
Recursive Greedy Methods∗

Guy Even

School of Electrical Engineering

Tel-Aviv University

Tel-Aviv 69978, Israel

E-mail: guy@eng.tau.ac.il

February 26, 2008

1 Introduction

Greedy algorithms are often the first algorithm that one considers for various optimization problems, and ,in

particular, covering problems. The idea is very simple: try to build a solution incrementally by augmenting

a partial solution. In each iteration, select the “best” augmentation according to a simple criterion. The

term greedy is used because the most common criterion is to select an augmentation that minimizes the

ratio of “cost” to “advantage”. We refer to the cost-to-advantage ratio of an augmentation as the density of

the augmentation.

In the Set-Cover (SC) problem, every set S has a weight (or cost) w(S). The “advantage” of a set S with

respect to a partial cover {S1, . . . , Sk} is the number of new elements covered by S, i.e., |S \ (S1 ∪ . . .∪Sk)|.

In each iteration, a set with a minimum density is selected and added to the partial solution until all the

elements are covered. In the SC problem, it is easy to find an augmentation with minimum density simply

by re-computing the density of every set in every iteration.

In this chapter we consider problems for which it is NP-hard to find an augmentation with minimum

∗Chapter 3 from: Handbook of Approximation Algorithms and Metaheuristics edited by Teofilo Gonzalez.

1

1 INTRODUCTION 2

density. From a covering point of view, this means that there are exponentially many sets. However, these

sets are succinctly represented using a structure with polynomial complexity. For example, the sets can

be paths or trees in a graph. In such problems, applying the greedy algorithm is a nontrivial task. One

way to deal with such a difficulty, is to try to approximate a minimum density augmentation. Interestingly,

the augmentation itself is computed using a greedy algorithm, and this is why the algorithm is called the

recursive greedy algorithm.

The recursive greedy algorithm was presented by Zelikovsky [8] and Kortsarz and Peleg [6]. In [8], the

Directed Steiner Tree (DST) problem in acyclic graphs was considered. In the DST problem the input

consists of a directed graph G = (V, E) with edge weights w(e), a subset X ⊆ V of terminals, and a

root r ∈ V . The goal is to find a minimum weight subgraph that contains directed paths from r to every

terminal in X . In [6], the Bounded Diameter Steiner Tree (BDST) problem was considered. In the BDST

problem, the input consists of an undirected graph G = (V, E) with edge costs w(e), a subset of terminals

X ⊆ V , and a diameter parameter d. The goal is to find a minimum weight tree that spans X with diameter

bounded by d. In both papers, it is proved that, for every ε > 0, the recursive greedy algorithm achieves an

O(|X |ε) approximation ratio in polynomial time. The recursive greedy algorithm is still the only nontrivial

approximation algorithm known for these problems.

The presentation of the recursive greedy algorithm was simplified and its analysis was perfected by

Charikar et. al. [3]. In [3], the recursive greedy algorithm was used for the DST problem. The improved anal-

ysis gave a poly-logarithmic approximation ratio in quasi-polynomial time (i.e., running time is O(nc log n),

for a constant c).

The recursive greedy algorithm is a combinatorial algorithm (i.e., no linear programming or high precision

arithmetic is used). The algorithm’s description is simple and short. The analysis captures the intuition

regarding the segments during which the greedy approach performs well. The running time of the algorithm

is exponential in the depth of the recursion, and hence, reducing its running time is an important issue.

We present modifications of the recursive greedy algorithm that enable reducing the running time. Unfor-

tunately, these modifications apply only to the restricted case in which the graph is a tree. We demonstrate

these methods on the Group Steiner (GS) problem [7] and its restriction to trees [4]. Following [2], we show

2 A REVIEW OF THE GREEDY ALGORITHM 3

that for the GS problem over trees, the recursive greedy algorithm can be modified to give a poly-logarithmic

approximation ratio in polynomial time. Better poly-logarithmic approximation algorithms were developed

for the GS problem, however, these algorithms rely on linear programming [4, 9].

Organization. In Section 2, we review the greedy algorithm for the SC problem. In Section 3, we present

three versions of directed Steiner tree problems. We present simple reductions that allow us to focus on

only one version. Section 4 constitutes the heart of this chapter; in it the recursive greedy algorithm and its

analysis are presented. In Section 5, we consider the Group Steiner problem over trees. We outline modifi-

cations of the recursive greedy algorithm that enable a poly-logarithmic approximation ratio in polynomial

time. We conclude in Section 6 with open problems.

2 A review of the greedy algorithm

In this section we review the greedy algorithm for the Set-Cover (SC) problem and its analysis.

In the Set-Cover (SC) problem we are given a a set of elements, denoted by U = {1, . . . , n} and a

collection R of subsets of U . Each subset S ∈ R is also given a non-negative weight w(S). A subset C ⊆ R

is a set cover if
⋃

S′∈C S′ = {1, . . . , n}. The weight of a subset of R is simply the sum of the weights of the

sets in R. The goal in the SC problem to find a cover of minimum weight. We often refer to a subset of R

that is not a cover as a partial cover.

The greedy algorithm starts with an empty partial cover. A cover is constructed by iteratively asking

an oracle for a set to be added to the partial cover. This means that no backtracking takes place; every set

that is added to the partial cover is kept until a cover is obtained. The oracle looks for a set with the lowest

residual density, defined as follows.

Definition 1.1 Given a partial cover C, the residual density of a set S is the ratio

ρC(S)
△

=
w(S)

|S \
⋃

S′∈C S′|
.

Note that the residual density is non-decreasing (and may even increase) as the greedy algorithm accu-

2 A REVIEW OF THE GREEDY ALGORITHM 4

mulates sets. The performance guarantee of the greedy algorithm is summarized in the following theorem

(see Chapter R-2 on Greedy Methods).

Theorem 1.1 The greedy algorithm computes a cover whose cost is at most (1 + lnn) ·w(C∗), where C∗ is

a minimum weight cover.

There are two main questions that we wish to ask about the greedy algorithm:

Question 1: What happens if the oracle is approximate? Namely, what if the oracle does not return a

set with minimum residual density, but a set whose residual density is at most α times the minimum

residual density? How does such an approximate oracle affect the approximation ratio of the greedy

algorithm? In particular we are interested in the case that α is not constant (e.g., α depends on the

number of uncovered elements). We note that in the SC problem, an exact oracle is easy to implement.

But we will see a generalization of the SC problem in which the task of an exact oracle is NP-hard,

and hence we will need to consider an approximate oracle.

Question 2: What happens if we stop the execution of the greedy algorithm before a complete cover is

obtained? Suppose that we stop the greedy algorithm when the partial cover covers β · n elements in

U . Can we bound the weight of the partial cover? We note that one reason for stopping the greedy

algorithm before it ends is that we simply run out of “budget” and cannot “pay” for additional sets.

The following lemma helps answer both questions raised above. Let x denote the number of elements

that are not covered by the partial cover. We say that the oracle is α(x)-approximate if the residual density

of the set it finds is at most α(x) times the minimum residual density.

Lemma 1.1 ([3]) Suppose that the oracle of the greedy algorithm is α(x)-approximate and that α(x)/x is a

non-increasing function. Let Ci denote partial cover accumulated by the greedy algorithm after adding i sets.

Then,

w(Ci)

w(C∗)
≤

∫ n

n−|
S

S′∈Ci
S′|

α(x)

x
dx.

Proof

The proof is by induction on n. When n = 1, the algorithm simply returns a set S such that w(S) ≤

2 A REVIEW OF THE GREEDY ALGORITHM 5

α(1) · w(C∗). Since α(x)/x is non-increasing, we conclude that α(1) ≤
∫ 1

0
α(x)

x dx, and the induction basis

follows.

The induction step for n > 1 is proved as follows. Let Ci = {S1, . . . , Si}. When the oracle computes

S1, its density satisfies: w(S1)/|S1| ≤ α(n) · w(C∗)/n. Hence, w(S1) ≤ |S1| ·
α(n)

n · w(C∗). Since α(x)/x is

non-increasing, |S1| ·
α(n)

n ≤
∫ n

n−|S1|
α(x)

x dx. We conclude that

w(S1) ≤

∫ n

n−|S1|

α(x)

x
dx · w(C∗). (1.1)

Now consider the residual set system over the set of elements {1, . . . , n} \ S1 with the sets S′ = S \ S1.

We keep the set weights unchanged, i.e., w(S′) = w(S). The collection {S′
2, . . . , S

′
i} is the output of the

greedy algorithm when given this residual set system. Let n′ = |S′
2 ∪ · · · ∪ S′

i|. Since C∗ induces a cover of

the residual set with the same weight as w(C∗), the induction hypothesis implies that

w(S′
2) + · · ·+ w(S′

i) ≤

∫ n−|S1|

n−(n′+|S1|)

α(x)

x
dx · w(C∗). (1.2)

The lemma follows now by adding Equations 1.1 and 1.2. 2

We remark that for a full cover, since
∫ 1

0 dx/x is not bounded, one could bound the ratio by α(1) +

∫ n

1
α(x)

x dx. Note that for an exact oracle α(x) = 1, this modification of Lemma 1.1 implies Theorem 1.1.

Lemma 1.1 shows that the greedy algorithm works also with approximate oracles. If α(x) = O(log x),

then the approximation ratio of the greedy algorithm is simply O(α(n)·log n). But, for example, if α(x) = xε,

then the lemma “saves” a factor of log n and shows that the approximation ratio is 1
ε ·n

ε. So this settles the

first question.

Lemma 1.1 also helps settle the second question. In fact, it proves that the greedy algorithm (with an

exact oracle) is a bi-criteria algorithm in the following sense.

claim 1.1 If the greedy algorithm is stopped when β · n elements are covered, then the cost of the partial

cover is bounded by ln
(

1
1−β

)

· w(C∗).

The greedy algorithm surly does well with the first set it selects, but what can we say about the remaining

selections? Claim 1.1 quantifies how well the greedy algorithm does as a function of the portion of the covered

3 DIRECTED STEINER PROBLEMS 6

elements. For example, if β = 1− 1/e, then the partial cover computed by the greedy algorithm weighs no

more than w(C∗). (We ignore here the knapsack-like issue of how to cover “exactly” β · n elements, and

assume that, when we stopped the greedy algorithm, the partial cover covers β · n elements.) The lesson to

be remembered here is that the greedy algorithm performs “reasonably well” as long as “few” elements have

been covered.

The DST problem is a generalization of the SC problem. In fact, every SC instance can be represented as

a DST instance over a layered directed graph with three vertex layers (see Fig. 1.1). The top layer contains

only a root, the middle layer contains a vertex for every set, and the bottom layer contains a vertex for

every element. The weight of an edge from the root to a set is simply the weight of the set. The weight of

all edges from sets to elements are zero. The best approximation algorithm for SC is the greedy algorithm.

What form could a greedy algorithm have for the DST problem?

3 Directed Steiner problems

In this section we present three versions of directed Steiner tree problems. We present simple reductions

that allow us to focus on only the last version.

Notation and terminology. We denote the vertex set and edge set of a graph G by V (G) and E(G),

respectively. An arborescence T rooted at r is a directed graph such that: (i) the underlying graph of T

is a tree (i.e., if edge directions are ignored in T , then T is a tree), and (ii) there is a directed path in T

from the root r to every node in T . If an arborescence T is a subgraph of G, then we say that T covers (or

spans) a subset of vertices X if X ⊆ V (T). If edges have weights w(e), then the weight of a subgraph G′ is

simply
∑

e∈E(G′) w(e). We denote by Tv the subgraph of T that is induced all the vertices reachable from v

(including v).

3.1 The problems

The directed Steiner tree (DST) problem. In the DST problem the input consists of a directed graph

G, a set of terminals X ⊆ V (G), positive edge weights w(e), and a root r ∈ V (G). An arborescence T rooted

3 DIRECTED STEINER PROBLEMS 7

at r is a directed Steiner tree (DST) if it spans the set of terminals X . The goal in the DST problem is to

find a minimum weight directed Steiner tree.

The k-DST problem. Following [3], we consider a version of the DST problem, called k-DST, in which

only part of the terminals must be covered. In the k-DST problem, there is an additional parameter k,

often called the demand. An arborescence T rooted at r is a k-partial directed Steiner tree (k-DST) if

|V (T)∩X | ≥ k. The goal in the k-DST problem is to find a minimum weight k-partial directed Steiner tree.

We denote the weight of an optimal k-partial directed Steiner tree by DS∗(G, X, k). (Formally, the root r

should be a parameter, but we omit it to shorten notation.) We encode DST instances as k-DST instances

simply by setting k = |X |.

The ℓ-shallow k-DST problem. Following [6], we consider a version of the k-DST problem in which the

length of the paths from the root to the terminals is bounded by a parameter ℓ. A rooted arborescence in

which every node is at most ℓ edges away from the root is called an ℓ-layered tree. (Note that we count the

number of layers of edges; the number of layers of nodes is ℓ + 1.) In the ℓ-shallow k-DST problem the goal

is to compute a minimum k-DST among all ℓ-layered trees.

3.2 Reductions

Obviously, the k-DST problem is a generalization of the DST problem. Similarly, the ℓ-shallow k-DST

problem is a generalization of the k-DST problem (i.e., simply set ℓ = |V | − 1). The only nontrivial

approximation algorithm we know is for the ℓ-shallow k-DST problem; this approximation algorithm is the

recursive greedy algorithm. Since its running time is exponential in ℓ, we need to consider reductions that

result with as small as possible values of ℓ.

For this purpose we consider two well known transformations: transitive closure and layering. We now

define each of these transformations.

Transitive closure. The transitive closure of G is a directed graph TC(G) over the same vertex set. For

every u, v ∈ V , the pair (u, v) is an edge in E(TC(G)) if there is a directed path from u to v in G. The

weight w′(u, v) of an edge in E(TC(G)) is the minimum weight of a path in G from u to v.

3 DIRECTED STEINER PROBLEMS 8

The weight of an optimal k-DST is not affected by applying transitive closure namely,

DS∗(G, X, k) = DS∗(TC(G), X, k). (1.3)

This means that replacing G by its transitive closure does not change the weight of an optimal k-DST. Hence

we may assume that G is transitively closed, i.e., G = TC(G).

Layering. Let ℓ denote a positive integer. We reduce the directed graph G into an ℓ-layered directed acyclic

graph LGℓ as follows (see Fig. 1.2). The vertex set V (LGℓ) is simply V (G) × {0, . . . , ℓ}. The jth layer in

V (LGℓ) is the subset of vertices V (G)×{j}. We refer to V (G)×{0} as the bottom layer and to V (G)×{ℓ} as

the top layer. The graph LGℓ is layered in the sense that E(LGℓ) contains only edges from the V (G)×{j+1}

to V (G)×{j}, for j < ℓ. The edge set E(LGℓ) contains two types of edges: regular edges and parallel edges.

For every (u, v) ∈ E(G) and every j < ℓ, there is a regular edge (u, j+1)→ (v, j) ∈ E(LGℓ). For every u ∈ V

and every j < ℓ, there is a parallel edge (u, j + 1) → (u, j) ∈ E(LGℓ). All parallel edges have zero weight.

The weight of a regular edge is inherited from the original edge, namely, w((u, j + 1) → (v, j)) = w(u, v).

The set of terminals X ′ in V (LGℓ) is simply X ×{0}, namely, images of terminals in the bottom layer. The

root in LGℓ is the node (r, ℓ). The following observation shows that we can restrict our attention to layered

graphs.

Observation 1.1 There is a weight preserving and terminal preserving correspondence between ℓ-layered

r-rooted trees in G and (r, ℓ)-rooted trees in LGℓ. In particular, w(LT ∗
ℓ) = DS∗(LGℓ, X

′, k), where LT ∗
ℓ

denotes a minimum weight k-DST among all ℓ-layered trees.

Observation 1.1 implies that if we wish to approximate LT ∗
ℓ , then we may apply layering and assume

that the input graph is an ℓ-layered acyclic graph in which the root is in the top layer and all the terminals

are in the bottom layer.

Limiting the number of layers. As we pointed out, the running time of the recursive greedy algorithm

is exponential in the number of layers. It is therefore crucial to be able to bound the number of layers.

The following lemma bounds the penalty incurred by limiting the number of layers in the Steiner tree. The

4 A RECURSIVE GREEDY ALGORITHM FOR ℓ-SHALLOW K-DST 9

proof of the lemma appears in Appendix A. (A slightly stronger version appears in [5], with the ratio

21−1/ℓ · ℓ · k1/ℓ).

Lemma 1.2 ([8] corrected in [5]) If G is transitively closed, then w(LT ∗
ℓ) ≤ ℓ

2 · k
2/ℓ ·DS∗(G, X, k).

It follows that an α-approximate algorithm for an ℓ-shallow k-DST is also an αβ-approximation algorithm

for k-DST, where β = ℓ
2 · k

2/ℓ. We now focus on the development of an approximation algorithm for the

ℓ-shallow k-DST problem.

4 A recursive greedy algorithm for ℓ-shallow k-DST

In this section present a recursive greedy algorithm for the ℓ-shallow k-DST problem. Based on the layering

transformation, we assume that the input graph is an ℓ-layered acyclic directed graph G. The set of terminals,

denoted by X , is contained in the bottom layer. The root, denoted by r, belongs top layer.

4.1 Motivation

We now try to extend the greedy algorithm to the ℓ-shallow k-DST problem. Suppose we have a directed

tree T ⊆ G that is rooted at r. This tree only covers part of the terminals. Now we wish to augment T so

that it covers more terminals. In other words, we are looking for an r-rooted augmenting tree Taug to be

added to the T . We follow the minimum density heuristic, and define the residual density of Taug by

ρT (Taug)
△

=
w(Taug)

|(Taug ∩X) \ (T ∩X)|
.

All we need now is an algorithm that finds an augmenting tree with the minimum residual density.

Unfortunately, this problem is by itself NP-hard! Consider the following reduction: Let G denote the 2-

layered DST instance mentioned above to represent a Set-Cover instance. Add a layer with a single node r′

that is connected to the root r of G. The weight of the edge (r′, r) should be large (say, n times the sum of

the weights of the sets). It is easy to see that every minimum density subtree must span all the terminals.

Hence, every minimum density subtree induces a minimum weight set cover, and finding a minimum density

4 A RECURSIVE GREEDY ALGORITHM FOR ℓ-SHALLOW K-DST 10

subtree in a 3-layered graph is already NP-hard. We show in Section 4.3 that for two or less layers, one can

find a minimum density augmenting tree in polynomial time.

We already showed that the greedy algorithm works well also with an approximate oracle. So we try

to approximate a subtree with minimum residual density. The problem is how to do it? The answer is by

applying a greedy algorithm recursively!

Consider an ℓ-layered directed graph and a root r. The algorithm finds an low density ℓ-layered aug-

menting tree by accumulating low density (ℓ − 1)-layered augmenting trees that hang from the children of

r. These trees are found by augmenting low density trees that hang from grandchildren of r, and so on. We

now formally describe the algorithm.

4.2 The recursive greedy algorithm

Notation. We denote the number of terminals in a subgraph G′ by k(G′) (i.e., k(G′) = |X ∩ V (G′)|).

Similarly, for a set of vertices U , k(U) = |X ∩ U |. We denote the set of vertices reachable in G from u by

desc(u). We denote the layer of a vertex u by layer(u) (e.g., if u is a terminal, then layer (u) = 0).

Description A listing of the algorithm DS(u, k) appears as Algorithm 1. The stopping condition is when

u belongs to the bottom layer or when the number of uncovered terminals reachable from u is less than the

demand k (i.e., the instance is infeasible). In either case, the algorithm simply returns the root {r}.

The algorithm maintains a partial cover T that is initialized to the single vertex u. The augmenting tree

Taug is selected as the best tree found by the recursive calls to the children of u (together with the edge

from u to its child). Note that the recursive calls are applied to all the children of u and all the possible

demands k′. After Taug is added to the partial solution, the terminals covered by Taug are erased from the

set of terminals so that the recursive calls will not attempt to cover terminals again. Once the demand is

met, namely, k terminals are covered, the accumulated cover T is returned.

The algorithm is invoked with the root r, the demand k, and the set of terminals X . Note that if the

instance is feasible (namely, at least k terminals are reachable from the root), then the algorithm never

encounters infeasible sub-instances during its execution.

4 A RECURSIVE GREEDY ALGORITHM FOR ℓ-SHALLOW K-DST 11

Algorithm 1 DS(u, k, X) - A recursive greedy algorithm for the Directed Steiner Tree Problem. The graph
is layered and all the vertices in the bottom layer are terminals. The set of terminals is denoted by X . We
are searching for a tree rooted at u that covers k terminals.

1: stopping condition: if layer(u) = 0 or k(desc(u)) < k then return ({u}).
2: initialize: T ← {u}; Xres ← X ;.
3: while k(T) < k do
4: recurse: for every v ∈ children(u) and every k′ ≤ min{k − k(T), |desc(v) ∩Xres)|}

Tv,k′ ← DS(v, k′, Xres).

5: select: Let Taug be a lowest residual density tree among the trees Tv,k′∪{(u, v)}, where v ∈ children(u)
and k′ ≤ k − k(T).

6: augment & update: T ← T ∪ Taug; Xres ← Xres \ V (Taug).
7: end while
8: return (T).

4.3 Analysis

Minimum residual density subtree. Consider a partial solution T rooted at u accumulated by the

algorithm. A tree T ′ rooted at u is a candidate tree for augmentation if: (i) every vertex v ∈ V (T ′) in the

bottom layer of G is in Xres (i.e., T ′ covers only new terminals) and (ii) 0 < k(T ′) ≤ k− k(T) (i.e., T ′ does

not cover more terminals than the residual demand). We denote by T ′
u a tree with minimum residual density

among all the candidate trees.

We leave the proof of the following lemma as an exercise.

Lemma 1.3 Assume that wi, ki > 0, for every 0 ≤ i ≤ n. Then, mini
wi

ki
≤

P

i wi
P

i ki
≤ maxi

wi

ki
.

Corollary 1.1 If u is not a terminal, then we may assume that u has a single child in T ′
u.

Proof

We show that we could pick a candidate tree with minimum residual density in which u has a single child.

Suppose that u has more than one child in T ′
u. To every edge ej = (u, vj) ∈ E(T ′

u) we match a subtree

Aej of T ′
u. The subtree Aej contains u, the edge (u, vj), and the subtree of T ′

u hanging from vj . The

subtrees {Aej}ej form an edge-disjoint decomposition of T ′
u. Let wj = w(Aej) and kj = k(Aej \ T). Since

u is not a terminal, the subtrees {Aej}ej partition the terminals in V (T ′
u), and k(T ′

u) =
∑

j kj . Similarly,

w(T ′
u) =

∑

j wj . By Lemma 1.3, it follows that one of the trees Aej has a residual density that is not greater

than the residual density of T ′
u. Use this minimum residual density subtree instead of T ′

u, and the corollary

follows. 2

4 A RECURSIVE GREEDY ALGORITHM FOR ℓ-SHALLOW K-DST 12

Density. Note that edge weights are nonnegative and already covered terminals do not help in reducing

the residual density. Therefore, every augmenting tree Taug covers only new terminals and does not contain

terminals already covered by T . It follows that every terminal in Taug belongs to Xres and, therefore,

k(Taug) = |Taug ∩Xres|. We may assume that the same holds for T ′
u; namely, T ′

u does not contain already

covered terminals. Therefore, where possible, we ignore the “context” T in the definition of the residual

density and simply refer to density, i.e., the density of a tree T ′ is ρ(T ′) = w(T ′)/|V (T ′) ∩X |.

Notation and Terminology. A directed star is a 1-layered rooted directed graph (i.e., there is a center

out of which directed edges emanate to the leaves). We abbreviate and refer to a directed star simply as a

star. A flower is a 2-layered rooted graph in which the root has a single child.

Bounding the density of augmenting trees. When layer(u) = 1, if u has least k terminal neighbors,

then the algorithm returns a star centered at u. The number of edges emanating from r in the star equals

k, and these k edges are the k lightest edges emanating from r to terminals. It is easy to see that in this

case the algorithm returns an optimal k-DST.

The analysis of the algorithm is based on the following claim that bounds the ratio between the densities

of the augmenting tree and T ′
u.

claim 1.2 ([3]) If layer(u) ≥ 2, then, in every iteration of the while loop in an execution of DS(u, k), the

subtree Taug satisfies:

ρ(Taug) ≤ (layer(u)− 1) · ρ(T ′
u).

Proof

The proof is by induction on layer(u). Suppose that layer(u) = 2. By Corr. 1.1, T ′
u is a flower that consists

of a star Sv centered at a neighbor v of u, the node u, and the edge (u, v). Moreover, Sv contains the k(T ′
u)

closest terminals to v. When the algorithm computes Taug it considers all stars centered at children v′ of u

consisting of the k′ ≤ k − k(T) closest terminals to v′. In particular, it considers the star Sv together with

the edge (u, v). Hence, ρ(Taug) ≤ ρ(T ′
u), as required.

We now prove the induction step for layer(u) > 2. Let i = layer(u). The setting is as follows: during

4 A RECURSIVE GREEDY ALGORITHM FOR ℓ-SHALLOW K-DST 13

an execution of DS(u, X), a partial cover T has been accumulated, and now an augmenting tree Taug is

computed. Our goal is to bound the density of Taug.

By Coro. 1.1, u has a single child in T ′
u. Denote this child by u′. Let Bu′ denote the subtree of T ′

u that

hangs from u′ (i.e., Bu′ = T ′
u \ {u, (u, u′)}). Let k′ = k(T ′

u).

We now analyze the selection of Taug while bearing in mind the existence of the “hidden candidate” T ′
u

that covers k′ terminals. Consider the tree Tu′,k′ computed by the recursive call DS(u′, k′, Xres). We would

like to argue that Tu′,k′ should be a good candidate. Unfortunately, that might not be true! However, recall

that the greedy algorithm does “well” as long as “few” terminals are covered. So we wish to show that a

“small prefix” of Tu′,k′ is indeed a good candidate. We now formalize this intuition.

The tree Tu′,k′ is also constructed by a sequence of augmenting trees, denoted by {Aj}j . Namely,

Tu′,k′ =
⋃

j Aj . We identify the smallest index ℓ for which the union of augmentations A1 ∪ · · · ∪ Aℓ covers

at least k′/(i− 1) terminals (recall that i = layer(u)). Formally,

k





ℓ−1
⋃

j=1

Aj



 <
k′

(i− 1)
≤ k





ℓ
⋃

j=1

Aj



 .

Our goal is to prove the following two facts. Fact (1): Let k′′ = k(
⋃ℓ

j=1 Aj), then the candidate tree

Tu′,k′′ = DS(u′, k′′, Xres) equals the prefix
⋃ℓ

j=1 Aj . Fact (2): The density of Tu′,k′′ is small, i.e., ρ(Tu′,k′′) ≤

(i− 1) · ρ(Bu′).

The first fact is a “simulation argument” since it claims that the union of the first ℓ augmentations

computed in the course of the construction of Tu′,k′ is actually one of the candidate trees computed by

the algorithm. This simulation argument holds because, as long as the augmentations do not meet the

demand, the same prefix of augmentations is computed. Note that k′′ is the formalization of “few” terminals

(compared to k′). Using k′/(i − 1) as an exact measure for a few terminals does not work because the

simulation argument would fail.

The second fact states that the density of the candidate Tu′,k′′ is smaller than (i− 1) · ρ(Bu′). Note that

Bu′ and A1∪· · ·∪Aℓ−1 may share terminals (if fact, we would “like” the algorithm to “imitate” Bu′ as much

as possible). Hence, the residual density of Bu′ may increase as a result of adding the trees A1, . . . , Aℓ−1.

4 A RECURSIVE GREEDY ALGORITHM FOR ℓ-SHALLOW K-DST 14

However, since k(A1 ∪ · · · ∪Aℓ−1) < k′/(i− 1), it follows that even after accumulating A1 ∪ · · · ∪Aℓ−1, the

residual density of Bu′ does not grow by much. Formally, the residual density of Bu′ after accumulating

A1 ∪ · · ·Aℓ−1 is bounded as follows:

ρ(T∪A1∪···∪Aℓ−1)(Bu′) =
w(Bu′)

k′ − k(A1 ∪ · · ·Aℓ−1)

≤
w(Bu′)

k′ · (1 − 1
i−1)

=

(

i− 1

i− 2

)

· ρ(Bu′). (1.4)

We now apply the induction hypothesis to the augmenting trees Aj (for j ≤ ℓ), and bound their residual

densities by (layer(u′) − 1) times the “deteriorated” density of Bu′ . Formally, the induction hypothesis

implies that when Aj is selected as an augmentation tree its density satisfies:

ρ(Aj) ≤ (i− 2) · ρ(T∪A1···∪Aj−1)(Bu′)

≤ (i− 1) · ρ(Bu′) (by Eq. 1.4).

By Lemma 1.3, ρ(
⋃ℓ

j=1 Aj) ≤ maxj=1..ℓ ρ(Aj). Hence ρ(Tu′,k′′) ≤ (i − 1) · ρ(Bu′), and the second fact

follows.

To complete the proof, we need to deal with the addition of the edge (u, u′).

ρ({(u, u′)} ∪ Tu′,k′′) =
w(u, u′) + w(Tu′,k′′)

k′′

≤
w(u, u′)

k′
· (i− 1) + ρ(Tu′,k′′) (since k′′ ≥

k′

i− 1
)

≤ (i− 1) · ρ({(u, u′)} ∪Bu′) (by fact (2))

= (i− 1) · ρ(T ′
u).

The claim follows since {(u, u′)} ∪ Tu′,k′′ is only one of the candidates considered for the augmenting tree

Taug and hence ρ(Taug) ≤ ρ({(u, u′)} ∪ Tu′,k′′). 2

4 A RECURSIVE GREEDY ALGORITHM FOR ℓ-SHALLOW K-DST 15

Approximation ratio. The approximation ratio follows immediately from Lemma 1.1.

claim 1.3 Suppose that G is ℓ-layered. Then, the approximation ratio of Algorithm DS(r, k, X) is O(ℓ·log k).

Running time. For each augmenting tree, Algorithm DS(u, k, X) invokes at most n ·k recursive calls from

children of u. Each augmentation tree covers at least one new terminal, so there are at most k augmenting

trees. Hence, there are at most n · k2 recursive calls from the children of u. Let time(ℓ) denote the running

time of DS(u, k, X), where ℓ = layer(u). Then the following recurrence holds: time(ℓ) ≤ (n ·k2) ·time(ℓ−1).

We conclude that the running time is O(nℓ · k2ℓ).

4.4 Discussion

Approximation of k-DST The approximation algorithm is presented for ℓ-layered acyclic graphs. In

Section 3.2, we presented a reduction from the k-DST problem to the ℓ-shallow k-DST problem. The

reduction is based on layering and its outcome is an ℓ-layered acyclic graph. We obtain the following

approximation result from this reduction.

Theorem 1.2 ([3]) For every ℓ, there an O(ℓ3 · k2/ℓ)-approximation algorithm for the k-DST problem with

running time O(k2ℓ · nℓ).

Proof

The preprocessing time is dominated by the running time of DS(r, k, X) on the graph after it is transitively

closed and layered into ℓ layers.

Let R∗ denote an minimum residual density augmenting tree in the transitive closure of the graph

(without the layering). Let T ′
k∗ denote a minimum residual subtree rooted at u in the layered graph among

the candidate trees that cover k(R∗) terminals. By Lemma 1.2, w(T ′
k∗) ≤ ℓ/2 · k(R∗)ℓ/2 · w(R∗), and

hence, ρ(T ′
k∗) ≤ ℓ/2 · k(R∗)ℓ/2 · ρ(R∗). Since ρ(T ′

u) ≤ ρ(T ′
k∗), by Claim 1.2 it follows that, ρ(Taug) ≤

(ℓ− 1) · ℓ/2 · k2/ℓ · ρ(R∗).

We now apply Lemma 1.1. Note that
∫

x2/ℓ

x dx = ℓ
2 · x

2/ℓ. Hence, w(T) = O(ℓ3 · k2/ℓ), where T is the

tree returned by the algorithm, and the theorem follows. 2

We conclude with the following result.

4 A RECURSIVE GREEDY ALGORITHM FOR ℓ-SHALLOW K-DST 16

Corollary 1.2 For every constant ε > 0, there exists a polynomial time O(k1/ε)-approximation algorithm

for the k-DST problem. There exists a quasi-polynomial time O(log3 k)-approximation algorithm for the

k-DST problem.

Proof

Substitute ℓ = 2/ε and ℓ = log k in Theorem 1.2. 2

Preprocessing Computing the transitive closure of the input graph is necessary for the correctness of the

approximation ratio. Recall that Lemma 1.2 holds only if G is transitively closed.

Layering, on the other hand, is used to simplify the presentation. Namely, the algorithm can be described

without layering (see [6, 3]). The advantage of using layering is that it enables a unified presentation of the

algorithm (i.e., there is no need to deal differently with 1-layered trees). In addition, the layered graph is

acyclic, so we need not consider multiple “visits” of the same node. Finally, for a given node u, we know

from its layer what the recursion level is (i.e., the recursion level is ℓ− layer(u)) and what the height of the

tree we are looking for is (i.e., current height is layer(u)).

Suggestions for improvements. One might try to reduce the running time by not repeating compu-

tations associated with the computations of candidate trees. For example, when computing the candidate

Tv,k−k(T)) the algorithm computes a sequence of augmenting trees that is used to build also other candidates

rooted at v that cover fewer terminals (we relied on this phenomenon in the simulation argument used in

the proof of Claim 1.2) . However, such improvements do not seem to reduce the asymptotic running time;

namely, the running time would still be exponential in the number of layers and the basis would still be

polynomial. We discuss other ways to reduce the running time in the next section.

Another suggestion to improve the algorithm is to zero the weight of edges when they are added to the

partial cover T (see [8]). Unfortunately, we do not know how to take advantage of such a modification in

the analysis and, therefore, keep the edge weights unchanged even after we pay for them.

5 IMPROVING THE RUNNING TIME 17

5 Improving the running time

In this section we consider a setting in which the recursive greedy algorithm can be modified to obtain a

poly-logarithmic approximation ratio in polynomial time. The setting is with a problem called the Group

Steiner (GS) problem, and only part of the modifications are applicable also to the k-DST problem. (Recall

that the problem of finding a polynomial time poly-logarithmic approximation algorithm for k-DST is still

open.)

Motivation. We saw that the running time of the recursive greedy algorithm is O((nk2)ℓ), where k is the

demand (i.e., number of terminals that need to be covered), the degree of a vertex is n− 1 (since transitive

closure was applied), and ℓ is the bound on the number of layers we allow in the k-DST.

To obtain polynomial running times, we first modify the algorithm and preprocess the input so that its

running time is log(n)O(ℓ). We then set ℓ = log n/ log log n. Note that

(log n)
log n

log log n = n.

Hence, a polynomial running time is obtained!

Four modifications are required to make this idea work:

1. Bound the number of layers - we already saw that the penalty incurred by limiting the number of

layers can be bounded. In fact, according to Lemma 1.2, the penalty incurred by ℓ = log n/ log log n is

poly-logarithmic (since ℓ · k2/ℓ = (log n)O(1)).

2. Degree reduction - we must reduce the maximum degree so that it is poly-logarithmic, otherwise too

many recursive calls are invoked. Preprocessing of GS instances over trees achieves such a reduction

in the degree.

3. Avoiding small augmenting trees - we must reduce the number of iterations of the while-loop. The

number of iterations can be bounded by (logn)c if we require that every augmenting tree must cover

at least a poly-logarithmic fraction of the residual demand.

5 IMPROVING THE RUNNING TIME 18

4. Geometric search - we must reduce the number of recursive calls. Hence, instead of considering all

demands below the residual demand, we consider only demands that are powers of (1 + ε).

The Group Steiner (GS) problem over trees. We now present a setting where all four modifications

can be implemented. In the GS problem over trees the input consists of: (i) an undirected tree T rooted at

r with nonnegative edge edges w(e) and (ii) groups gi ⊆ V (T) of terminals. A subtree T ′ ⊆ T rooted at r

covers k groups if V (T ′) intersects at least k groups. We refer to a subtree that covers k groups as a k-GS

tree. The goal is to find a minimum weight k-GS tree.

We denote the number of vertices by n and the number of groups by m. For simplicity, assume that

every terminal is leaf of T and that every leaf of T is a terminal. In addition, we assume that the groups gi

are disjoint. Note that the assumption that the groups are disjoint implies that
∑m

i=1 |gi| ≤ n.

Bounding the number of layers. Lemma 1.2 applies also to GS instances over trees, provided that

the transitive closure is used. Before transitive closure is used, we direct the edges from the node closer

to the root to the node farther away from the root. As mentioned above, limiting the number of layers to

ℓ = log n/ log log n incurs a poly-logarithmic penalty.

However, there is a problem with bounding the number of layers according to Lemma 1.2. The problem

is that we need to transitively close the tree. This implies that we lose the tree topology and end up with an

directed acyclic graph instead. Unfortunately, we only know how to reduce the maximum degree of trees,

not of directed acyclic graphs. Hence, we need to develop a different reduction that keeps the tree topology.

In [2], a height reduction for trees is presented. This reduction replaces T by an ℓ-layered tree T ′. The

penalty incurred by this reduction is O(nc/ℓ), where c is a constant. The details of this reduction appear in

[2].

Reducing the maximum degree. We now sketch how to preprocess the tree T to obtain a tree ν(T)

such that: (i) There is a weight preserving correspondence between k-GS trees in T and in ν(T). (ii) The

maximum number of children of a vertex in ν(T) is bounded by an integer β ≥ 3. (iii) The number of layers

in ν(T) is bounded by the number of layers in T plus ⌊logβ/2 n⌋. We set β = ⌈log n⌉, and obtain the required

reduction.

5 IMPROVING THE RUNNING TIME 19

We define a node v ∈ V (T) to be β-heavy if the number of terminals that are descendants of v is at least

n/β; otherwise v is β-light.

Given a tree T rooted at u and a parameter β, the tree ν(T) is constructed recursively as follows. If u is

a leaf, then the algorithm returns u. Otherwise, the star induced by u and its children is locally transformed

as follows. Let v1, v2, . . . , vk denote the children of u.

1. Edges between u and β-heavy children vi of u are not changed.

2. The β-light children of u are grouped arbitrarily into minimal bunches such that each bunch (except

perhaps for the last) is β-heavy. Note that the number of leaves in each bunch (except perhaps for the

last bunch) is in the half closed interval [nu/β, 2nu/β). For every bunch B, a new node b is created.

An edge (u, b) is added as well as edges between b and the children of u in the bunch B. The edge

weights are set as follows: (a) w(u, b)← 0, and (b) w(b, vi)← w(u, vi).

After the local transformation, let v′1, v
′
2, . . . , v

′
j be the new children of u. Some of these children are the

original children and some are the new vertices introduced in the bunching. The tree ν(T) is obtained by

recursively processing the subtrees Tv′
i
, for 1 ≤ i ≤ j, in essence replacing Tv′

i
by ρ(Tv′

i
).

The maximum number of children after processing is at most β because the subtrees {Tv′
i
}i partition the

nodes of V (Tu)−{u} and each tree except, perhaps one, is β-heavy. The recursion is applied to each subtree

Tv′
i
, and hence ν(T) will satisfies the degree requirement, as claimed. The weight preserving correspondence

between k-GS trees in T and in ν(T) follows from the fact that the “shared” edges (u, b) that were created

for bunching together β-light children of u have zero weight.

We now bound the height of ν(T). Consider a path p in ν(T) from the root r to a leaf v. All we need to

show is that p contains at most logβ/2 n new nodes (i.e., nodes corresponding to bunches of β-light vertices).

However, the number of terminals hanging from a node along p decreases by a factor of β/2 every time we

traverse such a new node, and the bound on the height of ν(T) follows.

The modified algorithm. We now present the modified recursive greedy algorithm for GS over trees. A

listing of the modified recursive greedy algorithm appears as Algorithm 2.

5 IMPROVING THE RUNNING TIME 20

The following notation is used in the algorithm. The input is a rooted undirected tree T which does

not appear as a parameter of the input. Instead, a node u is given, and we consider the subtree of T that

hangs from u. We denote this subtree by Tu. The partial cover accumulated by the algorithm is denoted by

cover. The set of groups of terminals is denoted by G. The set of groups of terminals not covered by cover

is denoted by Gres. The number of groups covered by cover is denoted by k(cover). The height of a tree Tu

is the maximum number of edges along a path from u to a leaf in Tu. We denote the height of Tu by h(Tu).

Two parameters λ and γv appear in the algorithm. The parameter λ is set to equal 1/h(T). The

parameter γv satisfies 1/γv = |children(v)| · (1 + 1/λ) · (1 + λ).

Lines that are significantly modified (compared to Algorithm 1) are underlined. In line 4, two modifi-

cations take place. First, the smallest demand is not one, but a poly-logarithmic fraction of the residual

demand (under the assumption that the maximum degree and the height is poly-logarithmic). Second, only

demands that are powers of (1 + λ) are considered. In line 7, the algorithm also stores the partial cover that

first covers at least 1/h(Tu) of the initial demand k. This change is important for the simulation argument

in the proof. Since the algorithm does not consider all the demands, we need to consider also the partial

cover that the simulation argument points to. Finally, in line 9, we return the partial cover with the best

density among cover and coverh. Again, this selection is required for the simulation argument.

Note that Modified-GS(u, k,G) may return now a cover that covers less than k groups. If this happens

in the topmost call, then one needs to iterate until a k-GS cover is accumulated.

Algorithm 2 Modified-GS(u, k,G) - Modified recursive greedy algorithm for k-GS over trees.

1: stopping condition: if u is a leaf then return ({u}).
2: Initialize: cover← {u} and Gres ← G.
3: while k(cover) < k do
4: recurse: for every v ∈ children(u) and

for every k′ power of (1 + λ) in [γr · (k − k(cover)), k − k(cover)]

Tv,k′ ← Modified-GS(v, k′,Gres).

5: select: (pick the lowest density tree)

Taug ← min-density {Tv,k′ ∪ {(u, v)}} .

6: augment & update: cover← cover ∪ Taug; G
res ← Gres \ {gi : Taug intersects gi}.

7: keep k/h(Tu)-cover: if first time k(cover) ≥ k/h(Tu) then coverh ← cover.
8: end while
9: return (lowest density tree ∈ {cover, coverh}).

6 DISCUSSION 21

The following claim is proved in [2]. It is analogous to Claim 1.2 and is proved by rewriting the proof

while taking into account error terms that are caused by the modifications. Due to lack of space, we omit

the proof.

claim 1.4 ([2]) The density of every augmenting tree Taug satisfies:

ρ(Taug) ≤ (1 + λ)2h(Tu) · h(Tu) · ρ(T ′
u).

The following theorem is proved in [2]. The assumptions on the height and maximum degree are justified

by the reduction discussed above.

Theorem 1.3 Algorithm Modified-GS(r, k,G) is a poly-logarithmic approximation algorithm with polyno-

mial running time for GS instances over trees with logarithmic maximum degree and O(log n/ log log n)

height.

6 Discussion

In this chapter we presented the recursive greedy algorithm and its analysis. The algorithm is designed for

problems in which finding a minimum density augmentation of a partial solution is an NP-hard problem. The

main advantages of the algorithm are its simplicity and the fact that it is a combinatorial algorithm. The

analysis of the approximation ratio of the recursive greedy algorithm is nontrivial and succeeds in bounding

the density of the augmentations.

The recursive greedy algorithm has not been highlighted as a general method, but rather as an algorithm

for Steiner tree problems. We believe that it can be used to approximate other problems as well.

Open Problems. The quasi-polynomial time O(log3 k)-approximation algorithm for DST raises the ques-

tion of finding a polynomial time algorithm with a poly-logarithmic approximation ratio for DST. In par-

ticular, the question is whether the running time of the recursive greedy algorithm for DST can be reduced

by modifications or preprocessing.

REFERENCES 22

Acknowledgments

I would like to thank Guy Kortsarz for introducing me to the recursive greedy algorithm and sharing his

understanding of this algorithm with me. Guy also volunteered to read a draft. I thank Chandra Chekuri for

many discussions related to this chapter. Lotem Kaplan listened and read drafts and helped me in the search

for simpler explanations. Thanks to the Max-Planck-Institut für Informatik where I had the opportunity to

finish writing the chapter. Special thanks to Kurt Mehlhorn and his group for carefully listening to a talk

about this chapter.

References

[1] Y. Bartal, M. Charikar, D. Raz. Approximating min-sum k-clustering in metric spaces. Proc. of STOC,

11–20, 2001.

[2] Chandra Chekuri, Guy Even, and Guy Kortsarz. A greedy approximation algorithm for the group

Steiner problem. To appear in Discrete Applied Mathematics.

[3] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha and M. Li. Approximation Algorithms

for directed Steiner Problems. Journal of Algorithms, 33, 73–91, 1999.

[4] N. Garg and G. Konjevod and R. Ravi, A polylogarithmic approximation algorithm for the Group

Steiner tree problem. Journal of Algorithms, 37, 66-84, 2000. Preliminary version in Proc. of SODA,

253–259, 1998.

[5] C. H. Helvig, G. Robins, and A. Zelikovsky. Improved approximation scheme for the group Steiner

problem. Networks, 37(1):8–20, 2001.

[6] G. Kortsarz and D. Peleg. Approximating the Weight of Shallow Steiner Trees. Discrete Applied Math,

93, 265-285, 1999.

[7] G. Reich and P. Widmayer. Beyond Steiner’s problem: A VLSI oriented generalization. Proc. of

Graph-Theoretic Concepts in Computer Science (WG-89), LNCS volume 411, 196–210, 1990.

A PROOF OF LEMMA 1.2 23

[8] A. Zelikovsky. A series of approximation algorithms for the acyclic directed Steiner tree problem.

Algorithmica, 18: 99-110, 1997.

[9] L. Zosin and S. Khuller. On directed Steiner trees. Proc. of SODA, 59–63, 2002.

A Proof of Lemma 1.2

We prove that given a k-DST T in a transitive closed directed graph G, there exists a k-DST T ′ such that:

(i) T ′ is ℓ-layered and (ii) w(T ′) ≤ ℓ
2 · k

2/ℓ · w(T).

Notation. Consider a rooted tree T . The subtree of T that consists of the vertices hanging from v is

denoted by Tv. Let α = k2/ℓ. We say that a node v ∈ V (T) is α-heavy if k(Tv) ≥ k(T)/α. A node v is

α-light if k(Tv) < k(T)/α. A node v is minimally α-heavy if v is α-heavy and all its children are α-light. A

node v is maximally α-light if v is α-light and its parent is α-heavy. Note that if u is minimally α-heavy,

then all its children are maximally α-light.

Promotion. We now describe an operation called promotion of a node (and hence the subtree hanging

from the node). Let G denote a directed graph that is transitively closed. Let T denote a tree rooted at

r that is a subgraph of G. Promotion of v ∈ V (T) is the construction of the rooted tree T ′ over the same

vertex set with the edge set: E(T ′)
△

= E(T) ∪ {(r, v)} \ {(p(v), v)}. The promotion of v simply makes v a

child of the root.

Height reduction. The height reduction procedure is listed as Algorithm 3. The algorithm iteratively

promotes minimally α-heavy nodes that are not children of the root, until every α-heavy node is a child of

the root. The algorithm then proceeds with recursive calls for every maximally α-light node. There are two

types of maximally α-light nodes: (1) children of promoted nodes, and (2) α-light children of the root (that

have not been promoted).

The analysis of the algorithm is as follows. Let hα(k(T)) denote an upper bound on the height of the

returned tree as a function of the number of terminals in T . The recursion is applied only to α-light trees

A PROOF OF LEMMA 1.2 24

that are one or two edges away from the current root. It follows that hα(k(T)) satisfies the recurrence

hα(k′) ≤ hα(k′/α) + 2.

Therefore, hα(k′) ≤ 2 · logα k′.

Bounding the weight. We now bound the weight of the tree T ′ returned by the height reduction algo-

rithm. Note that every edge e′ ∈ E(T ′) corresponds to a path path(e′) ∈ T . We say that an edge e ∈ E(T)

is charged by an edge e′ ∈ E(T ′) if e ∈ path(e′). If we can prove that every edge e ∈ E(T) is charged at

most β times, then w(T ′) ≤ β · w(T).

We now prove that every edge e ∈ E(T) is charged at most α · logα k(T) times. It suffices to show that

every edge is charged at most α times in each level of the recursion. Since the number of terminals reduces

by a factor of at least α in each level of the recursion, the recursion depth is bounded by logα k(T). Hence,

the bound on the number of times that an edge is charged follows.

Consider an edge e ∈ E(T) and one level of the recursion. During this level of the recursion, α-heavy

nodes are promoted. The subtrees hanging from the promoted nodes are disjoint. Since every such subtree

contains at least k(T)/α terminals, it follows that the number of promoted subtrees is at most α. Hence,

the number of new edges (r, v) ∈ E(T ′) from the root r to a promoted node v is at most α. Each such new

edge charges every edge in E(T) at most once, and hence every edge in E(T) is charged at most α times in

each recursive call. Note also that the recursive calls in the same level of the recursion are applied to disjoint

subtrees. Hence, for every edge e ∈ E(T), the recursive calls that charge e belong to a single path in the

recursion tree.

We conclude that the recursion depth is bounded by logα k(T) and an edge is charged at most α times

in each recursive call. Set ℓ = 2 · logα k(T), and then α · logα k(T) = ℓ
2 · k

2/ℓ. The lemma follows. 2

A PROOF OF LEMMA 1.2 25

Algorithm 3 HR(T, r, α) - A recursive height reduction algorithm. T is a tree rooted at r, and α > 1 is a
parameter.

1: stopping condition: if V (T) = {r} then return ({r}).
2: T ′ ← T .
3: while ∃v ∈ V (T ′) : v is minimally α-heavy & dist(r, v) > 1 do
4: T ′ ← promote(T ′, v)
5: end while
6: for all maximally α-light nodes v ∈ V (T ′) do
7: T ′ ← tree obtained from T ′ after replacing T ′

v by HR(T ′
v, v, α).

8: end for
9: return (T ′).

A PROOF OF LEMMA 1.2 26

set2 setmset1

r

1 2

w(set1)
w(set2)

w(setm)

0

0

0
0 0

n

Figure 1.1: Reduction of SC instance to DST instance.

V × {0}

V × {1}
(u, 1) (v, 1)

(u, 0) (v, 0)

V × {ℓ− 1}

V × {ℓ}
(u, ℓ) (v, ℓ)

(u, ℓ − 1) (v, ℓ − 1)

w(u, v)

w(u, v)
0 0

0 0

Figure 1.2: Layering of a directed graph G. Only parallel edges incident to images of u, v ∈ V (G) and regular
edges corresponding to (u, v) ∈ E(G) are depicted.

Index

arborescence, 6

density, 12

minimum residual density tree, 11

residual density, 3, 9

Greedy algorithm, 3

layering, 8

partial cover, 3

recursive greedy algorithm, 9

Set-Cover problem, 3

Steiner tree

ℓ-shallow k-DST problem, 7

k-DST problem, 7

Directed Steiner Tree (DST) problem, 6

Group Steiner (GS) problem, 18

transitive closure, 7

27

