Computer Arithmetic Lesson1 Summary

	Lecturer: Dr Guy Even

	Summerized by: Orna Meirovich

Goal: Design an unsign integer adder with a logarithmic time and (almost) linear price.

This lesson issues are :

Adder function definition

Definitions

Assumptions

Ripple Carry Adder implementation. (RCA)

RCA validity proof

Fast Adder implementation (Carry Look Ahead = CLA)

Conditional Sum Adder implementation (CSA)

	Def of addition

Def 1.1: Redix polynomial :

	(a ((Sum of [(ai * 2^i) when i from 0 to (n-1)]

((a (+ (b (= (S (

As can be noted the output is the same format as the inputs and can be feed back as an input into the adder.

Def 1.2: n - bit adder:

Inputs :

	a = an-1an-2 • • • • • • a1a0 ;	(ai ({ 0,1}

	b = bn-1bn-2 • • • • • • b1b0 ;	(bi ({ 0,1}

Output :

	S = Sn-1Sn-2 • • • • • • S1S0 ; 	(Si ({ 0,1}

	Cout ({0,1}

	Such that 	(a (+ (b (= (S (+ 2^n* Cout

 	Definitions :

T(element name) = x ;

X is the propagation time through the element (delay) namely, an upper bound on the priod of time that elapses from the time that the inputs are valid until the result is valid.

C(element name) = y ;

Y is the price of the element by counting the gates it is built of. (gate count)

 Simplified Assumptions :

Each basic gate delay = 1 time unit. (the XOR gate is considered as basic gate)

The basic gates have constant number of inputs. (usually 2 inputs)

	Ripple Carry Adder

Ripple Carry Adder (RCA) implementation:

figure 4.1.1 - Ripple Carry Adder (RCA)

 bn-1 an-1 bn-2 an-2		 b1 a1 b0 a0

��������

����				

�Sn				 ((((

�������		 cn-1 		 c2 		c1 		 	

		Sn-1 		Sn-2 			 S1 		 S0

figure 4.1.2 - Half Adder (HA)

			 x			 y

�����				

�		

��

��

			 c 			s

Under the assumptions in paragraph3

C(HA) = 2;

T(HA) = 1;

�

figure 4.1.3 - Full Adder (FA)

�x			 y 		 z

������

��

��

����

��

�

���

�

�

 c						s	

Under the assumptions in paragraph3

C(HA) = 5;

T(HA) = 3;

As can be seen in figure 4.1.3 the FA output equation

equation 4.1.1

 	(a) 	S =1 	(XOR(x,y,z) = 1;

 	(b)	C =1 	(x + y + z (2;

By using the F.A and H.A cost calcultions the RCA price in gate count is:

C(RCA) = C(HA) + (n-1) * C(FA) = 2 + (n-1)*5 = 5*n - 3 = ((n)

The longest delay in the RCA is from Cin to Sn

T(RCA) = T(HA) + (n-1) * T(FA) = 1 + 2*(n-1) = 2*n - 1 = ((n)

The Correctness Poof of The Ripple Carry Implementation

The HA is replaced by FA that simplify proof by induction.

Therefor the RCA(n) specification becames :

Inputs:

	a = an-1an-2 • • • • • • a1a0 ;	(ai ({ 0,1}

	b = bn-1bn-2 • • • • • • b1b0 ;	(bi ({ 0,1}

	c0 = cin ({ 0,1}

Internal signals:

	cn-1, cn-2 , , , c1 ({ 0,1} (carry bits)

Output :

	s = sn-1sn-2 • • • • • • s1s0 ; 	(si ({ 0,1}

	cn ({ 0,1}

Where:		si + 2*ci+1 = ai + bi + ci

For 		i = 0 (((((n-1

Proving by induction :

Claim: RCA(n) implements n-bit adder.

Basis: RCA(1) is a one bit adder.

Induction step:

Let assume that RCAk and RCAm implement addition that implemented as described above. The former is for k bit numbers and the later is for m bit numbers.

Build a new RCAn (n=k+m) By cascading these RCAs as shown in figure 4.2.1.

Figure 4.2.1 - RCAn

			b[(n-1):k] a[(n-1):k] b[(k-1):0] a[(k-1):0]

����

��

 S[n]

����

						 Ck	

				S[(n-1):k] 			S[(k-1):0]

Now proving that RCAn is correct.

The induction hypothesis implies that:

equation 4.2.1

	 (a[(k-1) : 0] (+ (b[(k-1) : 0](+ cin = (S[(k-1) : 0](+ 2^k * ck

equation 4.2.2

	(a[(n-1) : k] (+ (b[(n-1) : k](+ ck = (S[(n-1) : k](+ 2^m*s[n]

Adding to binary numbers of length n + Cin :

 (a[(n-1) : 0](+ (b[(n-1) : 0](+ cin

 = (a[(k-1) : 0](+ 2^k* (a[(n-1) : k](+ (b[(k-1) : 0](+ 2^k* (b[(n-1) : k](+cin

 = (a[(k-1) : 0](+ (b[(k-1) : 0](+ cin + 2^k* ((a[(n-1) : k](+ (b[(n-1) : k]()

From eq.4.2.1

 =(s[(k-1) : 0](+ 2^k* ck + 2^k* ((a[(n-1) : k](+ (b[(n-1) : k]()

 =(s[(k-1) : 0](+ 2^k* (ck + (a[(n-1) : k](+ (b[(n-1) : k]()

From eq.4.2.2

 =(s[(k-1) : 0](+ 2^k* ((S[(n-1) : k](+ 2^m * s[n])

 =(s[(n-1) : 0](+ s[n] *2^(k+m) = (s[(n-1) : 0](+ s[n] *2^n =(s(

Fast Adder (brute force Carry Look Ahead)

What is the shortest time needed for adding ,Can it be logarithmic ?

equation 5.1.1.

	 Si =1 	(XOR(ai,bi,ci) = 1;

	 C1 = { a0 + b0 + c0 (2 } ({ a0 + b0 = 2 } OR { a0 + b0 = 1 AND c0 = 1 }

equation 5.1.2.

	 Ci+1 = { ai + bi + ci (2 } ({ ai + bi = 2 } OR { ai + bi = 1 AND ci = 1 }

The bit Si is depends on all the bits{a0, a1, a2 ,,, ai, b0, b1, b2 ,,, bi }.

The concept is to calculate the carry as fast as we can . I.e. calculation of all the carries in parallelindependantly of each other.

Let define :

G - the bits combination that Generates the carry (“11”)

P- the bits combination that Propagate the carry (“10 ,01”)

equation 5.1.3.

	Gi = ai AND bi ;	 (Gi=1 (ai + bi = 2)

equation 5.1.4.

	Pi = ai XOR bi ;	 (Pi = 1 (ai + bi = 1)

(C0 = 0)

(equation 5.1.5

	 Ci+1 = Gi + PiGi-1 + PiPi-1Gi-2 + + PiPi-1Pi-2Pi-3(((P1G0

Figure 5.1.1 - Ci+1 equation implementation:

pi gi pi-1 gi-1 pi-2 gi-2 p1 g1 g0

�������

��������

���								

���					(((((

�

����

�����

��

�

�				

					ci+1

				

The Fast Adder Gate Count and Time Cost

An (n+1) input AND gate should be implement from the basic 2 input AND gate.

Figure 5.1.1.1 - A k-input AND gate implementation by 2 input AND gates:

��������

����

����

��������

��

��

����

�

�

The tree structure is correct due to the associative property of the AND function.

The Time is calculate by a recursive equation :

T(ANDk) = T(ANDk/2) +T(AND2) = T(ANDk/2) + 1 =

	T(ANDk/4) + 2 = T(ANDk/8) + 3 = = log2k = O(logk)

The time is improved from O(K) to O(logK). But by looking on the tree structure of the ANDk we can notice a binary tree with k leaves.

The number of nodes in such tree is K-1. So the cost is not improved.

The total gate count (cost) of ANDk implemeltation:

C(ANDk) = 2*C(ANDk/2) +C(AND2) = 2*C(ANDk/2) + 1 = K -1

The total time that Ci implementation is required :

T(Ci+1) = T(AND i-1) + T(ORi) =

	log2(i-1) + 	log2(i)

C(Ci+1) = C(ORi) + (j=2- i-1C(AND j-1) =

	 (i-1) + Sum of [(j-1) where where j from 2 to i-1] = i -1 + ½(i-2)(i-1) = ((i²)

The total cost of all the Fast Adder of n bit numbers :

C(CLAn) =Sum of [C(Ci +1) where i from 0 to n-1] = (i=0 - n-1((i²) = ((n³)

This is a very expensive adder , for example for adder of 64 bits ((64³) (256K gates.

�

Conditional Sum Adder (CSA)

The RCA is cheap but slow and the brute force CLA is expensive but fast. The CSA is an improving of the RCA in order to speed it up without an expensive payment.

The CSA idea is to split each of the binary inputs into 2 shorter binary inputs (for example m MSB and k LSB). The MSB bits are added by two separate adders that one of them assume that the Cin is ‘0’ and the other assumes that the Cin = ‘1’ . The final MSB result and the Cout (=S[n]) are selected through a MUX by the real Cout (=Ck) of the LSB’s result.

figure 6.1. - A Sum Adder split into two shorter Sum Adder

���

����

�	 			 ck

				

 		 s[n:k]			s[(k-1):0]

Each of the unit is implemented by a CSA in a recursive manner.

Figure 6.2 - The CSA implementation:

���		 ‘1’			 ‘0’	

����

����

����

				 ck

���� 		 mux - m 	

��

s[n:k]				 s[(k-1):0]

The maximum delay of CSAn :

T(CSAn) = max {T(CSAk) , T(CSAm)} + T(MUXm+1)

The cost of CSAn :

C(CSAn) = 2*C(CSAm) + T(CSAk) + T(MUXm+1)

figure 6.3 : MUX - m implementation without considering the fan out problem:

������

���������

������������				 ((((

								select			

�	 m 	 m-1			 0	 						

The MUX cost if it is implement as in figure 6.3:

C(MUXm) = m ; (there are m mux of 2 inputs)

�
 The Mux cost and delay while ignoring the fan-out problem the MUX is implement as above in figure 6.3, i.e. the mux signal is a singal wire without additional buffers.

C(MUXm) = m;

T(MUXm) = 1;

If the fan-out problem is not ignored :

(The selector signal implement by building a binary tree of buffers)

T(MUXm) = log2(m);

T(CSAn) = max {T(CSAk) , T(CSAm)} + T(MUXm+1) =

If the fan out problem is ignored and m=k=n/2:

T(CSAn) = max {T(CSAk) , T(CSAm)} + 1 =

		T(n/2)	 + 1 = log2(n).

If the fan out problem is not ignored and m=k=n/2:

T(CSAn) = max {T(CSAk) , T(CSAm)} + 1 =

		T(n/2)	 + log(n) = O[(log2(n))²].

�PAGE �

�PAGE �7�

 H.A.

 F.A.

 F.A.

 F.A.

 AND

 XOR

 AND

 XOR

 AND

 XOR

 OR

	

 	 RCA k

	

 	 RCA m

 AND - 3

 AND - i+1

 AND - 2

 OR-i+1

 ANDk/4

 ANDk/4

 ANDk/4

 ANDk/4

 ANDk/2

 ANDk/2

 ANDk

 adder - m

adder - k

 adder - m

 adder - m

 adder - k

