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Abstract

We consider scheduling problems that are motivated by an optimization of the transmission
schedule of a smart antenna. In these problems we are given a set of messages and a conflict
graph that specifies which messages cannot be transmitted concurrently. In our model the
conflict graph is a unit circular-arc graph.

Two variants of the problem are considered: C¢-MBL and NU-C-MBL. In C-MBL, the mes-
sages have unit demands, whereas in NU-C-MBL demands are arbitrary. We present an optimal
algorithm for c-MBL and a 3-approximation algorithm for NU-C-MBL.

Keywords: smart antennas, scheduling with conflicts, capacitated coloring, unit
circular-arc graphs.

1 Introduction

1.1 Background: scheduling of Smart Antennas

The major issue in wireless networks is how to utilize bandwidth efficiently. This problem is
becoming more and more acute as the density and bandwidth requirements of clients increase. The
only way to alleviate this bottleneck is to use resources more efficiently. For example, instead of
transmitting a message to all direction in the vicinity of an antenna, use a directional beam that
concentrates the energy only in the direction of the receiving client. This approach has the following
advantages. First, the transmission energy is reduced, so apart from saving energy, health hazards
are reduced. Second, interference is reduced as clients do not receive transmissions that are not
aimed towards them. This means that reliable communication is possible with weaker signals and
more messages can be transmitted simultaneously.

Traditionally, a directional beam is formed by using a reflector. To obtain a pencil shaped
beam, a two-dimensional parabolic reflector (i.e. a dish) is used. The beam is directed in different
directions by rotating the dish so that it is aimed in the desired direction. This mechanical method
of steering the beam is slow and is appropriate for base stations that serve a small and fixed set of
clients.
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Large and mobile sets of clients are often served by organizing horn shaped antennas side by
side. Each horn forms a beam that has the shape of a sector (say, a sector with an angle of 60
degrees). This enables transmission in all directions but has two main drawbacks. First, the gain
due to the wide sector is small. Second, separate radio frequency (RF) processing is required for
each horn antenna. This incurs an additional cost, especially since high power RF components are
expensive.

Advances in technology enable forming directional beams with an array of simple antennas
(instead of reflectors). The common signal is multiplied by antenna specific complex weights (i.e.,
each antenna in the array is associated with a different weight). The multiplication by a complex
weight changes the amplitude and the phase of the signal. The signals transmitted from different
antennas in the array add in interfering and accumulating patterns to form a directional beam (see
left part of Fig. 1). By modifying the complex weights, it is possible to electronically steer the
beam from one direction to another. Electronic steering can be performed very quickly since no
mechanical movement is required. Moreover, a few directional beams in different directions can be
super-positioned (see right part of Fig. 1).

Calculating the required weights needed to form a given beam is a complicated task (see: [15,
13, 8]). One method to overcome this problem is to pre-calculate the coefficients that yields a pencil
beam of width 2A in any given direction 6, and use superposition to obtain a combination of pencil
beams. Due to side-lobes and non-linear effects, the angular difference between super-positioned
beams cannot be too small. To simplify the model, we assume that beams may not overlap, namely,
the angular difference should be at least A. This means that two clients with an angular difference
less than A may not be served simultaneously.

To summarize, we assume that the antenna is “smart” in the sense that in every time slot,
the beam may be the superposition of at most C' pencil beams, each of width 2A. The angular
difference between two pencil beams in the same time slot must be at least A.
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Figure 1: (A) A pencil beam. The contour bounds a region in which the reception level is above a
certain level. Note that the main lobe points up. (B) The superposition of 5 pencil beams.

We consider a setting in which there are n clients in the vicinity of the antenna. The goal is to



transmit message m; to client i. We assume that all messages have the same length. The goal is
to schedule the transmission of the messages to minimize the amount of time needed to transmit
all messages. In each time slot, at most C' messages can be sent simultaneously. This is achieved
by pointing at most C' beams towards the clients whose messages are transmitted in this time slot.
Messages scheduled for transmission in the same time slot may not conflict. Namely, the angular
difference between the corresponding clients must be at least A. We now formalize the problem of
scheduling a smart antenna.

1.2 Formalizing the Model

The model in this paper is of a network with one antenna that serves a set of n clients. Both the
antenna and the clients are modeled as points in the plane. The location of client 7 is denoted by
its polar coordinate (r(i), (7)), where the antenna is positioned in the origin. The antenna should
transmit a unique message m; for each client 7. In the sequel, we do not distinguish between the
client ¢ and its message m;, so we simply refer to (r(i), #(i)) as the location of the message m;. The
assumptions on the transmission model are the following:

e The transmission is done in time slices.
e During a time slice, the antenna transmits the messages of a subset of the clients.
e When transmitting to client ¢, the antenna aims a pencil beam in its direction ¢(7).

e During a time slice, the antenna’s beam is a superposition of multiple pencil beams. The an-
tenna may support at most C' pencil beams concurrently, provided that the angular difference
between every two pencil beams is at least A.

The angular difference between every two beams is at least A. Therefore, two clients i, j for
which |¢(i) — ¢(j)| < A are in conflict, and their messages cannot be scheduled concurrently.

Let M be the set of messages, i.e., M = {m;| 1 <i < n}. Two messages i,j are in conflict if
lp(i) — d(j)| < A. A schedule for the antenna, is a partition of M such that: (i) M = U§:1 C;, and
(ii) every two messages in the same partition C; are not in conflict. The length of the schedule,
is simply the number of subsets k. The Minimum Broadcast Length problem (MIN-LEN), is the
problem whose input is a set of messages with locations, and its output is a schedule of minimum
length.

An extension to MIN-LEN problem is obtained by limiting the number of messages than can be
transmitted simultaneously. This limit is caused by the specifications of the antenna’s array that
forms the beam. We refer to this bound as the capacity. The capacity C' poses a constraint on a
schedule, namely, Vj |C;| < C. The problem of minimizing the schedule length in the presence of
a capacity constraint is called the C-Minimum Broadcast Length problem (C-MBL).

Another type of capacity constraint arises in a weighted scenario. Assume that different mes-
sages require different transmission power. For example, the power required for broadcasting a
message m; may depend on the distance T‘Z-Q
antenna). Another motivation for this problem is dealing with different noise levels. A natural way
to deal with the noise level, is to use code words of different lengths to the clients. Namely, if a
client has a low noise level, then the code words that are used for transmission to this client are
short; whereas if a client has a high noise level, then the code words that are used for transmission

, or on the reception quality of the client(i.e. the client’s



are longer. Therefore we connect the bandwidth demands of a client with his noise level. Since the
antenna has a limited bandwidth, the capacity constraints is a limit on the overall bandwidth for
transmission in a time slice. However, this leads to a reduction between the problem of dealing with
noise level and the problem of allocating transmission power. l.e. the antenna deals with higher
noise level by assigning a wider bandwidth. A client with wider bandwidth is assigned a wider
range of frequencies, and hence the antenna spends more power on its message. In order to capture
a general scenario, we model this problem as follows. For each message m;, we assign a positive
number d;, that is its demand. For the antenna we assign a number C (also referred to as its capac-
ity), that stands for its maximum power per time slice. Hence we require: Vj ziECj d; < C. We
refer to the problem of minimizing the broadcast length where demands exist as the Non-Uniform
C-Minimum Broadcast Length Problem (NU-C-MBL).

1.3 Graph Theoretic Formulation

In this section we formulate the scheduling problems presented as graph theoretic problems. We
define the collisions graph G = (V, E) as follows. The vertex set V(G) contains one vertex v; for
each message m;, the edge set F(G) contains the edge (v;,v;) if and only if the messages m;, m;
interfere.

Due to the geometric origin of the constraints in our problem, the collisions graph is a unit
circular-arc graph. A unit circular-arc graph, is a graph that has a realization as the collision
graph of a set of unit length arcs. Namely, there exists a set R of unit length arcs on a circle,
and a bijection f : V — R such that: (v;,v;) € E if and only if f(v;) N f(v;) # 0 (the arcs are
intersected).

In order to avoid confusion, we would like to emphasize that an arc which represents a message,
corresponds to a vertex of the collision graph. The edges of the collision graph, that in some of
the literature are referred to as arcs, corresponds to intersections between arcs. Nevertheless, we
preferred this choice of terms since it follows the standard terms used for circular-arc graphs.

The arc realization of vertex v; is simply the sector of size A centered at ¢(i), i.e., the sector
[p(i) — A/2,¢(i) + A/2]. Since this is a projection of the clients locations on the unit circle, two
arcs f(v;), f(vj) intersect if and only if their corresponding messages m;, m; interfere.

The MIN-LEN problem, can be reduced to the problem of computing a minimum coloring the
graph G. Given a minimum coloring, it assigns to each arc m; a color from the set {1, ..., x*}, where
x* denotes the chromatic number of the graph. This coloring defines the schedule in which the
clients scheduled to time slice ¢t are all the clients whose arcs are colored ¢. Due to the requirement
that the messages in each time slice are independent sets, the length of this schedule is minimum.

The c-MBL and NU-C-MBL are capacitated versions of the coloring problem. E.g., in C-MBL we
need to partition the V(G) into minimum number of independent sets {C;}, such that the size |C}|
of each set does not exceed the antenna’s capacity.

1.4 Previous Results
Two problems related to C-MBL and NU-C-MBL are coloring of circular-arc graphs and bin-packing

with conflicts. We briefly review previous works on these problems.

Previous results on coloring circular-arc graphs. Circular-arc graphs are a natural gen-
eralization of intervals graphs since the removal of any maximal clique from a circular-arc graph



yields an intervals graph. (This is due to the fact that the set of arcs passing for a given point
on the circle forms a subset of a maximal clique.) Since intervals graphs are perfect, finding their
chromatic number x* is a well known polynomial problem (see for example [14]). However, despite
the resemblance, finding the chromatic number of circular-arc graphs is N P-Hard ([2]). The col-
oring problem remains N P-Hard even for special families of circular-arc graphs ([3]). Based on
this connection between intervals graphs and circular-arc graphs, the following simple algorithm is
a 2-approximation for coloring circular-arc graphs: (i) Color a maximal clique, (ii) remove it from
the graph so as to obtain an intervals graph, and (iii) color optimally the intervals graph.

A different 2-approximation algorithm for coloring circular-arc graph was given by Tucker ([11]).
His algorithm is a greedy, first-fit algorithm that has two stages: (i) first generate an order on the
arcs, and (ii) assign consecutive blocks of arcs according to the same color class, according to the
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order generated. Tucker also conjectured that = colors are always sufficient to color a circular-arc

graph, where w is the size of the maximum clique. This conjecture was proved by Karapetian ([6]).

Shih and Hsu gave a % approximation algorithm ([10]). Their algorithm is based on extending
Tucker’s ideas to cases where no three arcs cover the circle. Recently Valencia-Pabon showed that

if the minimum size of a dominating set is £, then the approximation ratio of Tucker’s algorithm is
= (2.

An approximation algorithm based on linear programming for coloring circular-arc graphs was
given by Kumar ([7]). His algorithm achieves an approximation ratio of (1+1/e+ o(1)) for graphs
whose coloring number y* is Q(log n). His algorithm first reduces the coloring problem into a multi-
commodity flow problem, then it solves the corresponding linear program, and finally it rounds up
the solution.

An important family of circular-arc graphs is proper circular-arc graphs. A proper circular-arc
graph is a circular-arc graph for which there exists a realization R such that no arc is fully contained
within another. An even more restricted family of graphs are unit circular-arc graphs, for which
there exists a realization such that all arcs lengths are the same, trivially such a realization is
also proper. Orlin, Bonuccelli and Bovet ([9]) showed that coloring proper circular-arc graphs is
polynomial. The running time of their algorithm is O(n?logn), and it is based on a procedure
that checks whether a graph is k-colorable, for a given value of k. We refer to this algorithm as
COL-PROPER(G).

Corollary 1 By the reduction given in the previous section, we obtain that COL-PROPER(G) opti-
mally solves the MIN-LEN problem.

An important balancing property of COL-PROPER(G), is that the size of all the color classes it
generates is either {%—‘ or LX—”*J, thus the color classes have the same cardinality up to rounding.
Previous results on bin-packing with conflicts. The input to a bin-packing problem with
conflicts is a set V of elements with weights between zero and one. In addition, the input contains
a conflict graph G = (V, E') whose vertex set is the set of elements. An edge (u,v) € E indicates
that v and v cannot be assigned to the same bin. The goal is to find a packing of V into as few
bins as possible, where the size of each bin is one. The NU-C-MBL problem is a bin-packing problem
with conflicts where the conflict graph is a unit circular-arc graph.

Jansen [5] considered bin-packing with conflicts where an optimal coloring of the conflict graph
is given (e.g., coloring is polynomially solvable for a class of graphs that contains the conflict



graph). For such cases, an r-approximation is presented, where 2.69 < r < 2.7. In addition, a
2.5-approximation algorithm for graphs that can be precolored is presented!. The approximation
algorithms are based on an analysis of the first-fit-decreasing algorithm for bin packing after small
elements are reweighted and matched with big elements.

An asymptotic approximation scheme for bin-packing with conflicts was presented by Jansen [4]
for d-inductive graphs?.

Epstein & Levin [1] present improvements for bin-packing with conflicts. The improvements
in [1] over [5] are due to a better choice of weights assigned to small elements and a tighter analysis.
The contributions in [1] are as follows: (i) A 5/2-approximation algorithm for conflict graphs
that can be optimally colored in polynomial time. This implies a 5/2-approximation algorithm for
NU-C-MBL. (ii) A 7/3-approximation algorithm for conflict graphs that can be optimally precolored.
(iii) A 7/4-approximation algorithm for bipartite conflict graphs. (iv) An online algorithm with a
4.7-competitive ratio for conflict graphs that are interval graphs.

1.5 Our Results
In this paper we present the following results:
e An optimal algorithm for c-MBL, whose running time is O(n?logn).

e An O(nlogn) heuristic for c-MBL based on Tucker’s coloring algorithm. We bound the
approximation ratio of this heuristic by 3. This heuristic is optimal under a condition that
seems to hold in practice.

e NP-Hardness of NU-C-MBL.

e A very simple 3-approximation algorithm for NU-C-MBL(see [1] for better approximation).

2 The Capacitated Minimum Broadcast Length Problem

In this section we present two results. The first result is an optimal algorithm for c-MBL, to which we
refer by OPT-CMBL. The second result is a heuristic, based on Tucker’s algorithm, which is optimal
under some assumptions that may hold in practical cases. We think this heuristic is interesting
since it is simple, and its running time is O(nlogn), whereas the running time of OPT-CMBL is
O(n?logn).

2.1 An optimal algorithm for c-mbl

Let C' denote the antenna’s capacity and n the number of messages. Let G denote the collision
graph (G is a unit circular-arc graph). Let x* be the chromatic number of G. We denote by ¢*
the length of an optimal schedule. In this section we prove the following theorem; the proof is
separated into a few claims.

Theorem 2 ¢* = max{x*, [%] }. Moreover, an optimal cover can be computed in polynomial time.

!The precoloring extension problem is defined as follows: Given a graph G = (V,E) and a subset of vertices
V' =1, ...,v;. Find a minimum coloring of of G satisfying f(v;) =i for all i = 1, .., k.

2A graph is d-inductive, if there exists an ordering of the vertices such that the “left” degree of every vertex is at
most d.



We begin by proving the lower bound.
Claim 3 ¢* > max{x*, [&]}.

Proof: The first bound follows since the messages transmitted concurrently in every time slice
are independent. The second bound follows simply from the fact that the number of messages
transmitted in any time slice is bounded by C. |

The following corollary shows that if the color classes are small, then the optimal coloring
induces an optimal schedule.

Corollary 4 If {X—"*—‘ < C then COL-PROPER(G) induces an optimal schedule.

Proof: The balancing property of COL-PROPER(G) implies that the largest color class in the
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coloring computed by COL-PROPER(G) contains {71 clients. Since {?—‘ < C the coloring induces
a valid schedule. Since ¢* > x*, optimality follows.

We now deal with the case of large color classes.
Claim 5 If [ ] > C then " = [3].

Proof: We first reduce the graph G so that the sizes of the color classes computed by
COL-PROPER(G) are not divisible by C. The reduction proceeds as follows: (i) Partition the
arcs into color classes using COL-PROPER(G). (ii) If the size of a color class C; is divisible by C,
schedule the messages in C; in groups of size C'. Denote the number of arcs assigned in this step
by n”, and let ' = n —n”. If n’ = 0, then we are done, and the theorem holds. Let G’ denote
the collision graph induced by the n’ remaining nodes. Obviously, ¢*(G) < ¢*(G') + %" =[2&]. It

suffices to prove that ¢*(G') = {%1 We may therefore assume that the size of every color class

computed by COL-PROPER(G) is not divisible by C. Namely, neither {%1 or L%J is divisible by C.
As a result of this reduction, we assume that the sizes of the color classes in the coloring computed
by COL-PROPER(G) are not divisible by C and that C' < L%J (i.e., every color class contains more

than C' arcs).

We use the following terminology. If S is an independent set and |S| = k- C 4+ r. Then S can
be partitioned to C-groups and a leftover-group. The C-groups are k disjoint subsets of C; (each
of size C), and the leftover group is a subset of C; of size r.

A listing of Algorithm SCHEDULE appears as Algorithm 1. The algorithm computes an optimal
balanced coloring of the collision graph G using COL-PROPER(G). The idea is to schedule a C-group
from each color class. The issue of the leftover group is solved by finding a C-group in the union
of the current color class and the next color class (see the Replacement Claim below) to schedule
C additional arcs. Since all slots, but perhaps the last slot, contain C' arcs, Algorithm SCHEDULE

computes a schedule whose length is [%1 Hence, we only need to prove the Replacement Claim.

Claim 6 (Replacement Claim) In Line 8 of Algorithm SCHEDULE there always exists a set S C
C; U Cit1 such that: (i) |S| = C, and (i) both S and (C; U Cij11) \ S are independent sets.



Algorithm 1 Algorithm SCHEDULE - scheduling when L%J > C.

1: Run COL-PROPER(G).
2: fori=1to x*—1do
while |C;| > C do
Schedule a C-group T' C C;.
Ci=C\T.
end while
if C; # () then
Find an independent set S C (C; U Cjy1) of size C such that (C; U Ci11) \ S is also
independent. {Ezistence guaranteed by the Replacement Claim}
9: Schedule S
10: Cit1 = (Ci+1 U Cl) \ S
11:  end if
12: end for
13: Schedule the C-groups and leftover group contained in C'y-.

@

Proof: Consider the sets C; and C;;1 in Line 8. Note that the set C; is not the original
color class C; that was generated by COL-PROPER(G), since its size is less than C. We have
0 < |C;] < C < |Cis1]- The graph induced by C; and Cj;1 is 2-colorable unit circular-arc graph.
Hence, the union C; U C;41 is a cycle or a union of disjoint simple paths in G. If C; U Cy41 is a
cycle, it should contain the same number of edges from C; and from C;y1, contradicting the fact
that |C;] < C < |Cit1]. Hence, C; U Cj41 is a union of disjoint simple paths in G. In each path the
difference between the number of vertices from each color classes is zero or +1.

We apply the following iterative “balancing” procedure to obtain .S. The procedure partitions
C; U Cj4q into S7 and Ss. Initially, S; = C; and Se = Cj41, so [S1] < C < |S2|. In each iteration,
arcs are moved between S; and S so that |S;| increases by one and |Sy| decreases by one. The
invariant that S; and S are a partition of C; U C;11 into independent sets is always kept. The
balancing procedure stops as soon as the size of one of the sets S or Ss is C.

Consider an iteration of the procedure in which |S;| < [S2|. The moving of arcs proceeds as
follows. Pick an odd path P in which |Sy N P| > |S; N P|. We update the sets S1,S2 as follows:
51:(51\P)U(P0S2),SQZ(SQ\P)U(Pm51). [ |

We remark that the proof of Claim 6 implies an efficient algorithm to find the required set S,
hence Algorithm SCHEDULE is polynomial.

In the appendix we present an efficient scheduling algorithm for the case that LX—”*J > 2C'. This
algorithm captures the intuition that if the color classes are large, then a leftover can be augmented
by arcs from the next color class to fill a time slot.

2.2 A Practical Heuristic: Spiral Scheduling

The most time consuming part of the algorithm for C-MBL is the coloring of the graph by procedure
COL-PROPER(G). In this section we present an algorithm called SPIRAL that avoids the coloring
step. SPIRAL is based on Tucker’s algorithm for coloring circular-arc graphs. Thanks to the unit
length of the arcs, the implementation of SPIRAL is easier than the implementation of Tucker’s
algorithm.



SPIRAL has three major steps: ordering the arcs, coloring, and scheduling. We begin by de-
scribing the ordering step. Consider a representation of a circular-arc graph using a circle and arcs
of the circle. We define the load of a point P on the circle to be the number of arcs that contain
P. We order the arcs in spiral ordering as follows: (i) Set A; to be an arc whose starting point has
the biggest load. (ii) Initially, all arcs but A; are unmarked. For every i between 1 and n — 1, set
A;i41 to be the unmarked arc whose starting point is the closest to the end of A;. We refer to an
order generated by the sorting as a spiral ordering.

We now describe the coloring step. Given a spiral ordering Ay, ..., A, of the arcs, the arcs
are colored by iteratively “peeling” a maximal prefix of arcs that is an independent set. Each
such maximal prefix is assigned a new color. In other words, initially A is the set of all arcs. In
iteration 4, pick a maximal prefix P; of A that is independent. Color P; with the color 7, and update
A «— A\ P;. This procedure is repeated until A is empty.

In the scheduling step each color class is simply partitioned into C-groups and perhaps a leftover
group.

In the case of unbounded capacity, this algorithm simply reduces to Tucker’s algorithm. There-
fore, even for the unbounded capacity case the algorithm is not optimal. We prove that SPIRAL is
a constant ratio approximation algorithm.

Claim 7 The approzimation ratio of SPIRAL is no bigger than 3.

Proof: Let x7(G) denote the number of colors used in the coloring step. Let ¢4(G) denote the
length of the schedule computed SPIRAL. We claim that

n

s(G) < e

+x1(G).
Indeed, there are at most & slots with C' arcs and there is at most one leftover group from each
color class.

The claim now follows from Theorem 2 and from the fact that x7(G) < 2-x* (this was proved
by Tucker [11]). [ |

Suppose that subsets of C' consecutive arcs in the spiral ordering are independent. In this case,
after spiral ordering we could peel off a prefix of C' arcs in each step to obtain an optimal schedule.
Hence, a variation of SPIRAL leads to an optimal schedule if this condition holds.

Consider the following two conditions: (i) C'- A < 7/2 and (ii) The number of clients is
proportional to the angle of a section, provided that the angle is large (say, 7/4). Under such
conditions most C' consecutive arcs are independent, and the actual approximation ratio of the
algorithm is much better than the theoretical bound. We believe that these two conditions hold in
practice.

The running time of SPIRAL is dominated by the time to compute the spiral ordering which is
O(nlogn). This is more efficient than the optimal algorithm whose running time is §(n?logn).

3 The Non-Uniform Capacitated Minimum Broadcast Length
Problem

In this section we deal with non-uniform demands, i.e., the NU-C-MBL problem. We prove that
NU-C-MBL is N P-Hard, and present a simple 3-approximation algorithm for it.



Claim 8 The NU-C-MBL problem is N P-Hard.

Proof: We reduce bin-packing to NU-C-MBL. Consider a set {1,...,n} of elements, where the size
of element i is s; € [0, 1]. Reduce this bin-packing instance to an NU-C-MBL instance by constructing
a set of n pairwise disjoint arcs, where the demand d; of the ith arc is s;. Finally, set the antenna’s
capacity to be C' = 1. Since there are no coloring constraints on this graph, every packing induces
a valid schedule, and vice-versa. |

We present a 3-approximation algorithm for NU-C-MBL called NCMBL-APP. The algorithm
NCMBL-APP starts with an optimal coloring calculated by COL-PROPER(G). Next the algorithm
schedules the messages in each color class C; independently as follows: (i) Sort the messages in
C; according to their demands in non-increasing order. (ii) Partition the C; into time slots by
“peeling” off maximal prefixes with demand at most C. The algorithm could try to add messages
to fill gaps in previous time slices, but the analysis does not take this into account.

The correctness of NCMBL-APP follows from the fact that each color class is an independent set.
The following claim bounds the approximation ratio of the NCMBL-APP.

Claim 9 The approzimation ratio of NCMBL-APP is at most 3.

Proof: Consider the schedule computed by NCMBL-APP. Note that every time slot, except perhaps
for the last time slot in each color class, is at least half full. Indeed, let 7 be a time slice that is not
the last time slice of the color class C;. Let D; be the sum of demands of all the messages that was
scheduled to time slice j. Let d’ be the demand of the first message that was scheduled to time slice
j+1. Note that there is a message in time slice 7 whose demand is at least d’, since the messages are
sorted in non-increasing demand order. Therefore if d' > C'/2, then D; > C/2. If ' < C/2, then
because this message was not assigned to time slice j we get that: D; > C —d' > C —C/2=C/2.

It follows that there is at most one time slot per color class that is not half full. Let £ denote

the length of the schedule computed by NCMBL-APP. We obtain £ < {Ci/z—‘ + x* < 3-4%, and

the claim follows.

4 Discussion and open problems

There are many open problems regarding smart antennas, and we outline here just a few. First,
the assumption of unit arc-length may not hold for more complicated cases. Such cases may occur
either due to the antenna’s abilities or due to environmental conditions. Therefore, both capacitated
models should be generalized to arbitrary circular-arc graphs.

We note that an approximation algorithm for capacitated coloring follows from an approximate
coloring algorithm. Let £* denote the length of an optimal schedule and x* the chromatic number
of the collision graph. By partitioning each color class into slots of size C' and a possible leftover, it
follows that £* < (%] +x* (see Claim 9). This implies also that a p-approximation for the chromatic
number, leads to (1 + p)-approximation for capacitated coloring (with unit demands). In the case
of non-unit demands, a p-approximation algorithm for coloring, leads to a (2 + p)-approximation
algorithm.

The transmission model used in this paper is simple since we ignored physical effects such as
reflections and side lobes. In order to take into account such effects, the model should be extended
as follows. (i) Each message m; defines a set of disjoint arcs. (ii) Two messages m;, m; can be
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transmitted concurrently only if every pair of arcs a; € m;, a; € m; do not intersect (or if the
amount of overlapping is limited). The collision graph that corresponds to this problem is more
complicated, and finding an optimal schedule is an interesting open question even for the case where
the number of arcs per message is constant.

Finally, improving the approximation factor for NU-C-MBL is interesting, since such an algorithm
may be useful for more complicated models.
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A A scheduling algorithm for big color classes
In this section we present an optimal scheduling algorithm for the case that LXEJ > 2C.

Definition 10 Let C;, C; be two disjoint independent sets in a unit circular-arc graph. The sets
S; C C; and S; C C; C-agree if: (i) S; US; is an independent set, and (i) |S; U S;| = C.

We now present an algorithm called BIG to handle the “big classes” case. We first compute
an optimal balanced coloring by calling COL-PROPER(G). The algorithm BIG proceeds with y* — 1
iterations. In the first iteration it does the following. (i) Partition the color class C'; into C-groups,
and a leftover group Si. (ii) Schedule the C-groups. (iii) Find an independent set Sy C Cj that
C-agrees with S7. The existence of Sy is proved in Claim 11. Moreover, finding SS9 is easy: simply
take a a subset of Sy that are not neighbors of S;. A listing of BIG appears as Algorithm 2. Since all
slots, but perhaps the last slot, contain C' arcs, Algorithm BIG computes a schedule whose length

is (%] Hence, we only need to prove Claim 11.

Algorithm 2 Algorithm BIG - handles the “big classes” case
1: Run COL-PROPER(G).
2: fori=1to x*—1do
3:  Schedule the C-groups in what remains of C; {Scheduled messages are removed from C;}

4: if C; # () then

5 Find a set S;11 C Cj41 that C-agrees with C; {see Claim 11}
6: Schedule S;41 U C;, and remove S;;1 from Cjyq

7 end if

8: end for

9: Schedule the C-groups and the leftover group in what remains of C,.

Claim 11 There is always a set S;+1 C Ci1 that C-agrees with the leftover subset of C;.

Proof: Let S’ and S” denote two disjoint independent sets of arcs in a unit circular-arc graph G.
We first show that if S” is contained in the set I'(S”) of neighbors of S’, then |S”| < 2-]S’|. Assume
otherwise, then there exists an arc u € S’ that intersects at least 3 arcs vy,v9,v3 € S”. The arcs
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v1, V2, v3 are independent. Therefore u must strictly contain one of these arcs (i.e., the middle arc).
However, this contradicts the fact that all arcs are of unit length.

Consider the subset that remains of the color class C; in Line 4. Let r denote the size of this
leftover. By definition, » < C. By the previous paragraph, it follows that the number of arcs in
Ci+1 that intersect arcs in S; is at most 2r. Since |Cj41| — 2r > 2C — 2r > C' — r, we conclude that
|Cit1 \T'(S;)| > C — r. Hence, there are enough arcs in C;11 \ I'(S;) to be added to S;. |

We remark that the proof of the claim induces a linear time algorithm to find the required set
Si+1; simply add the first C' — ¢ arcs that do not intersect S;.
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