348 IEEE TRANSACTIONS ON COMPUTER-AIDE%DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 3, MARCH 1996

Retiming Revisited and Reversed

Guy Even, Member, IEEE, Ilan Y. Spillinger, Senior Member, IEEE, and Leon Stok, Senior Member, IEEE

Abstract— Retiming is a very promising transformation of
circuits which preserves functionality and improves performance.
Its benefits are especially promising in automatic synthesis of
circuits from higher-level descriptions. However, retiming has not
been widely included in current design tools and methodologies.
One of the main obstacles is the problem of finding an equivalent
initial state for the retimed circuit. In this paper, we introduce
a simple modification of the retiming algorithm of Leiserson and
Saxe. The modified algorithm helps minimize the effort required
to find equivalent. initial states and reduces the chance that the
network needs to be modified in order to find an equivalent initial
state, This algorithm is the kernel of a new efficient retiming
method, which searches for optimal retimings while preserving
the initial state condition. The paper also presents an improved
method to perform the initial state calculation.

I. INTRODUCTION

ETIMING is a transformation which improves circuits

by relocating registers in sequential circuits. It has been
shown in [6] and [7] that (under certain restrictions) this
transformation preserves the functionality of circuits. Retiming
may be applied for several optimization goals, e.g., minimizing
the cycle time, minimizing the area, minimizing the number
of registers, or improving testability.

An example of retiming a circuit is shown in Fig. 1(a). The
initial circuit has three registers r1, r2, and 73, and a maximum
combinatorial delay of three units through gates g2, ¢3, and
g4. (Assuming unit delay model, no fan-in fan-out delays). In
order to reduce the cycle time to two units and minimize the
registers to two, we can retime gate g4. The two registers r2
and r3 at its outputs are moved to the input and replaced by
register 4. The retimed circuit is shown in Fig. 1(b).

A retiming can be described by an integer function L()
(called the lag) of all nodes in the network. This function
represents the number of registers that are to be moved from
each output of node v to each of its inputs. In Fig. 1, one
register is removed from each output and one register is
inserted in the input. Therefore, the lag of gate g4 equals
one, L(g4) = 1. Note that a positive lag causes registers to
move backward in the network, while a negative lag moves
them forward, where the forward direction is defined as the
direction in which the data flows through the circuit.

Manuscript received July 11, 1994; revised March 22, 1995 and December
7, 1995. This work was done while the authors were working in the
BooleDozer Logic Synthesis Group of the IBM T. J. Watson Research Center,
Yorktown Heights, NY. This paper was recommended by Associate Editor K.
Keutzer.

G. Even is with the University of Saarland, Saarbruecken, Germany.

L. Spillinger is with Intel Israel, Haifa 61015, Israel.

L. Stok is with IBM T. J. Watson Research Center, Yorktown Heights, NY
10598 USA.

Publisher Item Identifier S 0278-0070(96)01847-7.

2

l
g5
’ I g4

ﬁ ©
rl

- I3

L(gd)=1

@

®

(a) Original circuit. (b) Retimed circuit.

Fig. 1.

The initial state of a circuit is determined by the initial
values of the registers in the circuit. For a limited set of
applications, e.g., for the data path circuitry in DSP type
circuits, the initial state is not important and retiming without
additional constraints can be applied [10]. However, in many
microprocessor and controller type applications, the initial
state is an integral part of the behavior of the machine.

‘Whenever the initial state of the 'sequential circuit is mean-
ingful, it is necessary to find an equivalent initial state for
the retimed circuit. However, it is not always possible to find
the initial state of the retimed circuit. For example, let us
assume that in Fig. 1 the initial value of register #2 is 1 and
the initial value of register 73 is 0. The retimed circuit cannot
be initialized to have the same behavior as the original circuit
and, in particular, one cannot find an initial value for the new
register r4.

A retimed circuit has an initial state equivalent to an initial
state in the original circuit if for any input sequence applied to
both circuits (one circuit started in the initial state, the other in
the equivalent one) the same sequence of outputs is produced.

One way to assure that a corresponding initial state can
be found in the retimed network is to only move registers
forward in the network [4]. Let us define this as simple forward
retiming. In this case, the initial state can be propagated to the
new register positions by a simple simulation (i.e., forward
implication) of the values in the network.

Let us define forward retiming as a generalization of simple
forward retiming. In forward retiming registers are not only
allowed to move forward, but registers can also be removed

0278-0070/96$05.00 © 1996 IEEE N

EVEN et al.: RETIMING REVISITED AND REVERSED

O
b e
O
gl
ofFT—C
I out
rl
Al >O0— ¢4
g2 r‘
@
00
®
Fig. 2. = (a) Circuit with no simple forward retiming. (b) State machine.

at the primary outputs and reinserted at the primary inputs.
Forward retiming through the primary outputs/primary inputs
(O-I’s) removes a register from each path that ends in a
primary output and inserts one on each path that starts from
a primary input [9]. Notice that the number of registers
along each path from a primary input to a primary output is
unchanged by retiming [8]. The restriction of simple forward
retiming is motivated by the ability to track initial values since
retiming through O-T’s is not allowed. As shown in Fig. 2, this
imposes a significant restriction on the retiming and excludes
various retimings. The circuit in Fig. 2 cannot be retimed to
obtain a delay of two units by allowing only simple forward
moves, although a clock period of two units is obtainable via
retiming without this restriction.

Eliminating the constraint on retiming through the O-I's
makes forward retiming a general retiming. Every backward
retiming can be obtained by applying a sequence of forward
retimings through O-I’s.

The basic problem is to determine the initial values for the
registers inserted in the primary input paths. For example, the
register 71 in Fig. 2 can be duplicated. One of the duplicates
is directly connected to the last input of gate g4, the other
directly feeds the primary output. Removing the register from
the output and inserting two new registers at the inputs a and b
produces a valid retiming. But we can not easily calculate the
initial values for these new registers by forward implication.

Touati and Brayton [11] describe -a method which finds a
sequence of input values to be inserted at the inputs to find the
appropriate initial values of the registers in the retimed circuit.
Given a particular legal retiming, one can derive the number
of forward moves through the O-I’s necessary to modify the

349

network to obtain this retiming. Let us call this number of
forward O-I moves k. A sequence of % input values is needed,
which prescribes the values inserted in each O-I move. This
sequence can be obtained by inspecting the state machine
extracted from the circuit. In this state machine, a sequence of
k transitions must be found which will bring the machine into
the initial state. Any state may be the starting point of such a
sequence. Each time the inputs are retimed (i.e., registers are
inserted in the input paths), they are initialized with the values
from this input sequence.

Let us apply this method to the example of Fig. 2. The state
machine for this network has two states. Assume that we want
to find an initial state for the retiming of gate g5 by one,
L(g5) = +1, by repeated forward moves. This requires one
forward O-I move. Therefore, the length of the input sequence
to initialize the new registers at the inputs equals one, k£ = 1.
In the partial state diagram of Fig. 2, we have to search for a
sequence of one transition that leads to state 0. The transition
(e = 0,b = 0) brings us from state 1 to state 0 and can be
used. When the register is removed from the output out, two
new registers are inserted at the inputs a (initialized with a 0)
and b (initialized with a 0). These new registers can be moved
forward through gates g1, - -, g4 by simple forward moves to
their final positions at the inputs of g5.

To be able to execute this method to find an initialization, the
state machine is required to have a sequence of state transitions
of length k leading to the initial state. If this is not the case,
the circuit must be modified to include such a sequence.

A circuit which cannot be initialized after retiming is shown
in Fig. 3, which shows both the circuit and the state diagrams.
Since there is no transition that leads to the initial state, a
transition needs to be added. A state is searched that has the
minimum Hamming distance to the initial state 10. State 00
is selected and a new transition is added. The new transition
from state 00 to state 10 has input valuesa = —, b=1,c=0
and reset = 1. The new state diagram is shown in Fig. 4(b).
All other transitions have a reset = 0 (not shown) attached
to them. In the initial state calculation, these values are used
when the latches are moved across the O-I boundaries. This
leads to the initial values in the registers as shown in Fig. 4(a).

Unfortunately, this modified circuit has a maximum delay of
two due to the additional (constant) reset input and the OR-gate
needed to merge this into the path. This example shows that
modifying the logic according to the approach in [11] might
ruin the advantage obtained by retiming in the first place, and
require additional hardware.

However, another retiming may exist which enables one

_to find an initial state without requiring modifications to the

network. An example of a retiming for this circuit is shown
in Fig. 5. This is the only retiming with cycle time one which
has an equivalent initial state without modifications to the
combinational logic. The retimed circuit has four registers and
their initial values are as shown in the figure. Interestingly, the
final circuit contains an unshared register at the output of the
inverter g1. This is sometimes needed to obtain an initializable
retiming with a minimal cycle time.

The major contribution of this paper is that we explore the
existence of retimings, which require no combinational circuit

350 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 3, MARCH 1996

00-
10- B
®

Fig. 3. (a) Circuit and (b) corresponding state machine.

‘modifications. The reverse retiming is a variation of the best
known retiming algorithm (FEAS) [7], and therefore has the
same complexity. The algorithm finds a retiming such that
the number of registers that move backward through a single
combinational block is the minimized among all possible

- retimings. Whenever there exists a simple forward retiming,
the modified algorithm finds it.

The rest of this paper consists of two main parts. Section
Il describes the reverse retiming algorithm and shows why
this modification to retiming is crucial in order to obtain
better initializable retimed circuits. Section III explains a new
procedure to calculate the initial states.

In Section IV, the two previous sections are combined in a
retiming method which bounds lags of specific combinational
logic blocks. Section V classifies circuits with respect to
retiming and initialization and describes why our method is
applicable to a larger set of circuits than earlier methods.
Finally, Section VI shows that the results of our experiments
are in accordance with the claims on the retiming method and
illustrates the different categories of circuits that actually exist
in the common benchmarks. .

II. REVERSE RETIMING

- As explained in the Introduction, backward retiming steps
should be avoided as much as possible. The basic difficulty
with backward moves is the existence of a mapping for the

00-
10~ 11
®

(a) Circuit resuited from (b) modified state machine.

Fig. 4.

Fig. 5. Retimed circuit with cycle time one (Reversed Retiming).

initial state. Finding this mapping is an NP-hard problem, as
it is similar to the phase of justification in the process of
automatic test pattern generation [5]. So whenever possible, a
good criterion is to minimize the number of registers that move
backward through each functional (combinational) block.

A circuit graph G = (V,F,w,d) coosists of a directed
graph (V, E) with nonnegative integer weights w(e) on the
edges and nonnegative real delays d{v) on the vertices. The
weights on the edges model the number of registers along
the edge, the delays of the vertices model the propagation

EVEN et al.: RETIMING REVISITED AND REVERSED

delay of the nodes. Given a path p = [vg, - - -, v}, its weight
is defined as w(p) = Zf;ol w(e;), where e; is the edge
from v; to v;4+1. The delay is defined as d(p) = Zf:o d(v;).
The minimum feasible clock period of G, ®(G) is defined as
#(G) = max{d(p)u(p) = 0}.

A circuit graph can be derived from an actual circuit
C(B, R, N) by replacing the combinational blocks B by nodes
V, the nets N by edges F between the nodes and the registers
R by weights w on these edges [7]. In the graph model, a
special node with zero delay called the 4ost and denoted by
h is added. For every primary output of the network, an edge
with zero weight is inserted from the output to the host. For
every primary input an edge is added from the host to the input.

Let L(v) be the lag function for all nodes v € V, e(u,v)
an edge from « to v, w(e) the weight of the edges before
retiming and wr(e) the weights of the edges after retiming:
wy, i8 determined from w and the lags by: wy(e) = w(e) +
L(v) — L(u).

The normalized lag L*(v) of a node v is defined as the
difference between the lag of the node itself and the lag of the
host, i.e., L*(v) = L(v) — L(h). L* is the maximum L*(v)
over all nodes in the circuit. Since the retimed weight wr,(e)
is only dependent on the difference of the lags between two
nodes and not on the absolute value of the lags, retiming with

" the normalized lags will result in the same circuit as retiming
with the original lags.

For each node v, a required time ¢,.(v) is defined. For the
simplicity of the discussion, we assume that all primary outputs
and registers are synchronized with the clock and that their
required time equals the required cycle time c. The required
time for the host equals the cycle time c. For any other node
v the required time is defined as the difference between the
smallest required time for its successors and the propaga-
tion delay of the node itself ¢.(v) = ming, weg(t-(v)) —
d(v). Notice, the reverse_retiming algorithm can be easily
extended to handle different required times for the outputs
and registers.

The reverse_retiming algorithm, described in algorithm I,
first sets the lags of all nodes to zero. In the outer loop, it
retimes the circuit according to the lags L and recomputes
the set M of nodes whose outputs are not in time to meet a
required time. The lags of these nodes are decreased by one.
If none of the nodes violates a constraint, the iteration can
be stopped. If after |V| iterations M is nonempty, then no
solution that meets the requirements is possible for G and the
algorithm terminates.

Algorithm 1. reverse_retiming(G,c)
foreach v € V do
L(v) = 0;
E=1;
do
Compute retimed circuit Gr;
Compute t.(v) for every vertex v € V;
M = {vft.(v) < 0}
foreach v €¢ M do
L(v) = L(v) — 1;
k=k+1,
while k£ < |V| and M # 0;

351

All claims for the retiming algorithms FEAS in [7] and
retime in [9] hold. In addition, reverse retiming finds the
retiming with the minimum normalized lag, as expressed in
the following theorem.

Theorem I: Let G = (V,E,w,d) be a circuit and c a
required clock cycle. Let L(v), denote the retiming computed
by the algorithm reverse_retiming(G, c). Then

1) The algorithm reverse_retiming(G, c) finds a retiming L

such that ®(Gr) < ¢, if such a retiming exists.

2) If all nodes are reachable from the host and if (G) <

¢, then for every retiming L’ for which ®(G%) < ¢ the
following holds

max L(v) — L(h) < max L'(v) = L'(h).

A sketch of the proof of the theorem appears in the
Appendix. The first implication in the theorem shows that a
retiming for a given cycle time will be found if one exists,
similar to the FEAS algorithm. The second result expresses
that the retiming that is found achieves the smallest maximum
normalized lag value.

The following example shows that the difference in the
maximum normalized lag between the FEAS algorithm and
the reverse retiming might be as large as |V{. The circuit graph
shown in Fig. 6(a) has n registers at its input, n registers at
its output, and n» combinational nodes each with a unit delay.
The FEAS algorithm (described in the Appendix), applied to
this example (see Fig. 6(b)), assigns a lag of L(v;) = 4 to each
node v;,0 < ¢ < n and the lag of the host equals L(kh) = 0.
This retiming therefore results in a maximum normalized lag
of n,ie., L*(V,)) = L(V,) — L(h) =n -0 = n.

The reverse_retiming algorithm (see Fig. 6(c)) assigns a lag
L(v;) = —(n — 1) to each node v;,0 < 7 < n and the lag
of the host L(h) = 0. Since the maximum normalized lag
is zero, the reverse_retiming result can be obtained by only
simple forward moves.

In other words, reverse retiming will always find a retiming
with the minimum number of forward O-I moves. Note that
if a retiming with a maximum normalized lag value of zero
exists (i.e., a simple forward retiming), reverse retiming finds
such a solution. However, there remain circuits that do not
have a retiming with a maximum normalized lag of zero. For

‘these circuits, initial state calculation is not possible by simple

forward simulation and a more advanced method is required.
The next section will describe such a method.

III. INITIAL STATE CALCULATION

Given a retiming for a circuit graph G(V, E, w, d), a retim-
ing function can be defined for the circuit C(B, R, N). By
construction there is a one-to-one correspondence between a
node v € V and a combinational block b € B. The lag of a
block b is defined equal to the lag of the corresponding node
v. A retimed circuit ¢’ for a lag function L() is constructed
using the Update_Registers algorithm described in algorithm
2. This algorithm simultaneously calculates the new positions
and the initial values for the registers, such that the initial state
of the retimed circuit is equivalent to the initial state of the
original circuit.

lag(Vn)=n

lag(H)=0

i
!
'
'
i
\

lag(v0)=-n

lag(Vn) =0

© oL

lag(V)= - (n-1)

c)

Fig. 6. (a) Cyclic circuit graph. (b) Retimed using FEAS. (c) Retimed using
reverse retiming.

All registers in the original circuit C have contents zero,
one, or don’t care as the initial state. The Update_Registers
algorithm iterates over all registers in the design. For each
register r, it is checked for each of its outputs if it was already
visited. If one of the outputs of r was visited, r is added to
the implication set I. Otherwise it is checked if the lag at
this output is negative. If true, this register r is inserted in the
implication set . Also, the design is traversed forward (toward
the primary outputs). If it reaches a node « which has not been
visited in this iteration, and its lag value is negative then its
lag is incremented by one, and the traversal in the forward
direction continued. -Whenever it reaches a visited node, the
traversal is stopped. Whenever it reaches a node v with lag
L(u) > 0 or it reaches a register pr, a new register nr is
introduced before « or pr and the traversal in this direction is
stopped. In Fig. 7, register 1 is inserted in list I and the lag
of g1 is incremented. The forward cone stops at gate g1, so a
new register nrl is inserted after gl.

In a similar way, for each register in the design, it is checked
if one of its unvisited inputs has a positive lag. If so, traverse
the design backward, decrement the lags of the appropriate
nodes, insert new registers, and update the justification list J.
In the example (Fig. 7), J will contain register 72 and two
new registers nr2 and nr3 are inserted in front of gate ¢2. All
new registers inserted in the circuit have a don’t care initial
value.

[EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 3, MARCH 1996

Algorithm 2.Update_Registers C(B,R,N),L())
do
I=J=0 ,
foreach u € B do wisited(u) =
foreach r € R do
foreach b € {b|3(r,b) € N} do
if (visited(b) == TRUE) then

FALSE;

I =1+7r;
else if (L(b) < 0) then
I =1+r;

Build the forward cone FC from
and including b;
Stop when you reach a nodew such-
that wvisited(u) == TRUE; ‘
Also stop when you reach a nodewusuch
that L(u)> 0 or reach a register pr then
insert a new register nr with
value don’t care beforewu or pr;
foreach u € F'C do
L(u) = L(u) + 1;
visited(u) = TRUE;
endforeach
endif
endif
endforeach
foreach b € {b|3(b,7r) € N } do
if (visited(b) == TRUFE) then

J=J+r;
else if (L(b) > 0) then
S =J+r;

Build the backward cone BC from and
including b; ’
Stop when you reach a nodew such that
visited(u) == TRUE;
Also stop when you reach ‘a node u such
that L(u)<0 or reach a register pr then -
insert a new register nr with value
don’t care after u or pr;
foreach u € BC do
visited(u) = TRUE;
endforeach
endif
endforeach
endforeach
if (IUJ=0) then return (success);
Forward implication for all values of
registers in I and
justification of all values in
J using justify [5];
if (justify fails) then
return (failure);
else
Remove all registers relUJ from C;
endif
while TRUE;
Only if I and/or J are nonempty, retiming moves have been
done. For all values of registers in I, a forward implication

.

EVEN et al.: RETIMING REVISITED AND REVERSED

Lgh=-1

rl nrl nr3

Fig. 7. - Register update procedure.

procedure is called. For all values of registers in .J, a backward
Justification is used. Both of these procedures are described
in [5]. If justification fails, there is no possible equivalent
retimed initial state. If it succeeds, the appropriate register
values are updated. All registers in the lists I and J (they
have been replaced by new registers) can be deleted, and the
Update_Registers algorithm proceeds to the next iteration.
The number of iterations of the outer loop of the algorithm
that is required for a successful computation of the retimed
equivalent initial state is the maximum absolute value of the
normalized lags. Within this iteration a justification step is
done which in theory is NP-complete. Since this justification
is done only on a very small portion of the design the run
time in practice is small.

Reverse retiming and the initial state calculation can be
combined in a method which is the topic of the next section.

IV. BOUNDING THE LAGS OF SPECIFIC BLOCKS

Suppose that during the update of registers, one fails in the
justification process, e.g., the backtracing computation for a
block b causes a conflict. In such a case, it may be helpful
to bound the normalized lag of block b, to avoid the need to
backtrace its computation so many times.

Algorithm 3. Reverse Retiming Method
1) Build circuit graph G for circuit C.
2) Apply algorithm reverse_retiming on

(G,c).
3) If such a retiming does not exist
then stop.

4) Normalize the lags obtained for G.

5) Copy the resulting lags from G to C.
6) Apply algorithm Update_Registers on C.
7) If successful, stop.

8) Insert the additional edges in G

to form G™.
9) G = G™.
10) Goto step (2).

For every block b, that could not be backtraced during the
ith iteration of the Update_Registers algorithm, the lag is
bounded by ¢ — 1. This is accomplished by adding an edge
of weight ¢ — 1 from the node vy, which corresponds to the
block b, to the host h. Let G™ denote the new circuit graph.
The optimality of applying reverse retiming on the graph G™
is summarized in the following claim.

Claim: Reverse retiming on the graph G™ with required
clock period ¢ finds a feasible retiming if such a retiming exists

353

that minimizes the maximum normalized lag. In addition, it
satisfies the constraints L(v) — L(h) <4 — 1.
Proof: Any feasible retiming, L', of G™ must satisfy

wr (vp, h) = w(vy, h) — L'(vp) + L' (h)
=i—1—L'(vs) + L'(h)
>0

therefore, L'(vy) ~ L'(h) < 1 — 1, as required.

Theorem 1 guarantees that reverse retiming finds a feasible
retiming of G™ if such a retiming exists. Hence, reverse
retiming on G™ finds a feasible retiming of G which satisfies
the additional constraints of the form L(v) — L(h) < i —
1. Moreover, any feasible retiming of G which satisfies
the additional constraints is a feasible retiming of G™. By
Theorem 1, such a retiming has a maximum normalized lag
that is not less than the maximum normalized lag found by
reverse retiming on the graph G™. The claim follows. O

An iterative method of setting constraints of the form
vp < ¢ — 1 is summarized in Algorithm 3. The method retimes
a circuit C' (with G being its companion circuit graph) for a
desired cycle time ¢, with an equivalent initial state.

V. CIRculT CHARACTERIZATION FOR RETIMING

Recall, the maximum normalized lag (L*) for a given
retiming of a circuit is the maximum difference between the
lag of a vertex and the lag of the host. The minimum maximum
normalized lag (L},;,) is defined as the smallest L* of all

feasible retimings of the circuit. This is a circuit property,

‘which can be used to classify the circuits. Another property is

the reachability of the initial state of the circuit’s state diagram
from another state by a sequence of L* transitions.

We classify all circuits into four classes, according to L ;,
and the reachability of the initial state by a sequence of L*
transitions.

D * . < 0 and initial state reachable.

min =

II) L. < 0 and initial state unreachable.

mi -_—

III) Lfni: > 0 and initial state reachable. For example, the
circuit in Fig. 2 does have a reachable initial state and
has a positive L}, .

IV) Lk, > 0 and initial state unreachable. For example,

the circuit in Fig. 3 does not have a reachable initial

state and has a positive L*

min*

This circuit classification will be used to discuss the appli-
cability of FEAS and reverse retiming. It will also be used
to compare initial state computation of [11] with the one
presented in this paper.

It is obvious that reverse retiming should always be used
for class I and II circuits. By theorem 1, reverse retiming will
find the retiming with L}, < 0. Initialization is trivial and
can be done by forward simulation. In the following, we argue
that reverse retiming is also beneficial for the initialization of
class IIT and IV circuits.

The maximum normalized lag found by reverse retiming
is never greater then the maximum normalized lag found
by FEAS. The length of the input sequence needed by [11]
equals the maximum normalized lag. Hence, reverse retiming

354 [EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 3, MARCH 1996

can help in shortening the required input sequence. Finding
a longer sequence requires partial state enumeration of a
larger set of states, which, in tumn requires a larger effort.
In [11], the length of the sequence also implies the amount
of registers to which reset logic needs to be added. Since
a sequence of state transitions is searched with a minimal
Hamming distance, adding a transition to this sequence will
increase or keep equal (but never decrease) the number of
state bits that need modification. Therefore, there are never
more registers that need modification when reverse retiming
is used. This shows that reverse retiming is advantageous for
the initial state computation of [11].

Reverse retiming produces a result for which the jus-
tification process in Update_Registers is more likely to
succeed, since less calls to the justification procedure have
to be done. Note that for circuits, which have L%, >
0 and for which Update.Registers fails on the retiming
produced by reverse retiming, another retiming may exist
on which Update_Registers succeeds. It may very well be
that this is the retiming accidentally produced by FEAS [7].
However, in the iterative method described in Algorithm 3,
it is guaranteed that the reverse retiming method (eventually)
finds this solution as well.

As far as the the comparison between [11] and
Update_Registers is concerned, only class III and IV

circuits have to be discussed. In class III circuits, both
initialization methods produce identical results (except maybe
for some initialization values) when they complete. The
Update_Registers algorithm does not require the partial
implicit enumeration of the reachable states, a process which
may be infeasible for many designs (for examples see the
next section). In class IV circuits, the method in [11] incurs
the danger of adding reset logic which might deteriorate both
area and delay (as shown in the example of Fig. 4) and violate
the minimal cycle time again. In case our justification fails,
our method will bound the lags of the specific blocks and
atternpt to find another retiming with a reachable initial state.

There might still be cases where no retiming exists for a
required cycle time c, for which an equivalent initial state
can be found without modifying the circuit. In these cases, the
required cycle time has to be increased or circuit modifications
allowed. In the following section this discussion is justified
with some results.

VI. EXPERIMENTAL RESULTS

The retiming method as described in the previous sections
is implemented within the BooleDozer [1] logic synthesis
system. We applied the reverse retiming algorithm to 33
sequential multilevel circuits in the MCNC benchmark set
[2]. The EDIF files from the MCNC (LGSynth93) benchmark
directory have been used as the input for our experiments.
A unit delay model is assumed. Each gate has a propagation
delay of one unit, no delays on the registers and no delays due
to fan-in or fan-out were used. The minimal cycle time for
these circuits is found by running FEAS (or reverse retiming)
and doing a binary search on the cycle time. The initial state
of all registers equal to zero is assumed. For all examples,

i TABLE I
. RETIMING D> Not IMPROVE CYCLE TIME

Circuit %Eim_e

827 4 ’

$208 4

§298 4

3386 4

. 8420 4

s510 4

5641 75

s713 84

8820 4

5832 4

51196 32

51488 4

51494 4

835932 19)

TABLE II
No DIFFERENCE BETWEEN FEAS AND REVERSE RETIMING

Circuit | CT | RCT | L* | Runtime | InitSeq | Class
s208.1 15 14 0 1 1 I
§420.1 17 16 0 - 1 1 1
5838 93] 92-| 0 2 i I
$838.1 | 21| 20 | © 3 1 I-
s5378 32 27 0 C 14 NA I/1L
§9234.1 55 51 0 22 NA I/11
51238 31 30 1 1 : NR v
51423 66 59 1 2 NR v
515850 47 26 1. 12 NA HI/1Iv
538584.1 | 69 61 1 29 " NA II/IvV

CT: cycle time, RCT : retimed cycle time i
L*: maximum normalized lag, Runtime : run time in seconds

both FEAS and reverse retiming (since they have the same
complexity and a similar implementation) run in under 30 s
on an IBM RS6000, model 390. For fourteen of those circuits
listed in Table I, retiming could not improve their cycle time.
For the remaining 19 designs, retiming reduced their cycle
time up to 40%.

Our main interest in these experiments is the ¢omparison
between the tetimed circuit obtained by the FEAS algorithm
[7] versus the one obtained by the reverse_retiming algorithm. .
Notice that the minimal feasible cycle time achieved by both
algorithms is the same, and the difference is the retiming
function which reflects the feasibility to find an equivalent
initial state for the retimed design. For ten designs listed in
Table I1, the maximal value of the normalized lag produced by
both algorithms was the same being 0 or +1. For four circuits
(s1238, 51423, 15850, and s38584.1) reverse retiming was
not able to find a solution with L*=0, because it simply does
not exist. In most cases, this is due to a path from-a primary
input to a register which is too long to meet the optimal cycle
time. The only way to solve this is moving registers forward
through the O-I's or moving registers backward.’

For the remaining nine circuits listed in Table IIT, a dif-
ference is found between reverse retiming and FEAS. The .

~ EVEN et al.: RETIMING REVISITED AND REVERSED

355

TABLE III
IMPROVEMENT FROM REVERSE RETIMING OVER FEAS
Original FEAS | Reverse Retiming
Circuit | CT| Reg | RCT | L* | Reg | L” Reg Runtime | InitSeq | Class
5344 28 15 19 |1 21 0 27 . 1 NR I
5349 28 15 19 1 21 0 28 1 NR I
5382 17 21 12 1 39 0 33 1 NR I
5400 17 21 12 1 41 0 34 1 NR II
s444 20 21 13 1 44 0 35 1 NR I
s526 14 21 11 1 33 0 42 1 45
s526n 14 21 11 1 28 0 33 1 45 I
§953 27 29 23 1 39 0 33 2 8 1
838417 | 65 | 1465 | 49 114771 0 1504 71 NA I/11

CT: cycle time,

eg: number of registers

RCT : retimed cycle time, L*: maximum normalized lag
Runtime : run time in seconds

retiming function generated by FEAS has maximum normal-
ized lag value of +1. The better retiming function achieved
by reverse retiming has a maximum normalized lag of 0. Only
forward implication moves are necessary to find the equivalent
initial state.

Using the technique of [11], finding an initial state requires
state enumeration and may require the addition of logic, which
affects both area and delay. To evaluate the properties of the
benchmark machines, we did a breadth-first state enumeration
[3] starting from the initial state until the first time the
initial state was reached again. The length of this sequence
is recorded in the column InitSeq in Tables II and III. If the
initial state is nonreachable from any other state, an NR is
entered in the column. If partial state machine enumeration
was infeasible within 10 h run time (on a RS6000/390, 134
mips, 256MB) a NA (Not Available) appears in the table.

For the four circuits in Table II with L* = 1, s1238 and
$1423 need modifications (NR), and s15850 and s38584.1
(NA) may be intractable with the initial state computation of
[11]. The initial state calculation described in this paper found
equivalent initial states without extra logic in all four cases in
less than one minute run time.

From Table III, we conclude that if FEAS retiming is done
and the method of [11] is used for initialization, five circuits
require addition of logic (NR). Three circuits can be initialized
since the length of the sequence is greater than the maximum
lag (InitSeq = 8(or45) > L* = 1) and circuit 538417 (NA)
is likely not to be solvable since the partial state enumeration
is highly complex.

VII. CONCLUSION

The new reverse retiming algorithm finds a retiming for
a given cycle time which requires only forward moves if
such a retiming exists. Otherwise, it calculates a retiming
which is beneficial to the method of initial state computation
described in [11]. Reverse retiming is a variation of the
retiming algorithm FEAS [7] and therefore has the same
complexity.

An iterative new method to update the network and find
an equivalent initial state is described. This method does not

require the (partial) implicit enumeration of the state machine,
but is based on an efficient justification procedure applied to
only small portions of the network. ' When successful, the new
method does not require the addition of logic, which may
deteriorate both area and delay of the retimed circuit. In all
MCNC benchmark circuits, the new initial state calculation
produced results in very short running times while earlier
approaches in certain instances failed to complete the initial
state computation.

Reverse retiming minimizes the maximum normalized lag.
Although this is only a heuristic measure for the amount of
work to be done in the justification procedure of the initial state
calculation step, our results show that this measure works very
well in practice.

The observations made in this paper can be used in other
formulations of retiming problems. For example, the linear
program formulation of the register minimization problem [7]
during retiming can be extended to include the initial state
preservation constraints.

APPENDIX:
PROOF OF THEOREM 1

This appendix contains a sketch of the proof for the reverse
retiming Theorem 1. For completeness the theorem is restated
here.

Theorem 1: Let G = (V,E,w,d) be a circuit and ¢ a
required clock cycle. Let L(v),v € V denote the retiming
computed by the algorithm reverse_retiming(G, c). Then

1) The algorithm reverse_retiming(G, c¢) finds a retiming L

such that ®(G) < ¢, if such a retiming exists.

2) If all nodes are reachable from the host and if (Gr) <

¢, then for every retiming L’ for which ®(G) < c the
following holds

max L(v) — L(h) < max L'(v) = L'(h).

Proof: The proof of the theorem is based on the obser-
vation that reverse retiming can be implemented by the FEAS
algorithm on the reversed graph. The FEAS [7] algorithm can
be described as follows. Define the valid-time, t,(u), of a node

356 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 3, MARCH 1996

u to be the maximum delay of a registerless path ending in
u. Formally

if u is preceeded only
by registers or
primary inputs

max(, u)eety(2) + d(u) otherwise.

Algorithm FEAS, described in Algorithm 4 uses valid-times
contrary to reverse retiming which uses required times.

Algorithm 4. FEAS(G,c¢)}

foreach v € V do r(v) =0

k=1

do
Compute G,..
Compute t,(u) for every vertex u.
M = {u:t,(u) > c}.
Foreach u € M do 7(u) = r(u)+1.
E=k+1

while k£ < |V| and M # 0.

One can compute the retiming found by the
reverse_fetiming algorithm as follows. a) Reverse the
directions of the edges. b) Execute the FEAS algorithm on
the reversed graph with the same required clock period. c)
Set L{u) = —r(u) for every node u. Negation of lags induces
a one-to-ope correspondence between retimings of a graph
and its reversed graph. Moreover, the delay and weight of
paths are invariant under reversal of edges. Since FEAS is
guaranteed to find a feasible retiming if one exists [7], then
part 1 of the theorem follows. .

The proof -of part 2 is more evolved. Leiserson and Saxe
shortcut remote pairs of nodes with constraint edges. Vertex v
is considered to be remote from u if there exists a shortest
weight path from « to v whose delay is greater than the
required clock period c¢. A constraint edge (u,v) is added
in such a case, and is assigned weight W (u,v) — 1, where
W (u,v) equals the weight of a shortest weight path from u
to v. We call the graph augmented with the constraint edges
the constraints graph.

The crux of the proof lies in the claim that, if algorithm
FEAS finds a feasible retiming, then, for every node, r(v)
satisfies:

r(v) = max{—w.(p) :
p is a path ending in v in the constraints graph} (1)

where w.(p) denotes the weight of path p in the constraints
graph. - ' ‘ ,
The proof of (1) is divided into two parts. First we show that
r(v) > —w.(p) for every path p ending in v in the constraints
graph. We proceed by showing that there exists a path p ending
in v in the constraints graph for which 7(v) = —w.(p).
Suppose that there exists a path, p, in the circuit ending in
v which contains k disjoint segments whose delay exceeds ¢
and which contains / registers. In such a case, since FEAS
only increments lags, it follows that, in order to add k& — £

registers along p, algorithm FEAS must lag node v at least
k — £ times. The addition of constraint edges introduces a
mechanism for counting segments whose delay exceeds ¢. The
weight of a path in the constraints graph equals the weight
of a corresponding path in the circuit minus the number of
disjoint segments along it whose delay exceeds ¢. This proves
that r(v) > —w.(p), for every path p which ends in v in the
constraints graph. ‘

We prove that, for every node v, there exists a path p
ending in v in the constraints graph for which »(v) = —w.(p)
by induction on the iterations of FEAS as follows. At the
beginning, each node has zero lag, and the path which consists
of the node itself has zero weight, therefore, the induction basis
follows. Consider a node whdse lag is incremented in the ith
iteration. Suppose that p is a path from u to v in the circuit
which causes the lag of v to be incremented. Let w;(p) denote
the weight of p at the beginning of the sth iteration, and r;(v)
denote the lag of v at the beginning of the ith iteration. By
the definition of p, it follows that w;(p) = 0 and d(p) > c. By
the induction’s hypothesis, there exists a path p’ that ends in
» in the constraints graph for which r;(u) = —w.(p’). Since
w;i(p) = w(p) —ri(w) + 4(v), and since w;(p) = 0, it follows
that (%) = w(p) + 7:(v). Consider the path p” obtained by
augmenting the path p’ with the constraint edge (u,v)

+
= —ri(u) +
= —ri(v) —
= —rit1(v)

and the induction step follows. ,
The outcome, L of the reverse_retiming algorithm equals
—r, and hence, (1) can be reformulated by

L(v) = min{w.(p) :
p is a path starting in v in the constraints graph} (2)

Note, that the FEAS algorithm is invoked on the reversed
constraints graph, and therefore, we now consider paths that
start in v rather than paths that end in v.

Let p denote a path in the constraints graph that starts in
the host and ends in node vy for which L(host) = we(p).
Since L' is a feasible retiming, every edge in the constraint
graph satisfies w.(u,v) — L'(u) + L'(vg) > 0. Consider the
edges of path p, and sum up these inequalities to obtain
we(p) — L'(host) + L'(vg) > 0.

Hence, ‘

L'(vg) — L' (host) > —w,(p) = —L(host).

However,

max L'(v) = L'(host) > L'(vo) — L' (host)

and since L(v) < 0 it follows that

EVEN et al.: RETIMING REVISITED AND REVERSED

~L(host) > max L(v) — L(host).

We proved that

max L'(v) — L'(host) > max L(v) — L(host)

and the theorem follows.

ACKNOWLEDGMENT

The authors wish to thank A. Mets for providing us with the
tool for state enumeration and helping us with the experiments
on the state machines. The authors also wish to acknowledge
our reviewers for their constructive remarks. '

3]

[41

[5

[l

[7]
[8]

[91

(10]

(11]

REFERENCES

D. Brand, R. Damiano, L. van Ginneken, and A. Drumm, “In the driver’s
seat of BooleDozer,” in Proc. IEEE Int. Conf. Computer Design, Oct.
1994, pp. 518-521.

F. Brglez, D. Bryan, and K. Kozminski, “Combinational profile of
sequential benchmark circuits,” in Proc. Int. Symp. Circuits Syst., May
1989, pp. 1929-1934,)

J. Burch, E. Clarke, D. Long, K. McMillan, and D. L. Dill, “Sym-
bolic model checking for sequential circuit verification,” /EEE Trans.
Computer-Aided Design, vol. 13, pp. 401-424, Apr. 1994.

S. Dey, M. Potkonjak, and S.G. Rotweiler, “Performance optimization
of sequential circuits by eliminating retiming bottlenecks,” in Tech. Dig.
Papers Int. Conf. Computer-Aided Design, Santa Clara, CA, Nov. 1992,
pp. 504-509.

S. Kundu, L. Huisman, 1. Nair, V. Iyengar, and L. Reddy, “A small
test generator for large designs,” in Proc. Int. Test Conf., Sept. 1992,
pp. 30-40.

C. Leiserson and J. Saxe, “Optimizing synchronous systems,” J. VLSI
Computer Syst., vol. 1, no. 1, pp. 41-67, 1983.

, “Retiming synchronous circuitry,” Algorithmica, vol. 6, no. 1,
pp. 5-35, 1991.

S. Malik, E. Sentovich, R. Brayton, and A. Sangiovanni-Vincentelli,
“Retiming and resynthesis: Optimizing ‘sequential networks with com-
binational techniques,” IEEE Trans. Computer-Aided Design, vol. 10,
pp. 74-84, Jan. 1991.

G. D. Micheli, “Synchronous logic synthesis: Algorithms for cycle-time
minimization,” IEEE Trans. Computer-Aided Design, vol. 10, pp. 63-73,
Jan. 1991.

V. Singhal, C. Pixley, R. Rudell, and R. Brayton, “The validity of
retiming sequential circuits,” in Proc. 32nd Design Automation Conf.,
San Fransisco, CA, June 12-16, 1995, pp. 316-321.

H. Touati and R. Brayton, ‘‘Computing the initial states of retimed
circuits,”” IEEE Trans. Computer-Aided Design, vol. 12, pp. 157-162,
Jan. 1993.

357

Guy Even (5'92-M’95) received the B.Sc. degree
in mathematics and computer science from the He-
brew University, Jerusalem, Israel, in 1988, and
the M.Sc. and D.Sc. degrees in computer science
from the Technion, Haifa, Israel, in 1991 and 1994,
respectively. Currently, he is a post-Doctoral student
under Professor W. Paul, University of the Saarland,
Saarbruecken, Germany.

The results reported in this paper are part of his
Doctoral dissertation that dealt with the design of
VLSI circuits using retiming. His current areas of
research deal with approximation algorithms for NP-complete problems on
graphs, design of systolic arrays, and computer architecture. His homepage
URL is: http://www-wjp.cs.uni-sb.de/"guy.

Tlan Y. Spillinger (S’85-M’88-SM’95) received
the B.Sc. degree in computer engineering, and the
M.Sc. and D.Sc. degrees in electrical engineering
from the Technion, Haifa, Israel, in 1982, 1984, and
1987, respectively.

From 1987 to 1992 he was with the Israeli
Defense Forces, and the adjunct faculty of the
Department of Electrical Engineering, Technion,
Israel. From 1992 to 1995 he was with the Logic
Synthesis Group of the IBM T. J. Watson Research
Center, Yorktown Heights, NY. He is currently with
the Architecture Research Group at the Intel Design Center in Haifa, Israel.

Leon Stok (S’88-M’91-SM’95) received the M.Sc.
degree (with honors) and the Ph.D. degree in elec-
trical engineering from Eindhoven University, The
Netherlands, in 1986 and 1991, respectively.

He is the Manager of the Logic Synthesis Group
with the IBM T. J. Watson Research Center, York-
town Heights, NY, where he has been a Research
Staff Member since 1991. Prior to this, he was with
the Unternehmensbereich Kommunikations-und Da-
tentechnik of Siemens AG, Munich, Germany, in
1985, and with the Mathematical Sciences Depart-
ment of the IBM T. J. Watson Research Center during 1989 and 1990. He
has published several papers on the various aspects of logic, high level
and architectural synthesis and on the automatic placement and routing for
schematic diagrams.

