1(X). It suffices to prove that

|A1+ε1
(X ′)−A1(X

′)|

|A1(X ′)|
≤ ε.

By Lemmas 9 and 10 it follows that

|A1+ε1
(X ′)−A1(X

′)|

|A1(X ′)|
≤

(2ε1 + ε2
1) · L1(X

′)
1
2 · L1(X ′)

= 4 · ε1 + 2ε2
1.

Since ε < 1, it follows that 4 · ε1 + 2ε2
1 ≤ 6 · ε1 = ε, and the corollary follows. 2

4.2.1 Proving Lemmas 9 and 10

We denote a sector by sect(Q,α, r), where Q is its center, α is its angle, and r is its radius. A
boundary sector of A1(X) is a sector sect(Q,α, 1) such that Q ∈ X and its arc is on the boundary
of A1(X). A boundary sector is maximal if it is not contained in another boundary sector. We
measure angles in radians. Therefore, in a unit disk, (1) the angle of a sector equals the length of
its arc, and (2) the area of a sector equals half its angle.

14



Lemma 11 The intersection of every two different maximal boundary sectors in A1(X) has zero
area.

Proof: The lemma is obvious if the boundary sectors belong to the same disk. Let Q1, Q2 ∈ X,
and let Di denote the circles centered at Qi, for i = 1, 2, as depicted in Figure 3. Let secti denote
a boundary sector that belongs to circle Di, for i = 1, 2. Let ` denote the line defined by the
intersection points of the circles D1 and D2. The line ` separates the centers Q1 and Q2 so that
they belong to different half-planes. The sector secti is contained in the half-plane that contains
Qi, and hence sect1 ∩ sect2 contains at most two points. The lemma follows. 2

`

Q1 Q2

Figure 3: Proof of Lemma 11.

Proof of Lemma 9: The sum of the angles of the maximal boundary sectors of A1(X) equals
L1(X). By Lemma 11, the maximal boundary sectors are disjoint, and hence the sum of their areas
is bounded by |A1(X)|. But, the area of a sector of radius 1 whose angle equals α is α/2. 2

Lemma 12 Let X denote a finite set of points in the plane. For every P ∈ A1+ε(X) − A1(X),
there exists a point Q ∈ X, such that (1) P ∈ B(Q, 1 + ε) and (2) the segment PQ contains a
boundary point of A1(X).

Proof: Let Q denote a closest point in X to P . Since P ∈ A1+ε(X) − A1(X), it follows that
P ∈ B(Q, 1 + ε). Let Y denote the point at distance 1 from Q along the segment QP . All we need
to show is that Y is on the boundary of A1(X). If not, then Y is in the interior of a disk B(Q′, 1),
for Q′ ∈ X − {Q}. The triangle inequality implies that Q′ is closer to P than Q, a contradiction.
The lemma follows. 2

Proof of Lemma 10: Lemma 12 implies that, for every point P ∈ A1+ε(X) − A1(X), there
exists boundary sector sect(Q,α, 1) of A1(X) (where Q ∈ X), such that

P ∈ sect(Q,α, 1 + ε)− sect(Q,α, 1)

It follows that

|A1+ε(X)−A1(X)| ≤
∑

sect(Q,α,1)

|sect(Q,α, 1 + ε)− sect(Q,α, 1)| =
∑

sect(Q,α,1)

α · (2ε + ε2),
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where sect(Q,α, 1) ranges over all maximal boundary sectors of A1(X). The claim follows by
observing that the sum of the angles of the boundary sectors of A1(X) equals L1(X). 2

5 Proof of Theorem 4

Theorem 4 follows from Theorem 5 similarly to the way Part 2 of Theorem 1 was shown to follow
from Lemma 5.

Specifically, let C be a centrally-symmetric convex region with a center point O, and X the
set of centers we are given. Consider a particular scaling factor r, and apply Corollary 6 to the
arrangement A(Cr,O(X)). Let Y denote the set consisting of representatives from every cell in
cells(Cr,O(X)). The dual range space is isomorphic to a range space with (i) a ground set X (ii)
ranges induced by Cr,O(Y ). We extend the range space to ranges induced by all scaled translations
of C. A CF-coloring of the points in X with respect to all scaled translations of C is also a
CF-coloring of every arrangement A(Cr,O(X)). Theorem 4 follows now directly from Theorem 5.

6 Chains and CF-Coloring of Chains

In this section we introduce a combinatorial structure that we call a chain. Chains are used to
establish the tightness of Theorem 1. They are also central to our O(1) approximation algorithms
for rectangles and hexagons.

6.1 Combinatorial Structure

Consider an arrangement A(S) of a collection of sets S. We associate with every cell v ∈ cells(S)
the subset N(v) ⊆ S of regions that contain the cell, namely, N(v) = {S ∈ S : v ⊆ S}.

A set S of regions in the plane is said to be indexed if the regions are given indexes from 1 to
|S|. In the following definition we identify a region with its index.

Definition 8 Let S denote an indexed set of n regions. The arrangement A(S) satisfies the interval

property if N(v) is a (discrete) interval [i, j] ⊆ [1, n], for every cell v ∈ cells(S).
The arrangement A(S) satisfies the full interval property if it satisfies the interval property and,

in addition, for every interval [i, j] ⊆ [1, n], there exists a cell v ∈ cells(S) such that N(v) = [i, j].

The definition of the (full) interval property is sensitive to the indexing. Indexes of regions are
usually based on the order of appearance of the regions along the boundary of the union of the
regions. We refer, in short, to an arrangement of an indexed set of regions that satisfies the full
interval property as a chain.

The definition of a chain implies that an arrangement A(S) is a chain if and only if the dual
range space is isomorphic to ({1, . . . , n}, {[i, j] : 1 ≤ i ≤ j ≤ n}), where n = |S|. The next lemma,
which follows directly from this observation, shows that the chain property is hereditary.

Lemma 13 Let S denote an indexed set of regions. Let S ′ ⊆ S, and let the indexes of regions S ′

agree with their order in S. If A(S) is a chain, then A(S ′) is also a chain.

Before discussing colorings of chains we observe that it is easy to construct chains. Consider a
set S of n unit disks with centers positioned along a straight line distance 1

n+1 apart. Index the
disks from 1 to n according to the position of their center from left to right. The arrangement A(S)
is depicted in Figure 4. Observe that every two disks in the arrangement intersect.
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[3,6] [4,8][1,10]

Figure 4: A chain of disks, where the disks are numbered 1, . . . , 10, from left to right. The three
cells that are marked correspond to the three respective intervals.

We apply duality to prove that the arrangement A(S) is a chain. The arrangement is the range
space (cells(S),S). Let X denote a set of representatives of cells in cells(S) and let Y denote the
centers of unit disks in S. The dual range space is the pair (Y, {N(x)}x∈X ). Since the disks are
unit disks it follows that N(x) is the intersection of Y with a unit disk centered at x. The set Y is
indexed and its points are located along a line sufficiently close so that they are included in a unit
disk. Hence the collection of sets {N(x)}x∈X is simply the set of of all intervals [i, j] ⊆ [1, n]. It
follows that the arrangement A(S) is a chain, as claimed.

6.2 CF-Colorings of Chains

In this subsection we show that the number of colors both necessary and sufficient for CF-coloring
a chain of n regions is Θ(log n).

Lemma 14 Every CF-coloring of a chain of n regions uses Ω(log n) colors.

Proof: Let Ia,b denote the set {[i, j] : a ≤ i ≤ j ≤ b}, namely, the set of all sub-intervals of
[a, b]. By definition, the dual range space of a chain is isomorphic to the range space ([1, n], I1,n).
Therefore, CF-coloring a chain is equivalent to CF-coloring [1, n] with respect to I1,n. We hence
focus on the latter problem. Let f(n) denote the minimum number of colors required for such a
coloring.

Consider an optimal CF-coloring χn of [1, n] with respect to I1,n. Let i denote the index that
serves the interval [1, n]. It follows that for every index j 6= i, χ(j) 6= χ(i). Since χ(i) is unique, it
follows that every sub-interval that contains i can be served by i.

We partition I1,n into three sets as follows: (i) I1,(i−1) - the set of all sub-intervals of [1, i−1], (ii)
I ′ - the set of all sub-intervals of [1, n] that contain i, and (iii) I(i+1),n - the set of all sub-intervals
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of [i + 1, n]. (Observe that if i = 1 (i = n) then I1,(i−1) (I(i+1),n) is empty.)
Since i can only serve intervals in I ′, we are left with two range spaces that are the dual

of (shorter) chains. Namely, the range space ([1, (i − i)], I1,(i−1)) and the range space ([(i +
i), n], I(i+1),n).

Since χ(j) just differ from χ(i) for every j 6= i, it follows that f(n) satisfies the following
recurrence equation:

f(n) ≥ 1 + max
i
{f(i− 1), f(n− i)}.

Therefore, f(n) = Ω(log n), and the lemma follows. 2

Lemma 15 Every indexed arrangement of n regions that satisfies the interval property can be
CF-colored with O(log n) colors.

Since every chain satisfies the interval property, the above lemma holds in particular for chains.
Recall that in Section 3.1 we already presented a proof of the above lemma in the special case of
unit disks.
Proof: We use the same notation as in the proof of the previous lemma. Without loss of generality
the dual range space is isomorphic to ([1, n], Ii,n) (adding ranges does not make CF-coloring a set
of points with respect to a set of ranges any easier). Hence, we focus on CF-coloring of such a dual
range space.

We show by induction that f(n) ≤ dlog ne + 1. The induction basis is trivial. For n > 1, let
i = dn/2e and color it with the color dlog ne. The index i serves all the sub-intervals of [1, n] that
contain i. A sub-interval of [1, n] that does not contain i is either in I1,(i−1) or in I(i+1),n. The
induction hypothesis implies that the range spaces ([1, (i − 1)], I1,(i−1)) and ([(i + 1), n], I(i+1),n)
can each be colored by 1 + dlog(n/2)e = dlog ne colors. Since the ground sets of these range spaces
are disjoint, we may use the same set of colors for these two range spaces. It follows that at most
dlog ne+ 1 colors are used, as required. 2

7 An Approximation Algorithm for Rectangles

In this section we prove Theorem 3 for the case of axis-parallel rectangles. Most of the proof deals
with the special case of axis-parallel unit squares. In Section 7.4 we point out modifications required
for rectangles.

7.1 Preliminaries

Let R be a set of axis-parallel rectangles of side length at least 1. We denote a set of axis-parallel
unit-squares by S. For simplicity, we assume that the rectangles (squares, resp.) in R (S, resp.)
are arranged in general position. Let Γ = { � ,

�
, � , � } denote the set of corner types. We denote the

top-right corner of a rectangle R by � (R). In general, for a corner γ ∈ Γ, we denote the γ-corner
of R by γ(R). The x-coordinate (y-coordinate) of a γ-corner of a rectangle R is denoted by xγ(R)
(yγ(R)). Let op : Γ→ Γ denote the permutation that swaps opposite corners (i.e. op = ( � , � )(

�
, � )).

The center of a rectangle R is the intersection point of its two main diagonals.

The Tiling. We partition the plane into “half-open” square tiles having side-lengths 1/2, namely
Ti,j = [i/2, (i +1)/2)× [j/2, (j +1)/2). We say that a rectangle R belongs to tile T , if the center of
R is in T . We denote the set of rectangles in R that belong to tile T by R(T ). A tile T is an orphan

if R(T ) = ∅. A tile is bare if no rectangle in R intersects it. We say that two tiles are e-neighbors
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(v-neighbors) if they share an edge (a corner). The v-neighbor T ′ of T which shares its γ-corner
with the op(γ) corner of T is denoted Tγ .

Tiles are half-open and their side length is defined to be half the minimum side length of a
rectangle so that: (i) if a rectangle R belongs to a tile T , then rectangle R covers the tile T ; and
(ii) a tile can contain at most one corner of a rectangle.

In the case of a set S of unit-squares, squares belonging to Tγ intersect T with their γ-corner.
Moreover, the corners of a unit-square S ∈ S(T ) reside in v-neighbors of T . Hence, a square S only
intersects the tile it belongs to and the neighbors of that tile.

Corner Chains. We next consider chains obtained by rectangles having the same corner-type
in a common region. Let T be a fixed tile, and let Q ⊆ T denote a rectangle. Let γ ∈ Γ denote
a corner type. Let R(Q, γ) denote the set of rectangles R ∈ R that satisfy γ(R) ∈ Q. The size
of the tile T implies that every rectangle of side length at least 1 contains at most one corner in
T . Define the Q-envelope of R(Q, γ) to be the boundary

⋃
R(Q, γ) that is in Q (see Figure 5).

The vertices of an Q-envelope are either corners γ(R), for R ∈ R(Q, γ), or intersections of sides
of two rectangles. Let R̃(Q, γ) denote the subset of rectangles in R(Q, γ) that participate in the
Q-envelope of R(Q, γ).

The following claim shows that the corner-type γ determines whether the Q-envelope is non-
increasing or non-decreasing.

Claim 16 The Q-envelope of R(Q, γ) is non-decreasing (non-increasing) if γ ∈ {
�
, � } (γ ∈ { � , � }).

Proof: We prove the claim for γ = � . An analogous argument holds for the other cases. Let
R1, . . . , Rm (m = |R̃(Q, γ)|) be an ordering of R̃(Q, γ) which satisfies x � (R1) < x � (R2) < . . . <
x � (Rm). We show that y � (R1) > y � (R2) > . . . > y � (Rm). Assume in contradiction that for
some pair of squares Rk, R` ∈ R̃(Q, γ) where k < ` (so that x � (Rk) < x � (R`)), we have that
y � (Rk) < y � (R`). But in such a case we would have that (x � (Rk), y � (Rk)) ∈ R`, contradicting the
fact that Rk belongs to the envelope R̃(Q, γ). 2

In the next claim we show that the set of cells of the arrangement of rectangles R̃(Q, γ) that
are contained in Q form a chain. Formally, this means that the arrangement corresponding to the
set of rectangles {R ∩Q}

R∈
�
R(Q,γ) is a chain. To simplify notation we state the claim as follows.

Claim 17 Index the rectangles of R̃(Q, γ) according to the x-coordinate of their γ-corner. Then
R̃(Q, γ) is a chain with respect to Q.

Claim 17 justifies referring to R̃(Q, γ) as a corner-chain.

1
2

3

4
5

T

Figure 5: An illustration of a corner-chain; indexes appear next to the corners of the rectangles.

Proof: We prove the claim for γ = � . The other 3 cases can be reduced to this case by “turning the
picture”. Let R1, . . . , Rm (m = |R̃(Q, γ)|) be an ordering of R̃(Q, γ) according to the x coordinates
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of their centers. Let Pi,j , for i < j, denote the intersection of the right side of Ri and the topside
of Rj. By Claim 16, it follows that Pi,j is well defined and that Pi,j ∈ Q, for every 1 ≤ i < j ≤ m.

The arrangement of R̃(Q, γ) in Q is a set of rectangle shaped cells, the corners of which are the
set of points {Pi,j}i,j plus intersections of the rectangles Ri with the sides of Q. The cell v whose
corners are Pi−1,j+1, Pi−1,j , Pi,j and Pi,j+1 satisfies N(v) = [i, j], and the claim follows. 2

Disjoint Palettes. In the case of unit squares we assign a palette (i.e., a subset of colors) to
each tile using in total 9 disjoint palettes. Palette distribution is such that neighboring tiles are
assigned different palettes (i.e., periodically assign 9 different palettes to blocks of 3× 3 tiles). The
tile size implies that if two squares belong to different tiles that are assigned the same palette, then
the squares have an empty intersection.

7.2 Main Lemmas

In this section we lay the ground for our algorithm and its analysis by presenting our main lemmas.
For simplicity we focus on a collection S of unit squares. In Subsection 7.4 we discuss how to
perform the extension to general rectangles.

Tiling combined with coloring of squares in each tile using O(log φ(S)) colors may lead to a
CF-coloring that is far from optimal. The reason is that squares whose centers reside in different,
but neighboring tiles, may interact with each other in a manner that allows us to save in the number
of colors used. For an illustration see Figure 6.

Figure 6: An example illustrating how by taking into account intersections between squares that
belong to different tiles we may significantly reduce the number of colors required in a CF-coloring.
Here there is a large number of squares that belong to the middle tile and constitute a chain. If
we color the squares of each tile separately, the number of colors used is logarithmic in the size of
the chain. However, there is a CF-coloring that uses only 5 colors: simply color each of the thick
squares by a distinct color and use the 5th color for the remaining squares.

In the rest of this section we provide our main lemmas concerning interactions between corner-
chains of opposite corners and corner-chains of adjacent corners.

Corner-chains of adjacent corners. Consider a rectangle Q with side lengths at most 1/2.
Let S̃ � = S̃(Q,

�
) and S̃ � = S̃(Q, � ) denote corner-chains corresponding to adjacent corners (the

other 3 cases of pairs of adjacent corners can be reduced to this case by “turning the picture”).
We show that by picking at most one square from each corner-chain, it is possible to “separate”
between the chains.
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Let {Si}
m
i=1 ({S′

i}
m′

i=1) denote the ordering of the squares in S̃ � (S̃ � ) in increasing (decreasing)

order of x-coordinate of their centers (or corners in Q). By Claim 17 both indexed sets S̃ � and S̃ �

are chains with respect to Q.

Figure 7: An illustration for Lemma 18. The tile is depicted by a green dashed square. Only the
corners of squares in the corner chains are depicted. The two filled squares are the selected squares
Sk and S′

`.

Lemma 18 There exist two squares, Sk ∈ S̃ � and S′
` ∈ S̃

� such that

1. The prefixes {S1, . . . , Sk−1} and {S′
1, . . . , S

′
`−1} are disjoint, namely, for every Sk′ and S′

`′

such that k′ < k, and `′ < `, we have Sk′ ∩ S′
`′ = ∅;

2. Each of the prefixes {S1, . . . , Sk−1} and {S′
1, . . . , S

′
`−1} is a chain with respect to Q\ (Sk∪S′

`).

3. The union of Sk and S′
` covers every point in Q that is covered by a square in one of the

suffixes. Namely,
(⋃m

t=k+1(St ∩Q)
)⋃(⋃m′

t=`+1(S
′
t ∩Q)

)
⊆ Sk ∪ S′

`.

The implication of this lemma is that it is possible to select two squares Sk and S′
` so as to serve

all cells that are contained in the union (
⋃m

t=k(St ∩Q)) ∪
(⋃m′

t=`(S
′
t ∩Q)

)
. Furthermore, each of

the prefixes is a chain with respect to the remaining region.
Proof: Consider the Q-envelopes of the two corner-chains. Both envelopes are “stairs”-curves.
By Claim 16, the Q-envelope of S̃ � (S̃ � ) is non-increasing (non-decreasing). Hence the Q-envelopes
intersect at most once. If they do not intersect, then the claim is trivial (pick the last square from
each chain). Otherwise, let P denote the intersection point. Let the selected squares Sk and S′

` be
the squares that intersect in point P . We assume that P is along the horizontal upper side of S ′

`

(i.e., Py = y � (S′
`)) and along the vertical right side of Sk (i.e., Px = x � (Sk)) (the reverse case is

reduced to this case by “flipping the picture”).
Part (1) of the claim follows by showing that the vertical line passing through P separates

the prefixes. Namely, if A ∈ Sk′ , k′ < k, then Ax < Px (i.e., the x-coordinate of point A is less
than the x-coordinate of point P ). Similarly, if B ∈ S ′

`′ , `′ < `, then Bx > Px. To show that
Ax < Px, assume (for the sake of contradiction) that Ax ≥ Px. It follows that x � (Sk′) ≥ Ax ≥ Px.
The ordering of squares in S̃ � implies that x � (Sk′) < x � (Sk) = Px, a contradiction. To show that
Bx > Px, assume that Bx ≤ Px. Since the Q-envelope of S̃ � is non-decreasing and squares in S̃ � are
indexed from right to left, it follows that y � (S`′) > y � (S`) = Py. It follows that P is in the interior
of S′

`′ , a contradiction.
To prove Part (2) it suffices to show that (i) Sk′ ∩S′

` = ∅ if k′ < k, and (ii) S ′
`′ ∩Sk = ∅ if `′ < `.

This is sufficient since S̃ � (S̃ � ) is a chain with respect to Q. Hence, every cell corresponding to an
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interval [i, j] ⊆ [1, k − 1] (⊆ [1, `− 1]) of S̃ � (S̃ � ) in Q is disjoint from Sk ∩ S′
`, and the full interval

property is preserved.
In order to verify (i), consider a square Sk′ for k′ < k. To show that Sk′ ∩S′

` = ∅, we prove that

x � (Sk′) < x � (S′
`). The ordering of S̃ � implies that y � (Sk′) > y � (Sk) > Py. If x � (Sk′) ≥ x � (S′

`) = Py,
then P ∈ Sk′, a contradiction. It follows that x � (Sk′) < x � (S′

`), and part (i) follows. Part (ii) is
proved analogously, and Part (2) follows.

It remains to prove Part (3). Consider a point A ∈ Sk′ ∩ Q, for k′ > k. There are two
possibilities: (i) Ax ≤ Px. In this case, Ay ≤ y � (Sk′) ≤ y � (Sk). Since Px = x � (Sk), it follows that
A ∈ Sk. (ii) Ax > Px. If Ay ≥ Py, then � (Sk′) is above and to the right of P , hence P ∈ Sk′ , a
contradiction. It follows that Ay < Py = y � (S′

`). Since Px ≥ x � (S′
`), it follows that A ∈ S ′

`. It

follows that the suffix of S̃ � is covered by Sk ∩ S′
`. The proof for the suffix of S̃ � is analogous, and

part (3) follows. 2

Corner-chains of opposite corners. Consider a rectangle Q with side lengths at most 1/2. Let
S̃ � = S̃(Q, � ) and S̃ � = S̃(Q, � ) denote corner-chains corresponding to opposite corners (the case of
the � -corner and

�
-corner is reduced to this case by “flipping the picture”). Let Q � = Q∩

⋃
S∈

�
S �

S
and Q � = Q ∩

⋃
S∈

�
S �

S. Our goal is to select an approximately minimal subset from each corner-
chain so as to cover Q � ∪ Q � . To this end we find minimal covers of (Q � \ Q � ), (Q � \ Q � ), and
Q � ∩Q � .

Definition 9 A subset S̃m
� ⊆ S̃ � is a minimal cover of (Q � \ Q � ) if (i) S̃m

� covers (Q � \ Q � ), and

(ii) no proper subset of S̃m
� covers (Q � \Q � ).

The following lemma shows that minimal covers of (Q � \Q � ) are chains with respect to (Q � \Q � ).

Figure 8: An minimal cover of (Q � \ Q � ). The squares of S̃ � are depicted by filled � -corners. A
minimal cover S̃m

� ⊆ S̃ � is depicted by thick � -corners.

Lemma 19 If S̃m
� ⊆ S̃ � is a minimal cover of (Q � \ Q � ), then S̃m

� is a chain with respect to
(Q � \Q � ).

Proof: Index the squares in S̃m
� according to the x-coordinate of their � -corners. Let S̃m

� =

{S′
1, . . . , S

′
k}. Since S̃ � is a chain with respect to Q, it follows that S̃m

� is also a chain with respect

to Q � . For the sake of contradiction, assume that S̃m
� is not a chain with respect to Q � \ Q � . It

follows that there is an interval [i, j] such that the corresponding cell in A(S̃m
� ) is contained in Q � .

Assume that 1 < i < j < k. See Fig. 9 for this case. Consider the corner B of the cell [i, j] in Q
defined by the intersection of the sides of S ′

i−1 and S′
j+1 in Q. Since the cell [i, j] is in Q � , so is the
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i

i − 1

j

j + 1

B

SB

Figure 9: The construction in the proof of Lemma 19.

point B. Let SB ∈ S̃ � denote a square that contains B. It follows that the whole cell [i, j] as well
as � (S′

i−1), � (S′
i), � (S′

j), and � (S′
j+1) are in SB. It is easy to see that we may omit both S ′

i and

S′
j from S̃m

� while still covering Q � \Q � , contradicting the assumption that S̃m
� is a minimal cover.

The argument shows, in fact, that since S̃m
� is a minimal cover, then every square in S̃ � contains at

most two corners of squares in S̃m
� . Hence i = 1 and j = k. This implies that cell [i, j] contains the

bottom left corner of Q, hence S̃ � covers Q � (with a single square). This leads to a contradiction
since in this case Q � \Q � is empty and so is S̃m

� . 2

We now describe a greedy algorithm for finding a subset S̃m
� ⊆ S̃ � that is a minimal cover of

Q � \Q � . Let S1, . . . , Sm be an ordering of the squares in S̃ � according to increasing value of x � (Si).
Recall that S̃ � is a chain with respect to Q, and therefore every subset of S̃ � is a chain with respect
to Q. For any two indexes 1 ≤ a ≤ b ≤ m, let S̃ � [a, b] denote the cell v in the arrangement A(S̃ � )
such that N(v) = {Sa, . . . , Sb}.

The greedy algorithm works in an iterative fashion. Let k be the index of the square selected
in the last iteration (where initially k = 0 and S̃m

� = ∅). Consider all cells S̃ � [k + 1, `] where

(k +1) ≤ ` ≤ m such that S̃ � [k +1, `]∩Q is not fully contained in Q � . If there is no such cell, then
the algorithm terminates. Otherwise, let ` be the minimum index such that S̃ � [k + 1, `] is not fully
contained in Q � , and add S` to S̃m

� .

Claim 20 The greedy algorithm computes a minimal cover S̃m
� ⊆ S̃ � of (Q � \Q � ).

By “rotating the picture” we can obtain an analogous claim concerning a minimal cover S̃m
� ⊆ S̃ �

of Q � \Q � .
Proof: Let k1 < k2 < · · · < kr denote the sequence of squares added to S̃m

� by the greedy

algorithm. We show that the algorithm computes a cover S̃m
� of Q � \ Q � by showing that the

following invariant holds throughout the algorithm:

(Q � \Q � ) ∩ (S1 ∪ S2 · · · ∪ Skt
) ⊆

⋃

j≤t

Skj
.

The invariant holds trivially when the algorithms starts (as kt = 0). Assume, for the sake of
contradiction, that a cell S̃ � [i, j] (for i ≤ j < kt) in Q � \Q � is not covered by

⋃
j≤t Skj

. If i ≤ kt−1,
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then there are two cases: (i) j ≤ kt−1, in which case the induction hypothesis already implies that
cell S̃ � [i, j] is contained in

⋃
j<t Skj

. (ii) j > kt−1, in which case cell S̃ � [i, j] is contained in Skt−1
.

Both cases lead to a contradiction, so we assume that i > kt−1. It can be verified that if the cell
S̃ � [i, j] is not covered by

⋃
j≤t Skj

, then the cell S̃ � [kt−1 + 1, j] is also not covered by
⋃

j≤t Skj
. In

such a case, the greedy algorithm would have chosen kt ≤ j, a contradiction.
The stopping condition of the algorithm combined with the invariant guarantees that, when the

algorithm terminates, S̃m
� covers Q � \Q � .

Minimality of S̃m
� is proved as follows. Consider a square Sj ∈ S̃

m
� . When Sj was added to S̃m

� ,

it was added due to a cell [i, j], with i greater than the index of the square added to S̃m
� just before

Sj. The cell [i, j] is covered only by Sj, and hence minimality follows. 2

Let m � = |S̃m
� | and let m � = |S̃m

� |. Let m = max{m � ,m � }. In the next lemma we show that it

is possible to cover Q � ∪Q � by O(m) squares from S̃ � ∪ S̃ � .

Lemma 21 There exists a subset S ′ ⊆ S̃ � ∪ S̃ � of O(m) squares that covers Q � ∪Q � .

D’

D

U’

U

P

Figure 10: An illustration for Lemma 21. The point P is in D ∩ U .

Proof: Since S̃m
� (S̃m

� ) covers Q � \Q � (Q � \Q � ) and |S̃m
� ∪ S̃m

� | ≤ 2m, the remaining problem is

to cover Q � ∩Q � using O(m) squares. For every square S ∈ S̃m
� consider the set S̃ � (S) of squares

in S̃ � that intersect S. Define A � (S) (B � (S), resp.) to be the first (last, resp.) square in S̃ � (S)
when sorted according to their y and/or x-coordinate. We claim that

⋃
S∈

�
Sm

�
(A � (S)∪B � (S)) covers

Q � ∩Q � .
Consider a point P ∈ Q � ∩Q � . Let D ∈ S̃ � (U ∈ S̃ � , resp.) denote a square that contains P . If

D ∈ S̃m
� or U ∈ S̃m

� then we are done. Otherwise, consider the cell in A(S̃ � ) that contains a point

slightly to the left of � (U). This cell is in Q � \ Q � , and therefore, there exists a square D ′ ∈ S̃m
�

that covers this cell. If P ∈ D′, we are done. Otherwise, consider the square U ′ = B � (D′). Such
a square exists since U intersects D ′. We can now bound the coordinates of � (U ′) to show that
P ∈ U ′ as follows: (i) x � (U ′) < x � (D′) < Px, and (ii) y � (U ′) ≤ y � (U) < Py. The claim follows. 2

Remark 1 Lemmas 19 and 21 and Claim 20 regarding opposite corner-chains were stated with
respect to a rectangle Q that is contained in a tile. The same lemmas and claim hold with respect
to a region Q ⊆ T that satisfies the following properties:

The region Q contains two designated points C � and C � . (When Q is a rectangle then C � is
the bottom left corner and C � is the top right corner.) The point C � is contained in every square
in S̃ � , and the point C � is contained in every square in S̃ � . Moreover, if a square S ∈ S̃ � (S ∈ S̃ � ,
resp.) contains the point C � (C � , resp.), then Q � \Q � = ∅ (Q � \Q � = ∅, resp.).
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Note that if Lemma 18 is applied to separate corner-chains of adjacent corners, then the remain-
ing uncovered region in a tile is a region that satisfies the above condition. Hence, after separating
corner-chains of adjacent corners, we may apply Lemmas 19 and 21 and Claim 20 for the covering
of the remaining region in the tile.

7.3 Coloring Arrangements of Squares

In this section we prove Theorem 3 for unit squares. We first provide a short overview of the proof.
The tiling by squares of side length 1/2 partitions the unit squares into subsets according to the
tile that their center belongs to. The assignment of palettes to tiles guarantees that squares from
different tiles do not conflict (only tiles at least 3 tiles apart may be assigned the same palette).
The goal of the algorithm is to pick an “essential” subset of squares per tile whose union must be
served. The coloring of the essential squares per tile is done according to Theorem 4. Recall that
a tile is an orphan tile if it does not contain a center of a square. By picking an arbitrary square
from each non-orphan tile, all non-orphan tiles are served. The main thrust of the algorithm and
its analysis is in serving the covered regions in orphan tiles (i.e., the union of the squares minus
the union of non-orphan tiles). The task of selecting a subset of squares that serves the covered
parts of orphan tiles is “done independently” by the orphan tiles. The set of essential squares per
non-orphan tile is the set of squares that belong to the tile that have been selected by one of the
neighboring orphan tiles.

7.3.1 Selection of Squares by Non-Bare Orphan Tiles

Consider a non-bare orphan tile T . In this section we describe how squares from neighboring tiles
are selected by T so that these squares serve the area that is covered in T .

Selection of squares consists of three steps: (1) Selection of at most one square from each
e-neighbor. This step maximizes service from e-neighbors. (2) Selection of at most two squares
from each v-neighbor. This step resolves all interactions between chains of squares corresponding to
adjacent corners. (3) Final selection of squares from the remaining chains corresponding to corners.
This step takes into account interactions between chains corresponding to opposite corners.

Selecting squares from e-neighbors. Consider the tile T and the set of squares the belong to
an e-neighbor T ′ of T . For brevity, assume that T ′ is to the left of T and that S(T ′) 6= ∅. Every
square S ∈ S(T ′) covers a vertical strip of T . If we select the rightmost square S in S(T ′), then it
follows that, for every S ′ ∈ S(T ′), S′ ∩T ⊆ S ∩T . In the same fashion, we select the closest square
to T from each e-neighbor of T . By selecting at most one square from each e-neighbor of T , the
first sub-step covers all the points in T ∩

⋃
T ′∈e-neighbors(T ) S(T ′).

After this step, the region within the tile T that still needs to be served is a rectangle. Let us
denote this rectangle by Q. Note that the union of squares in S may either fully cover or partly
cover the rectangle Q. In any case, only squares that belong to v-neighbors of T intersect Q.

Selecting squares from v-neighbors: adjacent corners. Consider the rectangle Q and a
corner γ. The squares of S(Q, γ) that participate in the Q-envelope are denoted by S̃(Q, γ). By
Claim 17, S̃(Q, γ) is a chain with respect to Q when indexed according the the x-coordinate of its
centers (or γ-corners). By applying Lemma 18 to the 4 appropriate pairs of chains corresponding
to adjacent corners, we obtain at most 8 squares that serve as “separators” between the pairs of
chains. The selected squares cover all points in Q that are covered by squares in the tails of the
chains. Each corner-chain is reduced to a consecutive block of squares between the two selected
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squares in that chain. The remaining portions of adjacent corner-chains are disjoint. We denote
the remaining sub-chain of S̃(Q, γ) by Ŝγ . Let Q′ denote the sub-region consisting of Q minus the
union of the (at most 8) selected squares.

Selecting squares from v-neighbors: opposite corners. In the third step we apply Lemma 21
to each pair of opposite chains Ŝγ and Ŝop(γ). This application determines the subsets Šγ ⊆ Ŝγ

that suffice to serve the intersection of Q′ with the union of each pair of chains.
A subtle issue to be addressed is whether the remaining region Q′ ⊆ T in the beginning of

this step satisfies the premises of Remark 1. Consider for example the chain Ŝ � . This chain is a
consecutive block of squares from S̃(T, � ). Let S ′ and S′′ denote the squares in S̃(T, � ) \ Ŝ � that
“hug” this block (i.e., S ′ and S′′ were selected in the adjacent corner-chain stage). The designated
point C � ∈ Q′ is the intersection of the right side of S ′ and the top side of S ′′. One can define in
this fashion all four designated points Cγ , for γ ∈ Γ, to show that indeed Q′ satisfies the premises
of Remark 1.

7.3.2 Coloring the Essential Squares

In the previous steps, each tile T selected a subset of squares that are used to serve the points in
T ∩

⋃
S. Given a non-orphan tile T ′, let sel(T ′) ⊆ S(T ′) denote the subset of squares that are

selected by some tile T . If no square in S(T ′) is requested from orphan tiles then we select an
arbitrary square in S(T ′) to serve T ′. At this stage we apply Theorem 4 and color each subset
sel(T ′) by O(log |sel(T ′)|) colors; these colors are taken from the palette assigned to the tile T ′.

Recall that at most one square from S(T ′) was requested from each of its 4 e-neighbors. Each
of its 4 v-neighbors initially requested at most 2 squares (as “separators” between chains). These
requests amount to at most 12 squares. The main contribution to sel(T ′) is due to the subsets of
squares that constitute chains in the v-neighbors of T ′ and were requested by them.

Let us denote the 4 chains by Šγ(T ) where γ ∈ Γ (according to the corner-type they have in
the requesting v-neighbor), and let mγ(T ) = |Šγ(T )|. Since |sel(T ′)| = O(maxγ∈Γ {mγ(T )}), and
since there are 9 palettes, the following corollary follows:

Corollary 8 For any given set of unit squares S, it is possible to CF-color S using
O (log (maxT,γ {mγ(T )})) colors.

7.3.3 A Lower Bound for Optimal CF-Coloring

In this section we state the lemma that lower bounds the number of colors required by an optimal
CF-coloring. Recall that for a tile T and corner-type γ ∈ Γ, the set of squares that intersect T
with corner type γ is denoted by S(T, γ). Recall that S̃(T, γ) denotes the subset of squares from
S(T, γ) that appear in the T -envelope. By Lemma 17, S̃(T, γ) is a (corner) chain.

The following lemma states a lower bound on χopt(S) in terms of the size of a chain S ′ with
respect to to a region Q in a tile T . The lemma requires two conditions: (i) the chain S ′ is a
subset of S̃(T, γ), for a tile T , and (ii) only rectangles in S(T, γ) contain points in Q, namely,
rectangles not in S(T, γ) do not intersect Q. The proof of lemma is similar in structure to the proof
of Lemma 14, but differs in one aspect: Rectangles in S(T, γ) \ S ′ may contains points in Q, and
hence can potentially serve cells in the chain S ′.

Lemma 22 Let T denote a tile and let Q ⊆ T denote a closed region. Let S ′ ⊆ S̃(T, γ) denote a
chain with respect to Q. If every square in S \ S(T, γ) does not intersect the region Q, then every
CF-coloring of A(S) requires Ω(log |S ′|) colors.
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The proof of Lemma 22 follows the same outline as the proof of Lemma 14 but is provided for
completeness. In fact, the same lower bound holds also for CF-multi-coloring, implying Theorem 11
(see Sec. 9).
Proof: For simplicity we consider the case γ = � . Let S1, . . . , Sm be an ordering of the squares in
S ′ so that x � (S1) < . . . < x � (Sm). Consider an optimal CF-coloring χopt of S. Let I1,m denote the
set

⋂m
i=1 Si ∩Q. Since S ′ is a chain with respect to Q, it follows that I1,m is not empty. Note that

when Q is a rectangle, I1,m is a rectangle as well. However, we interested also in non-rectangular
regions Q. Loosely speaking, let P denote an “upper right corner” of I1,m. More formally, denote
the coordinates of P by (Px, Py). Select P so that for every (P ′

x, P ′
y) ∈ I1,m, if P ′

x > Px then
P ′

y < Py. (Note that an upper right corner is not uniquely defined if Q is not a rectangle).
Since P ∈ Q, only squares in S(T, � ) contain P . Let S ∈ S(T, � ) be a square that serves P in

the coloring χopt. We first consider the case that � (S), the top-right corner of S, is contained in
some Sk ∈ S

′, (in particular, Sk may equal S). In this case, S ∩Q ⊆ Sk ∩Q.
We make two observations. The first is that both {S1, . . . , Sk−1} and {Sk+1, . . . , Sm} are chains

with respect to Q \ S. This is true since {S1, . . . , Sm} is a chain with respect to Q, (hence both
subsets must be chains with respect to Q\Sk), and Q∩S ⊆ Q∩Sk. Thus, S cannot fully serve any
of the cells in these two sub-chains. The second observation is that every square S ′ ∈ S̃(T, � ) that
serves the top-right corner P ′ of a cell in one of these sub-chains must also contain P . This is true
because every top-right corner of a cell in the arrangement induced by {Q ∩ Si}

k
i=1 dominates P

(i.e., the x and y coordinates of such corners are not smaller than Px and Py, respectively). Since
S serves P , it follows that the color of every square Si 6= S must be different from χopt(S).

If � (S), the top-right corner of S, is not contained in any Sk ∈ S̃(T, � ), then define k as follows:
k = max{i : x � (Si) < x � (S)}. Since S ′ is a subset of a corner chain, it follows that {S1, . . . , Sk}
and {Sk+1, . . . , Sm} are chains with respect to Q \ S. Furthermore, similarly to what was shown
above, for any square S ′ that can serve (the top-right corner of) a cell in one of these chains,
χopt(S

′) 6= χopt(S). In either case we get the recurrence relation

|χopt({S1, . . . , Sm}| ≥ 1 + min
1≤k≤m

{max (|χopt({S1, . . . , Sk−1)} |, |χopt({Sk+1, . . . , Sm})|}}

And so |χopt(S)| = Ω(log |S ′|), and the lemma follows. 2

Let T be a non-bare orphan tile. For each of its v-neighbors, Tγ , γ ∈ Γ, let Šγ(Tγ) and mγ(Tγ)
be as defined preceding Corollary 8. The selection of sub-chains of corner-chains according to
Lemmas 19 and 21 implies the existence of a chain Šγ(Tγ) with respect to a region Q ⊆ T whose
length is Ω(maxT,γ {mγ(Tγ)}). We apply Lemma 22 to Šγ(Tγ) and Q to obtain the following
corollary:

Corollary 9 |χopt(S)| = Ω(log (maxT,γ {mγ(Tγ)})).

Wrapping-up the Proof of Theorem 3 for unit-squares. Combining Corollary 8 and Corol-
lary 9, and noting that the computational complexity of the algorithm is only due to sorting squares
according their x coordinates, Theorem 3 for unit-squares directly follows.

7.4 General Rectangles

Consider a collection R of rectangles with size-ratio ρ. Our goal is to prove the existence of
an efficient approximation algorithm for CF-coloring R. The number of colors required by the
algorithm is O((log ρ)2 · |χopt(R)|), hence the approximation ratio is constant if ρ is constant.
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By scaling separately the x-axis and the y-axis, we may assume that the minimum width and
height of rectangles in R are equal to to 1. Hence, all side-lengths are in the range [1, ρ].

The algorithm proceeds in two steps (as in the proof of Theorem 1). First, consider the case
that ρ ≤ 2. For this case we show that O(|χopt(R)|) colors suffice. For the more general case of
ρ > 2, we partition the set of rectangles into log2 ρ classes. For 0 ≤ i, j < log ρ, class (i, j) consists
of rectangles whose width is in the interval [2i, 2i+1), and whose height is in the interval [2j , 2j+1).
Each class is colored using a distinct palette, to obtain a CF-coloring that uses O((log ρ)2 ·|χopt(R)|)
colors, as required.

7.4.1 Rectangles with ρ ≤ 2

We outline the algorithm for the case ρ ≤ 2 below.

1. The tiling is the same as in the case of unit squares. The tiles are assigned 25 different palettes
(instead of 9).

2. An orphan tile may now be completely covered by a rectangle. An orphan tile that is com-
pletely covered by a rectangle selects such a rectangle (this type of selection does not exist in
the case of unit squares).

3. Instead of selecting closest rectangles from e-neighbors, every non-bare orphan tile that is not
completely covered by a single rectangle selects the rightmost rectangle (if any) whose right
edge intersects both the bottom and top side of the tile. The same selection takes place in
the other 3 axis-parallel directions. In this stage an orphan cell selects at most 4 rectangles.

4. A non-bare orphan tile that still contains a region covered by R but not by the rectangles
selected so far, selects rectangles from the corner-chains as in the algorithm for unit squares.
The reason that the same techniques apply is that the intersection of a rectangle with a tile
contains at most one corner.

5. The essential (selected) rectangles from each tile are colored as described in the following
paragraph.

Coloring the Essential Rectangles. Given a non-orphan tile T , let sel(T ) denote the set of
rectangles that belong to T and were selected in the previous stages. Let m = maxT ′,γ{mγ(T ′)}
denote the maximum (over all tiles T ′ and corner types γ) of the number of rectangles selected by
an orphan tile T ′ due to their participation in a γ-corner-chain. In this section we show that: (i)
|sel(T )| ≤ O(m), and (ii) sel(T ) can be CF-colored using O(log |sel(T )|) colors.

We begin with counting the number of rectangles in sel(T ). Since the side length of every
rectangle is in the range [1, 2], and all the rectangles in sel(T ) are centered in T , it follows that⋃

sel(T ) intersects at most 25 tiles. Therefore, |sel(T )| = O(m), for every tile T .
Similarly to Corollary 9, |χopt(R)| = Ω(m). To obtain the constant-ratio approximation al-

gorithm, we next show that sel(T ) can be CF-colored using O(log |sel(T )|) colors. Note that
Theorem 4 is not applicable in this case since the rectangles are not congruent.

Lemma 23 Let R′ be a set of axis parallel rectangles with minimum width (height) at least 1.
Assume that all centers of rectangles in R′ reside in a square tile of side-length 1/2. Then it is
possible to CF-color R′ using O(log(|R′|) colors.

28



H � H �

H �

H=

Ht

Hu

T H<

H �

Figure 11: An illustration for the proof of Lemma 23. The thickest (blue) rectangles belong to all
4 chains. The second thickest (red) rectangles belong to the top-left and top-right chains, and the
thinnest (green) rectangles belong only to the top-right chain.

Proof: Let T be the 1/2×1/2 tile that contains the centers of the unit squares in R ′. Extend the
sides of T into lines, and consider the subdivision of the plane into 9 regions by these 4 lines. The
subdivision consists of (i) the tile itself T , (ii) 4 corner regions denoted by H � ,H � ,H � , and H � , and
(iii) 4 remaining regions denoted by Ht,Hu,H<, and H=. These regions are depicted in Fig. 11.

Since each of the 4 regions Ht, Hu, H< and H= is of height/width 1/2, it suffices to select one
rectangle for each and give it a unique color, in order to serve the intersection of R ′ with each of
them. In particular, for Ht we take the rectangle whose top edge has the largest y coordinate, for
Hu the rectangle whose bottom edge has the smallest y coordinate, and similarly for H< and H=.
Any one of these (at most) 4 rectangles can serve all of T as well.

Next we observe that in order to serve each of the 4 corner regions H � , H � , H � and H � , it suffices
to focus on 4 corner chains. Let R̃′

� , R̃′
� , R̃′

� and R̃′
� , respectively, denote the set of rectangles that

appear in the envelope of R′ in each of the 4 corner parts. That is, those rectangles in R′ whose
corresponding corners ( � in H � ,

�
in H � and in general γ in Hop(γ)) are not contained in any other

rectangle in R′. The intersection of any other rectangle in R′ with each Hγ , γ ∈ Γ, is contained

in the intersection of the corresponding subset R̃′
op(γ) with Hγ . Note that the 4 subsets are not

necessarily disjoint.
By a slight variant of Claim 17, each corner chain R̃′

op(γ) is indeed a chain with respect to Hγ .
While it is possible to apply Lemma 15 to each of these chains, we do not directly obtain a single
consistent coloring because the different chains are not necessarily disjoint. Instead, we partition
the rectangles into 24−1 = 15 disjoint subsets, where each subset consists of rectangles that belong
a non-empty subset of corner chains (e.g., R̃′

� and R̃′
� but not R̃′

� and R̃′
� ).

The important observation regarding the envelope of R′ is that if every boundary segment is
given a symbol that corresponds to the rectangle it belongs to, then the sequence of symbols is a
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Davenport-Schinzel sequence DS(n, 2) [SA95]. Namely, no two consecutive symbols are equal and
there is no alternating subsequence of length 4 (i.e., no “. . . a . . . b . . . a . . . b . . .”, for every pair of
symbols a 6= b).

It follows that if two squares belong to more than 1 chain (that is to 2, 3, or even all 4 chains),
then they appear in the same order (up to reversal) in all chains they belong to. Hence we can
color each of the 15 subsets separately in a consistent manner (using 15 different palettes). The
total number of colors used is hence O(log(|R̃|)), as required. 2

8 Coloring Arrangements of Regular Hexagons

In this section we prove Theorem 4 for the case of regular hexagons. The proof follows the ideas used
in the proof for the case of rectangles. We therefore we only sketch the details (with accompanying
illustrations).

8.1 Preliminaries

The sets of regular hexagons that we consider are axis-parallel, namely, two of the sides of the
hexagons are parallel to the x axis. The type of a vertex is determined by the slope of the segment
connecting the center of the hexagon with the vertex. (See Fig. 12.) In the same fashion, we define
the type of an edge of the hexagon.

bottom-left bottom-right

middle-right

top-righttop-left

middle-left

Figure 12: A hexagon and its vertices.

The Tiling. In the case of hexagons we consider a tiling of the plane by equilateral triangles with
unit side-lengths; one side of each triangular tile is horizontal (see Figure 13). Triangular tiles have
two possible orientations: in the up orientation, the vertex opposite the horizontal edge is above
that edge, and in the down orientation that vertex is below the horizontal edge.

We adapt the notation of Section 7 as follows. The set of hexagons is denoted by H. We assume
that the side length of every hexagon is in the range [1, ρ]. For a tile T , we let H(T ) denote the
set of hexagons in H that belong to T (that is, whose center resides in T ). A tile T is an orphan if
H(T ) = ∅, and it is bare if no hexagon in H intersects it.

Since the tiles are equilateral triangles of side length 1, the following holds for any set of hexagons
H with side-lengths at least 1.

Observation 1 For every tile T and hexagon H ∈ H: (i) if H ∈ H(T ) then T ⊂ H, (ii) T
contains at most one vertex of H. (iii) If T intersects two edges e1, e2 of a hexagon H, then these
edges are adjacent and T contains also the vertex e1 ∩ e2.
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Figure 13: The triangular tiling and a pair of hexagons. The tile borders are depicted by dotted
lines. Both centers of the hexagons are in the middle tile. Both hexagons completely cover the
middle tile. Larger hexagons may intersect more than the 12 neighboring tiles.

Disjoint palettes. As in the case of disks (c.f. Theorem 1) we reduce the problem to the case
of size-ratio 2 by paying a factor of log ρ. Henceforth, we assume that ρ ≤ 2. We assign a
palette to every tile T . The colors assigned to hexagons in H(T ) belong to the palette assigned
to T . Palettes are disjoint and the distribution of palettes is such that intersecting hexagons from
different tiles are assigned different colors. This requires only a constant number of palettes. For
example, consider a tiling of the plane with hexagonal super-tiles that contain a constant number
of triangular tiles. Assign every triangular tile within a hexagonal super-tile a different palette, and
extend this coloring periodically according to the hexagonal super-tiles. The resulting assignment
of palettes is as required.

8.2 Coloring arrangements of hexagons

As in the case of rectangles, the algorithm has two stages. In the first stage, each non-bare orphan
tile T selects a subset of hexagons whose union serves the covered regions in T . This stage is
somewhat more involved in the case of hexagons than in the case of rectangles. For each non-
orphan tile T , let sel(T ) denote the the subset of hexagons in H(T ) that were selected by orphan
tiles in the first stage. In the second stage, the hexagons in sel(T ) are CF-colored, for every tile
non-orphan T , using colors from the palette assigned to T .

8.2.1 Selection of hexagons by non-bare orphan tiles

Consider a non-bare orphan tile T . If there exists a hexagon that covers all of T , then we simply
select one of these hexagons to serve it and no more selections are required. We now consider
non-bare orphan tiles that are not covered by a single hexagon.

For an edge type e, let H(T, e) denote the set of hexagons that intersect T with an edge that
is of type e (i.e. non-empty intersection, but no vertex of the hexagon is contained in T ). We
claim that a single hexagon covers the intersection of T with hexagons from H(T, e). For example,
let e denote the top horizontal edge. The set of tiles that intersect T with their top horizontal
edge is denoted by H(T, e). Among these hexagons, pick the hexagon H with the highest center.
The hexagons H covers the intersection of T with every hexagon in H(T, e). This completes the
discussion of the selection of hexagons that intersect T with edge.

We denote by Q the region contained in T that remains after this choice of at most 6 hexagons
(on per edge type). Note that if Q is non-empty, then Q a polygon with at least 3 edges and at
most 6 edges. The edges of Q are parallel to those of the hexagons in H.
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Figure 14: Let T be the central triangular tile in the figure, which is an orphan tile. The figure
illustrates the choice of hexagons that intersect T with an edge. The selected hexagons are the two
thick hexagons.

We now consider the selection of hexagons that intersect T with a vertex. Let γ denote a vertex
type (e.g. top-right), and let H(T, γ) denote the set of hexagons whose γ-vertex is in T . Amongst
the hexagons in H(T, γ) let H̃(T, γ) denote the hexagons that participate in the envelope of H(T, γ)
in Q. Similarly to the analysis in the case of rectangles, the latter cover all of the intersection of Q
with the former, and furthermore, they constitute a (corner) chain with respect to Q. We refer to
the chain in terms of the vertex type (e.g. top-right chain). For an illustration see Figure 15.

Figure 15: An example of a top-right chain.

Thus, there are at most 6 corner chains intersecting Q, one for each vertex type. Here we have
three types of “interactions” between chains depending on the distance between the corresponding
vertex types on the hexagons - that is: distance-one (e.g. top-right and top-left), distance-two (e.g.
top-right and middle-left), and distance 3 (e.g. top-right and bottom-left).

Interactions between distance-one and distance-two chains. Interactions between distance-
one chains and distance-two chains are analogous to the interactions between corner chains of ad-
jacent corners in the case of rectangles. Specifically, for each such pair of chains, we can select
a single hexagon from each chain so that: (1) The union of the two selected hexagons covers the
intersection between the chains; (2) The remaining hexagons (not covered by the two selected
hexagons) constitute disjoint chains with respect to Q minus the two hexagons. For an illustration
see Figure 16.
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Figure 16: The two “benign” interactions between chains. On the left side is a distance-one
interaction between a top-right chain and a top-left chain. On the right is a distance-two interaction
between a top-right chain and a middle-left chain. In each figure, the two bold hexagons are those
selected from the two chains.

It follows that by selecting at most 4 hexagons from each of the 6 chains that intersect Q, it is
possible to service all areas of intersections between such pairs of subsets of hexagons.

Interactions between pairs of distance-three (opposite) chains. The case of interactions
between distance-three chains is analogous to the interaction between opposite chains in the case
of rectangles. In particular it is possible to select an approximately minimal subset of hexagons
from the two chains so as to serve all the area in their union (within the remaining region in T ).
For an illustration see Figure 17.

Figure 17: An interaction between the distance-three (opposite) chains top-right and bottom-left.
The selected hexagons are bold.

8.3 Coloring the selected hexagons

We now return to each non-orphan tile T , and assign colors to the hexagons requested from it.
Note that Theorem 4 is not applicable since the hexagons are not congruent.

Lemma 24 Let H̃ be a subset of axis aligned hexagons with side-lengths at least 1, that all belong
to the same tile T . Then it is possible to CF-color H̃ using O(log(|H̃|) colors.
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Figure 18: The partitioning of the area covered by hexagons that belong to the same tile.

Proof sketch: First, we assume, without loss of generality, that every hexagon in H̃ participated
in the envelope (i.e. contains a vertex in

⋃
H̃).

Similarly to the proof of Theorem 3 for rectangles, we extend the sides of a tile to partition
the area covered by H̃ into several subregions (see Figure 18). The number of resulting regions is
7 (including the tile T itself which is covered by every hexagon in H̃). Three of these subregions
have a common vertex with T (and are referred to as the “angular” subregions) and three have a
common edge (and are referred to as the “trapeze” subregions). The vertices of every hexagon in
H̃ are in the trapeze subregions. Hence, it is possible to select at most 3 hexagons to serve the
angular subregions. Each of these hexagons are assigned a unique color (and thus T itself is also
served).

We now deal with serving points in the trapeze regions. We wish to identify two chains in each
trapeze region. Fix a trapeze region R . Every hexagon has two adjacent vertices in the trapeze
region (as well as the edge connecting these vertices). Let u and v denote the vertex types that
appear in R. Pick the hexagon HR whose edge is farthest away from the corresponding edge of
the triangular tile. Consider the sequence of vertices along the envelope of H̃ in R. This sequence
starts with a block of vertices of type u and ends with a block of vertices of type v. The two
vertices of HR in R appear consecutively in this envelope. By picking HR and assigning it a unique
color, the envelope in R is separated in two parts. Moreover, the region (R \HR)∩

⋃
H̃ consists of

two disjoint connected parts. The hexagons whose vertices appear in the envelope in each part are
chains with respect to R \ HR. Thus, by picking at most 6 hexagons and assigning them unique
colors, we have identified 6 disjoint chains.

As in the proof of Lemma 23, hexagons that belong to multiple chains appear in the same order
(up to reversal) in these chains. Hence we partition the hexagons that appear in chains into at most
26− 1 subsets, where within each subset all hexagons belong to the same chains. (A finer counting
argument is based on showing that for every 3 or more chains, there can be at most one hexagon
that belongs to all these chains. Hence we actually focus on subsets of hexagons that belong to
one or two chains.) Each such subset is provided with a disjoint palette and can be colored using
a logarithmic (in its size) number of colors. 2

Finally, the proof of Theorem 3 for regular hexagons follows by combining the above lemma
with a lower bound analogous to Lemma 22, the basic properties of the tiling, and the requesting
process from orphan tiles.
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9 Consequences

9.1 Universal bounds for non-congruent rectangles and hexagons

As a corollary of Lemma 23 we also obtain a universal bound for the case of rectangles that is
analogous to the case of disks (Part 1 of Theorem 1).

Theorem 10 There exists an algorithm that given a set R of axis-parallel rectangles with side
lengths in the interval [1, ρ], finds a CF-coloring χ of R using O((log ρ)2 · log(φ(R))) colors. Here
φ(R) is the maximum number of rectangles whose centers (i.e., intersection of their diagonals) all
reside in a square of side-lengths 1/2.

Lemma 24 implies an analogous theorem also for hexagons.

9.2 CF-Multi-coloring

An interesting byproduct of Theorem 3 and its analysis has to do with minimum CF-Multi-coloring .
A CF-multi-coloring of a collection S is a mapping χ from S to subsets of colors. The requirement
is that for every point x ∈

⋃
S∈S S, there exist a color i such that {S : x ∈ S, i ∈ χ(S)}

contains a single subset. It has been observed by Bar-Yehuda ([B01], based on [BGI92]), that every
set-system (X,S) can be CF-multi-colored using O(log |X| · log |S|) colors. Since the problem of
minimum graph coloring can be reduced to CF-coloring of set-systems, it follows that there exist
set-systems for which there is an exponential gap between the minimum number of colors required
in a CF-coloring and the minimum number of colors required in a CF-multi-coloring. In particular,
this is true when the set system (X,S) corresponds to a clique G = (V,E) as follows: there is a set
Sv for every vertex v ∈ V , and there is a point xe ∈ X for every edge e ∈ E. The set Sv contains
the point xe if and only if v is an endpoint of e. The number of colors required to CF-color this set
system is |S| = |V | in contrast to O(log2 |S|) colors that are sufficient for CF-multi-coloring.

A natural question is whether in the geometric setting that we study, the number of colors
required for CF-multi-coloring is significantly smaller than that required for CF-coloring. An
example in which CF-multi-coloring saves colors is a “circle” of 5 congruent squares, such that
every adjacent pair of squares intersect, and no 3 squares intersect. Since the number of squares
is odd, 3 colors are needed for CF-coloring. However, CF-multi-coloring requires only 2 colors:
color the first square with 2 colors, and then color the rest of the squares with alternating colors.
The lower bound proved in Lemma 14 also applies to CF-multi-coloring, hence CF-multi-coloring
does not save colors in chains. Furthermore, it follows from our analysis (c.f., Lemma 22) that
CF-multi-coloring reduces the number of colors by at most a constant in the case of congruent
squares (or hexagons).

Theorem 11 Let S denote a set of congruent axis-parallel squares, and let χmulti
opt (S) denote an

optimal CF-multi-coloring of S. Then |χmulti
opt (S)| = Θ(|χopt(S)|).
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