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Controllability and observability of a well-posed
system coupled with a finite-dimensional system

Xiaowei Zhao and George Weiss, Member, IEEE

Abstract—We consider coupled systems consisting of a well-
posed and strictly proper (hence regular) subsystem and a
finite-dimensional subsystem connected in feedback. The external
world interacts with the coupled system via the finite-dimensional
part, which receives the external input and sends out the output.
Under several assumptions, we derive well-posedness, regularity,
exact (or approximate) controllability and exact (or approximate)
observability results for such coupled systems.

Index Terms—coupled system, well-posed system, exact con-
trollability, approximate controllability, exact observability, ap-
proximate observability, simultaneous observability.

I. INTRODUCTION

THIS paper is about coupled systems in which a well-
posed and strictly proper linear system Σd is connected

to a finite-dimensional linear system Σf with an invertible
first component in its feedthrough matrix. We consider two
kinds of structures: the special structure shown in Figure 1 and
the general structure shown in Figure 3. We show that these
coupled systems are well-posed and actually regular (this is
easy). Then we address the question of exact (or approximate)
controllability of the coupled system. For this we need that
the two subsystems should be exactly (or approximately)
controllable and we need also additional assumptions of an
algebraic nature. We derive analogous results for exact (or
approximate) observability.

Coupled infinite-dimensional systems have attracted much
interest in recent years. For example, the book of Dáger
and Zuazua [2] is devoted mainly to the study of flexible
strings connected to form a planar graph. The theses of
Villegas [14] and Pasumarthy [8] study the power-preserving
interconnection of several port-Hamiltonian systems, possibly
infinite-dimensional, using the formalism of Dirac structures
developed by Arjan van der Schaft. The book of Lasiecka [5]
is devoted mainly to the structural acoustic model, where a
plate and a wave equation are coupled to create a model of an
aircraft cockpit. These works contain a lot of further references
on the topic of coupled systems.

Recently we have developed in [19] a theory for the
regularity and controllability of coupled systems consisting of
an infinite-dimensional subsystem Σd and a finite-dimensional
subsystem Σf connected in feedback. In [19] we assume that
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the feedthrough matrix of Σf is zero and that Σd is such that
it becomes well-posed and strictly proper when connected in
cascade with an integrator (we call such systems SPI systems).
We have shown that such coupled systems are well-posed and
regular, when we use as state space a certain subspace of the
product of the state spaces of the subsystems. Moreover, under
certain assumptions, we have derived exact and approximate
controllability results for this class of coupled systems. There
is a certain analogy between the main controllability results in
this paper and those in our paper [19]. In this paper the well-
posedness and controllability results are simpler and neater
since the assumptions allow us to work with the natural
product state space. The well-posedness and controllability
results here cannot be derived from those in [19] (or the other
way round). In this paper we give also observability results
(unlike in [19], where the asymmetric assumptions on Σd
made this difficult).

We have applied the results in this paper to prove the
well-posedness, exact (or approximate) controllability and the
exponential (or strong) stabilization of wind turbine tower
models consisting of a SCOLE beam system coupled to a two-
mass drive-train model. We have considered various kinds of
inputs and various state spaces. These results will be published
in separate papers, see for example [20].

First we consider a coupled system with the special structure
in Figure 1, denoted by Σcs. We assume that the external world
interacts with Σcs via the finite-dimensional subsystem Σf ,
which receives the input v = ue− y, where ue is the input of
Σcs and the signal y comes from Σd. The system Σf sends out
the output u, which is also the output of the coupled system
Σcs. The equations of Σf are{

q̇(t) = aq(t) + bue(t)− by(t), (1.1)
u(t) = cq(t) + due(t)− dy(t) , (1.2)

where a ∈ Cn×n, b ∈ Cn×m, c ∈ Cm×n, d ∈ Cm×m and
q(t) ∈ Cn is the state of Σf .

Let p be a function defined on some domain in C that
contains a right half-plane, with values in a normed space.
We say that p is strictly proper if

lim
Re s→∞

‖p(s)‖ = 0 , uniformly with respect to Im s.

A linear system is called strictly proper if its transfer function
is strictly proper.

The well-posed linear system Σd, with input function u,
input space Cm, state trajectory z, output function y and output
space Cm is assumed to be strictly proper (hence regular). It
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Fig. 1. A coupled system Σcs consisting of a well-posed and strictly proper
system Σd and a finite-dimensional system Σf = (a, b, c, d), connected in
feedback.

———————

is determined by its generating triple (A,B,C) via

ż(t) = Az(t) +Bu, y(t) = CΛz . (1.3)

Here A is the semigroup generator of Σd, which generates
a strongly continuous semigroup T on the state space X (a
Hilbert space), B ∈ L(Cm, X−1) is the control operator of
Σd and C ∈ L(X1,Cm) is its observation operator and CΛ is
the Λ-extension of C. As Σd is strictly proper, its feedthrough
operator is zero. The transfer function G of Σd is given by

G(s) = CΛ(sI −A)−1B, ∀ s ∈ ρ(A) .

For the terminology on regular systems that has been used
here we refer to the background in Section II.

Our approach to proving controllability properties of Σcs
is to consider it as a cascaded system Σcasc (the open loop
system in Figure 2) with a feedback. The input of Σcasc is
v (see Figure 1), and its outputs are u and y. We obtain
Σcs via the feedback v = ue − y. The cascaded system is
easier to analyze than the coupled system and its controllability
properties are invariant under feedback. Our approach to
proving observability properties of Σcs is similar, but we use a
different cascaded system (with the order reversed), as shown
in Figure 5. The main idea for proving the controllability
properties of Σcasc (from Figure 2) is to perform a flow-
inversion on Σf , so that u becomes the common input of
the two subsystems. Now we can use the simultaneous con-
trollability results presented in Tucsnak and Weiss [13]. The
generator of the flow-inverted Σf is a× = a− bd−1c, and this
matrix plays a role in all our main results.

- Σf
- Σd

-
v u y

Fig. 2. A cascaded system Σcasc consisting of a well-posed and strictly
proper system Σd and a finite-dimensional system Σf = (a, b, c, d).

———————

For the well-posedness, controllability and observability
properties of the coupled system Σcs we have the following:

Theorem I.1. Let Σd be a well-posed and strictly proper
(hence regular) system with input space Cm, state space X (a
Hilbert space), output space Cm, semigroup T and generating
triple (A,B,C). Let a, b, c, d be matrices as in (1.1)–(1.2).

Then the coupled system Σcs from Figure 1 described by (1.1),
(1.2) and (1.3), with input ue, state [ zq ] and output [ uy ], is well-
posed and regular with the state space X × Cn.

Now assume additionally the following:
(i) (A,B) is exactly controllable in time T0;
(ii) (a, b) is controllable;
(iii) d ∈ Cm×m is invertible;
(iv) Denote a× = a − bd−1c. Then A∗ and a×∗ have no

common eigenvalue.
Then Σcs is exactly controllable in any time T > T0.

Theorem I.2. We use the assumptions and the notation from
the first part of Theorem I.1. We also assume the following:

(i) (A,C) is exactly observable in time T0;
(ii) (a, c) is observable;
(iii) d ∈ Cm×m is invertible;
(iv) A and a× have no common eigenvalue.
Then Σcs, with output u only, is exactly observable in any

time T > T0.

For approximate controllability and approximate observabil-
ity we have weaker results, in which we cannot tell the ap-
proximate controllability (or observability) time of the coupled
system. We denote by ρ∞(A) the connected component of
ρ(A) containing some right half-plane.

Proposition I.3. We use the assumptions and the notation from
the first part of Theorem I.1. We also assume the following:

(i) (A,B) is approximately controllable in some time;
(ii) (a, b) is controllable;
(iii) d ∈ Cm×m is invertible;
(iv) Denote a× = a− bd−1c. We have σ(a×) ⊂ ρ∞(A).
Then Σcs is approximately controllable in some time.

Proposition I.4. We use the assumptions and the notation from
the first part of Theorem I.1. We also assume the following:

(i) (A,C) is approximately observable in some time;
(ii) (a, c) is observable;
(iii) d ∈ Cm×m is invertible;
(iv) Denote a× = a− bd−1c. We have σ(a×) ⊂ ρ∞(A).
Then Σcs, with output u only, is approximately observable

in some time.
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Fig. 3. A more general coupled system Σc consisting of a well-posed
and strictly proper system Σd and a finite-dimensional system Σf =
(a, b, bf , c, d, df ).

———————

Now we consider coupled systems with the general structure
as shown in Figure 3, denoted by Σc and described by the
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equations 
q̇(t) = aq(t) + bue(t)− bfy(t) , (1.4)
u(t) = cq(t) + due(t)− dfy(t) , (1.5)
ż(t) = Az(t) +Bu(t) , (1.6)
y(t) = CΛz(t) . (1.7)

This general structure allows the external input ue and the
feedback signal y to be two separate inputs of Σf described
by (1.4)-(1.5). Here a ∈ Cn×n, b ∈ Cn×m, c ∈ Cm×n, d ∈
Cm×m, bf ∈ Cn×p and df ∈ Cm×p. The system Σcs from
Figure 1 is a particular case of this system, corresponding to
bf = b and df = d. The well-posed subsystem Σd described
by (1.6)–(1.7) is again assumed to be strictly proper, but now
its input and output dimensions may be different (m and p).

For the well-posedness and exact controllability of the
coupled system Σc, we have the following theorem, which
guarantees the exact controllability of Σc for a very large (open
and dense) set of the pair

(
bf ∈ Cn×p, df ∈ Cm×p

)
, but not

for all. Thus, exact controllability is a generic property with
respect to bf and df .

Theorem I.5. Let Σd be a well-posed and strictly proper
(hence regular) system with input space Cm, state space X (a
Hilbert space), output space Cp, semigroup T and generating
triple (A,B,C). Let a, b, bf , c, d, df be matrices as in (1.4)–
(1.5). Then the coupled system Σc from Figure 3 described by
(1.4)–(1.7), with input ue, state [ zq ] and output [ uy ], is well-
posed and regular with the state space X × Cn.

Now assume additionally that conditions (i)–(iv) from Theo-
rem I.1 hold. Then for every T > T0 there is an open dense set
OT ⊂

(
Cn×p × Cm×p

)
(that may depend on A,B,C, a, b, c, d

and T ) such that for every pair (bf , df ) ∈ OT , the coupled
system Σc is exactly controllable in time T . If we set df = 0,
then the exact controllability holds for bf in an open and
dense subset of Cn×p. For every b1 ∈ Cn×p and d1 ∈ Cm×p
there exists a set FT ∈ C with at most n elements such that
the coupled system Σc with bf = λb1 and df = λd1, with
λ ∈ C \ FT , is exactly controllable in time T .

We mention the obvious facts that OT is non-decreasing
as a function of T , while (for every fixed pair (bf , df )) FT
is non-increasing. We give below a simple finite-dimensional
example that shows that the set OT in Theorem I.5 is not
necessarily equal to Cn×p × Cm×p.

Example I.6. Let U = X = Y = C and take A = 0, B = 1,
C = 1,

a =

[
0 0
0 1

]
, b =

[
1
1

]
, bf =

[
0
λ

]
,

c =
[
1 0

]
, d = 1, df = 0 .

We show that all the assumptions in Theorem I.5 are satisfied.
It is easy to see that both (A,B) and (a, b) are controllable
and that d is invertible, so that assumptions (i) (ii) and (iii)
are true. By computation we have

a× = a− bd−1c =

[
−1 0
−1 1

]
,

which has eigenvalues 1 and -1, so that assumption (iv) is
satisfied. By Proposition IV.2, we get the following matrices

Ac and Bc for the coupled system Σc:

Ac =

 0 1 0
0 0 0
−λ 0 1

 , Bc =

1
1
1

 .
By computation we have

[
Bc AcBc Ac2Bc

]
=

1 1 0
1 0 0
1 −λ+ 1 −2λ+ 1

 .
The corresponding determinant is

det
[
Bc AcBc Ac2Bc

]
= 2λ− 1 .

Thus, Σc is not controllable for λ = 1
2 . This means that for

this λ, the pair (bf , df ) is not in the set OT from Theorem
I.5, for every T > 0.

Remark I.7. There is no need to construct an observability
counterpart to Theorem I.5. Indeed, for the system in Figure
3, when we discuss observability we take ue = 0, so that it
reduces to the system in Figure 1 (with ue = 0).

The structure of the paper is as follows: Section II is
dedicated to the background. Here we give the necessary pre-
liminaries about admissible control and observation operators,
well-posed linear systems, and regular linear systems. We
recall the concept of the closed-loop system associated to a
well-posed linear system with an admissible feedback operator.
We also discuss controllability and observability, in particular
simultaneous controllability (or observability).

In Section III we analyze the cascaded system Σcasc
from Figure 2. We prove its well-posedness, regularity and
its exact (or approximate) controllability (depending on the
assumptions), with the state space X × Cn. We derive its
generating operators and transfer function. We also consider
a slightly different cascaded system, needed for the study of
the observability properties of Σcs.

In Section IV we consider coupled systems as in Figures
1 and 3 and we prove our main results. The idea of the
proof for Theorem I.1 and Proposition I.3 is to consider the
coupled system from Figure 1 as being obtained from Σcasc
via an admissible output feedback. Then, the controllability
properties of the closed-loop system are inherited from the
open-loop system. Theorem I.2 and Proposition I.4 can be
obtained by similar arguments, using a different cascaded
system. The idea of the proof for Theorem I.5 is to consider
the input maps of Σc as finite-rank perturbations of the input
maps of Σcs, while regarding u as the input signal.

In Section V we present an example to illustrate Theorem
I.1 and Proposition I.4. The physical system being modeled is
a flexible shaft with one end connected to a rigid body that
is attached to a beam. The other end of the beam is clamped.
The control signal is the angular velocity at which the free end
of the flexible shaft is being turned. We choose the angular
velocity of the rigid body as well as the torque acting on this
rigid body from the shaft as output signals. It is not easy to
analyze the well-posedness, controllability and observability
of this system directly, but we derive them using Theorem I.1
and Proposition I.4.
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II. SOME BACKGROUND ON INFINITE-DIMENSIONAL
SYSTEMS

In this section we introduce some concepts and results
on infinite-dimensional linear time invariant systems, without
proof. For the details we refer to the literature.

A. Admissible control and observation operators

The material of this section can be found (in much greater
detail and with many references) in Tucsnak and Weiss [13].

Let A be the generator of a strongly continuous semi-
group T on a Hilbert space X . Then T and X determine
two additional Hilbert spaces: X1 is D(A) with the norm
‖z‖1 = ‖(βI − A)z‖, and X−1 is the completion of X with
respect to the norm ‖z‖−1 = ‖(βI−A)−1z‖, where β ∈ ρ(A)
is fixed. These spaces are independent of the choice of β, since
different values of β lead to equivalent norms on X1 and X .
The norm ‖z‖1 is equivalent to the graph norm of A. We have
X1 ⊂ X ⊂ X−1 densely and with continuous embeddings.
We can extend A to a bounded operator from X to X−1, still
denoted by A. The semigroup generated by this extended A
is the extension of T to X−1, which is still denoted by T.

In this section, U , X and Y are Hilbert spaces, T is a
strongly continuous semigroup on X , with generator A, B ∈
L(U,X−1) and C ∈ L(X1, Y ).

We define the operators Φτ (for τ > 0) by

Φτu =

∫ τ

0

Tτ−tBu(t)dt ,

where u ∈ L2
loc([0,∞);U). Clearly Φτ is bounded from

L2([0,∞);U) to X−1. These operators are called the input
maps of (A,B).

Definition II.1. B is said to be an admissible control operator
for the semigroup T if Ran Φτ ⊂ X for some τ > 0.

The admissibility of B implies that the solutions z(·) of

ż(t) = Az(t) +Bu(t) , (2.1)

with initial state z(0) = z0 ∈ X and with u ∈ L2
loc([0,∞);U)

remain in X . Moreover it follows that z(·) is a continuous X-
valued function of t and

z(t) = Ttz0 + Φtu. (2.2)

The Laplace transform of z(·) is

ẑ(s) = (sI −A)−1z0 + (sI −A)−1Bû(s) .

The operator B is said to be bounded if B ∈ L(U,X) and
unbounded otherwise.

In the sequel, we denote by ω0 the growth bound of T. We
also use the notation Cα for the right half-plane determined
by the real number α:

Cα = {s ∈ C | Re s > α} .

Proposition II.2. If B is admissible then for every α > ω0

there exists a constant Kα ≥ 0 such that

‖(sI −A)−1B‖L(U,X) ≤
Kα√

Re s− α
∀ s ∈ Cα .

We define the operators Ψτ (for τ > 0) by

(Ψτz0)(t) =

{
CTtz0 for t ∈ [0, τ ] ,
0 for t > τ .

Clearly Ψτ is bounded from X1 to L2([0,∞);Y ). These
operators are called the output maps of (A,C). C is said to
be bounded if it can be extended such that C ∈ L(X,Y ) and
unbounded otherwise.

Definition II.3. C is said to be an admissible observation
operator for the semigroup T if Ψτ has a continuous extension
to X for some τ > 0.

The admissibility of C is equivalent to the fact that for some
(hence, for every) τ > 0 there is a Kτ ≥ 0 such that∫ τ

0

‖CTt z0‖2dt ≤ K2
τ ‖z0‖2 ∀ z0 ∈ D(A) .

We regard L2
loc([0,∞);Y ) as a Fréchet space with the semi-

norms being the L2 norms on the intervals [0, n], n ∈ N. Then
the admissibility of C means that there exists a continuous
operator Ψ : X→ L2

loc([0,∞);Y ) such that

(Ψz0)(t) = CTt z0 ∀ z0 ∈ D(A) . (2.3)

The operator Ψ is completely determined by (2.3), because
D(A) is dense in X .

We introduce the Λ-extension of C, denoted CΛ, by

CΛz0 = lim
λ→+∞

Cλ(λI −A)−1z0 , (2.4)

whose domain D(CΛ) consists of all z0 ∈ X for which the
limit exists. If we replace C by CΛ, formula (2.3) becomes
true for all z0 ∈ X and for almost every t ≥ 0. If y = Ψz0,
then its Laplace transform is ŷ(s) = C(sI −A)−1z0.

B. Well-posed linear systems

A well-posed linear system with input space U , state space
X and output space Y is a family of bounded linear operators
(parametrized by τ ≥ 0) that associates to every initial state
z0 ∈ X and every input signal u ∈ L2([0, τ ];U) a final state
z(τ) and an output signal y ∈ L2([0, τ ];Y ). These operators
have to satisfy certain natural functional equations, for the
formal definition we refer to Weiss [15].

By continuous extension, for any well-posed linear system,
we can define state trajectories and output signals for any
initial state in the state space X and for any input signal in
L2
loc([0,∞);U); the output signal is then in L2

loc([0,∞);Y ).
For more detailed background about well-posed systems we
refer to Salamon [9], Staffans [10], Staffans and Weiss [11],
Weiss, Staffans and Tucsnak [18].

We recall some facts about well-posed linear systems from
[15], [16]. Let Σ be a well-posed system with input space
U , state space X and output space Y . Then Σ is completely
determined by its generating triple (A,B,C) and its transfer
function G. Here, A is the semigroup generator of Σ, which
generates a strongly continuous semigroup T on X , B ∈
L(U,X−1) is the control operator of Σ and C ∈ L(X1, Y )
is its observation operator. The transfer function G satisfies

G(s)−G(β) = C[(sI −A)−1 − (βI −A)−1]B (2.5)
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for all s, β ∈ ρ(A). The state trajectories of Σ satisfy (2.1),
hence also (2.2). If u ∈ L2

loc([0,∞);U) is the input function
of Σ, z0 ∈ X is its initial state and y ∈ L2

loc([0,∞);Y ) is
the corresponding output function, then

y = Ψz0 + Fu. (2.6)

Here, Ψ is the operator from (2.3). The operator F appearing
above is continuous from L2

loc([0,∞);U) to L2
loc([0,∞);Y )

(which we regard as Fréchet spaces, see the comments around
(2.3)). It is easiest to represent F using Laplace transforms,
as follows: if u ∈ L2([0,∞);U) and y = Fu, then y has a
Laplace transform ŷ and

ŷ(s) = G(s)û(s) (2.7)

for all s ∈ C with Re s sufficiently large. This determines F,
since L2([0,∞);U) is dense in L2

loc([0,∞);U). G is proper
which means that its domain contains a right half-plane Cα
such that G is uniformly bounded on Cα.

Conversely, if G is an analytic and proper L(U, Y )-valued
function, then G determines a continuous operator F from
L2
loc([0,∞);U) to L2

loc([0,∞);Y ) via (2.7) (see for example
[15, Theorem 3.6]). (In (2.7) we only take u ∈ L2([0,∞);U),
but this determines F, as explained earlier.) We define the
input-output maps of G, denoted by Fτ (τ ≥ 0), by truncating
the output to [0, τ ]:

Fτu = (Fu)|[0,τ ] .

The operator F (defined above via G) is causal, which means
that Fτu depends only on the truncation u|[0,τ ]. It follows that
we may regard Fτ as a bounded operator from L2([0, τ ];U)
to L2([0, τ ];Y ).

Definition II.4. Let U , X and Y be complex Hilbert spaces. A
triple of operators (A,B,C) is called well-posed on (U,X, Y )
if there exists a well-posed linear system Σ on (U,X, Y ) such
that (A,B,C) is the generating triple of Σ.

This definition and the Proposition below are taken from
Curtain and Weiss [1].

Proposition II.5. A triple of operators (A,B,C) is well-
posed on (U,X, Y ) if and only if:
(1) A is the generator of a strongly continuous semigroup T

on X , B ∈ L(U,X−1) and C ∈ L(X1, Y ),
(2) B is an admissible control operator for T,
(3) C is an admissible observation operator for T,
(4) some (hence every) transfer function G associated with

(A,B,C) (i.e., satisfying (2.5)) is proper.

Let Σ be a well-posed linear system on (U,X, Y ) with gen-
erating triple (A,B,C) and transfer function G. An operator
K ∈ L(Y,U) is called an admissible feedback operator for
Σ (or for G) if I −GK has a proper inverse (equivalently,
if I − KG has a proper inverse). If this is the case, then
the system with output feedback shown in Figure 4 is well-
posed on (U,X, Y ) (its input is v, its state and output are the
same as for Σ). This new system is called the closed-loop
system corresponding to Σ and K, and it is denoted by ΣK .
Its transfer function is

GK = G(I −KG)−1 = (I −GK)−1G . (2.8)

We have that −K is an admissible feedback operator for ΣK

and the corresponding closed-loop system is Σ. Let us denote
by (AK , BK , CK) the generating triple of ΣK . Then for every
x0 ∈ D(AK) and for every z0 ∈ D(A),

AKx0 =
(
A+BKCK

)
x0 , Az0 =

(
AK −BKKC

)
z0 .

For more details on closed-loop systems we refer to [16].

6+

h-
+

- Σ -

�K

v u y

Fig. 4. A well-posed linear system Σ with output feedback via K. If K
is admissible, then this is a new well-posed linear system ΣK , called the
closed-loop system.

———————

Definition II.6. The well-posed linear system Σ is called
regular if the limit

lim
s→+∞

G(s)v = Dv

exists for every v ∈ U , where s is real. Then the operator
D ∈ L(U, Y ) is called the feedthrough operator of Σ.

We mention a few facts about regular systems, following
[15]. Regularity is equivalent to the fact that the product
CΛ(sI − A)−1B makes sense, for some (hence for every)
s ∈ ρ(A). Here CΛ is the Λ-extension of C defined in (2.4).
If Σ is regular then for every initial state z0 ∈ X and every
u ∈ L2

loc([0,∞);U), the solution of ż = Az + Bu with
z(0) = z0 satisfies z(t) ∈ D(CΛ) for almost every t ≥ 0
and the corresponding output from (2.6) is given by

y(t) = CΛz(t) +Du(t) for almost every t ≥ 0 . (2.9)

The transfer function of the regular system Σ is given by

G(s) = CΛ(sI −A)−1B +D ∀ s ∈ ρ(A) . (2.10)

The operators A,B,C,D are called the generating operators
of Σ. This is because they determine Σ via (2.1) and (2.9).

The following proposition follows from the results in [16,
Sections 4, 7]. We need the space Z introduced as follows:

Z = X1 + (βI −A)−1BU .

Proposition II.7. Suppose that Σ is a regular linear system
on (U,X, Y ) with generating operators A,B,C and D. We
assume that U is finite-dimensional. Let K be an admissible
feedback operator for Σ and let ΣK be the corresponding
closed-loop system. Then the following holds:

(1) I −DK (and hence also I −KD) is invertible.
(2) ΣK is regular.
(3) Let AK , BK , CK and DK be the generating operators

of ΣK . Then

AK = A+BK(I −DK)−1CΛ ,
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D(AK) = {z ∈ Z | Az +BK(I −DK)−1CΛz ∈ X} ,

BK = B(I −KD)−1 , CK = (I −DK)−1CΛ ,

DK = D(I −KD)−1 = (I −DK)−1D.

C. Controllability and observability

Let U,X, Y , T, A,B,C, Φτ and Ψτ be as in Subsection
II-A. We assume that B and C are admissible for T.

Definition II.8. The pair (A,B) is said to be exactly control-
lable in time τ > 0 if Ran Φτ = X; (A,B) is said to be
approximately controllable in time τ > 0 if Ran Φτ is dense
in X .

Definition II.9. The pair (A,C) is said to be exactly observ-
able in time T > 0 if ΨT is bounded from below, i.e., there
exists κT > 0 such that∫ T

0

‖CTtz0‖2Y dt ≥ κ2
T ‖z0‖2 . (2.11)

(A,C) is said to be approximately observable in time T > 0
if Ker ΨT = {0}.

We often need the controllability concepts without specify-
ing a time τ . Therefore the following definition is introduced.

Definition II.10. The pair (A,B) is said to be exactly
controllable if it is exactly controllable in some finite time
τ > 0. (A,B) is said to be approximately controllable if it is
approximately controllable in some finite time.

Observability concepts without a specified time are intro-
duced in a similar way.

Proposition II.11. The pair (A,C) is exactly observable in
time τ > 0 if and only if (A∗, C∗) is exactly controllable in
time τ . (A,C) is approximately observable in time τ > 0 if
and only if (A∗, C∗) is approximately controllable in time τ .

For much more details on the above concepts we refer to
[13]. The following invariance result is taken from Section 6
of Weiss [16].

Proposition II.12. Let Σ be a well-posed linear system,
let K be an admissible feedback operator for Σ and let
ΣK be the corresponding closed-loop system. Let (A,B,C)
and (AK , BK , CK) be the generating triples of Σ and ΣK ,
respectively.

Then (A,B) is exactly (approximately) controllable in time
T , if and only if (AK , BK) has the same property.

Moreover, (A,C) is exactly (approximately) observable in
time T , if and only if (AK , CK) has the same property.

We quote the following definition and results on simulta-
neous controllability and simultaneous observability from [13,
Chapters 6, 11].

Definition II.13. For i ∈ {1, 2} let Ai be the generators of
strongly continuous semigroups Ti on the Hilbert spaces Xi.
Let U , Y be Hilbert spaces. Assume that Bi ∈ L(U,Xi

−1)
are admissible control operators for Ti and that Ci ∈
L(D(Ai), Y ) are admissible observation operators for Ti.

The pairs (Ai, Bi) are said to be simultaneously exactly
controllable in time T > 0, if for every xi1 ∈ Xi there exists
a function u ∈ L2([0, T ];U) such that∫ T

0

TiT−σBiu(σ)dσ = xi1, i ∈ {1, 2}.

The pairs (Ai, Bi) are said to be simultaneously approximately
controllable in time T > 0, if the equality above holds for
(x1

1, x
2
1) in a dense subspace of X1 ×X2.

The pairs (Ai, Ci) are said to be simultaneously exactly
observable in time T > 0, if there exists kT > 0 such that for
all (z1

0 , z
2
0) ∈ D(A1)×D(A2) the following inequality holds:∫ T

0

‖C1T1
t z

1
0 + C2T2

t z
2
0‖2Y dt

≥ k2
T

(
‖z1

0‖2X1 + ‖z2
0‖2X2

)
. (2.12)

The pairs (Ai, Ci) are said to be simultaneously approxi-
mately observable in time T > 0, if the fact that (z1

0 , z
2
0) ∈

X1 ×X2 satisfies

C1ΛT1
t z

1
0 + C2ΛT2

t z
2
0 = 0, for almost every t ∈ [0, T ],

implies that (z1
0 , z

2
0) = (0, 0).

Proposition II.14. With the notation of Definition II.13, the
pairs (A1, C1) and (A2, C2) are simultaneously exactly ob-
servable in time T if and only if (A1∗, C1∗) and (A2∗, C2∗)
are simultaneously exactly controllable in time T . A similar
statement holds for simultaneous approximate observability.

Theorem II.15. Denote by A the generator of the strongly
continuous semigroup T on the Hilbert space X . We assume
that C ∈ L(X1, Y ) is an admissible observation operator
for T and that (A,C) is exactly observable in time T0.
Let a ∈ Cn×n and c ∈ Cm×n be matrices such that
(a, c) is observable. Further, assume that A and a have no
common eigenvalues. Then the pairs (A,C) and (a, c) are
simultaneously exactly observable in any time T > T0.

Using the duality from Propositions II.11 and II.14, we can
easily find the dual version of the above theorem, which we
leave to the reader to formulate.

Proposition II.16. Let A be the generator of a strongly
continuous semigroup on X . Let ρ∞(A) be the connected
component of ρ(A) containing some right half-plane. We
assume that C ∈ L(X1, Y ) is an admissible observation
operator for T and that (A,C) is approximately observable.
Let a ∈ Cn×n and c ∈ Cm×n be such that (a, c) is observable.
Assume that σ(a) ⊂ ρ∞(A). Then (A,C) and (a, c) are
simultaneously approximately observable in some time.

Again, using the duality from Propositions II.11 and II.14,
the reader can easily formulate the dual version of the above
proposition.

The following result is taken from Weiss and Zhao [19]:

Proposition II.17. Let A be the generator of the strongly
continuous semigroup T on X . Let B ∈ L(Cm, X−1) be
an admissible control operator for T. Let a ∈ Cn×n and
b ∈ Cn×m. Suppose that there exists T > 0 such that
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the pairs (A,B) and (a, b) are simultaneously approximately
controllable in time T .

Then for every z ∈ X , q ∈ Cn and ε > 0 there exists
u ∈ L2([0, T ];Cm) such that∥∥∥∥∥
∫ T

0

TT−tBu(t)dt− z

∥∥∥∥∥ ≤ ε,

∫ T

0

ea(T−t)bu(t)dt = q .

III. THE CASCADED SYSTEM

In this section we analyze the well-posedness and control-
lability of Σcasc introduced in Section I (see Figure 2). Recall
that Σcasc is described by:

q̇(t) = aq(t) + bv(t) , (3.1)
u(t) = cq(t) + dv(t) , (3.2)
ż(t) = Az(t) +Bu(t) , (3.3)
y(t) = CΛz(t) . (3.4)

Here (3.1)–(3.2) describe the finite-dimensional subsystem
Σf with input space Cm, state space Cn, output space Cm
and matrices a ∈ Cn×n, b ∈ Cn×m, c ∈ Cm×n, d ∈
Cm×m. The equations (3.3)–(3.4) describe the well-posed and
strictly proper system Σd with input space Cm, state space
X , output space Cm, semigroup T, semigroup generator A,
control operator B ∈ L(Cm, X−1) and observation operator
C ∈ L(X1,Cm). CΛ is the Λ-extension of C, defined in (2.4).
q(t) ∈ Cn is the state of Σf , while z(t) ∈ X is the state
of Σd.

[
z(t)
q(t)

]
∈ X × Cn is the state of Σcasc at the time

t. v ∈ L2
loc([0,∞); Cm) is the input signal of both Σf and

Σcasc. y ∈ L2
loc([0,∞);Cm) is the output signal of Σd while

[ uy ] is the output signal of Σcasc. The transfer functions of
Σf and Σd are

g(s) = c(sI − a)−1b+ d, G(s) = CΛ(sI −A)−1B.

We denote the state of Σcasc by ϑ = [ zq ]. The state space for
Σcasc is X×Cn with the usual product norm ‖ϑ(t)‖2X×Cn =
‖z(t)‖2X + ‖q(t)‖2Cn .

Proposition III.1. Σcasc described by (3.1)–(3.4) is well-
posed and strictly proper (hence regular) on the state space
X×Cn with the input signal v, the state ϑ = [ zq ] and output
signal [ uy ]. Its generating operators are

A =

[
A Bc
0 a

]
,

D(A) =

{[
z
q

]
∈ X × Cn

∣∣∣∣ Az +Bcq ∈ X
}
,

B =

[
Bd
b

]
, C =

[
0 c
C 0

]
, D =

[
d
0

]
.

The transfer function of Σcasc is defined for s ∈ ρ(A) =
ρ(A) ∩ ρ(a) by

Gcasc =

[
g
Gg

]
. (3.5)

The proof is easy and it can also be derived as a particular
case of Lemma 5.1 in Weiss and Curtain [17], so that we omit

the details. It can be proved either directly or as a consequence
of Lemma 5.2 in [17] that

CΛ =

[
0 c
CΛ 0

]
.

We will need the following fact from finite-dimensional lin-
ear systems theory. It concerns flow-inversion, i.e., interchang-
ing the role of input and output (when this is possible). Flow-
inversion of infinite-dimensional systems has been investigated
in Staffans and Weiss [12].

Lemma III.2. If Σf is a finite-dimensional system described
by {

ẋ = ax+ bu,
y = cx+ du,

(3.6)

where a, b, c, d are matrices of appropriate dimensions and d
is invertible, then Σf is flow-invertible. Its flow-inverse system
Σ×f is described by{

ẋ = (a− bd−1c)x+ bd−1y,
u = − d−1cx+ d−1y .

(3.7)

If u, x, y are functions satisfying (3.6), then the same func-
tions satisfy also (3.7) and vice versa. The system (3.6) is
controllable (observable) iff the system (3.7) is controllable
(observable).

We omit the simple proof.

Proposition III.3. With the assumptions (i)–(iv) of Theorem
I.1, the cascaded system Σcasc described by (3.1)–(3.4) (with
the state space X × Cn) is exactly controllable in any time
T > T0.

Proof. Set the initial state z(0) = 0 and q(0) = 0. The exact
controllability of Σcasc on the state space X×Cn means that
for any time T > T0 and for any [ z1q1 ] ∈ X ×Cn, there exists
an input signal v ∈ L2([0, T ];Cm) such that the solution of
(3.1)–(3.3) satisfies z(T ) = z1 and q(T ) = q1.

By assumption (iii) and Lemma III.2, we know that Σf
described by (3.1)–(3.2) is flow-invertible and that its flow-
inverse system, denoted by Σ×f , is described by{

q̇ = (a− bd−1c)q + bd−1u, (3.8)
v = − d−1cq + d−1u. (3.9)

Recall that a× = a − bd−1c. From assumption (ii) and
Lemma III.2 it follows that Σ×f is controllable. Combining
this fact with the assumptions (i) and (iv), and the dual
version of Theorem II.15, it follows that Σd and Σ×f (more
precisely, the pairs (A,B) and (a×, bd−1)) are simultaneously
exactly controllable in any time T > T0. Therefore for any
[ z1q1 ] ∈ X × Cn, and for the systems (3.3) and (3.8), we can
find u ∈ L2([0, T ];Cm) such that z(T ) = z1 and q(T ) = q1.

Let q and v be the state trajectory and the output signal (on
the time interval [0, T ]) of the system (3.8)–(3.9) correspond-
ing to the input signal u found above and q(0) = 0. Obviously
v ∈ L2([0, T ];Cm). By Lemma III.2 these functions also
satisfy (3.1) and (3.2) (and q(T ) = q1). Let z be the solution
of (3.3) with the signal u found above and with z(0) = 0, so
that z(T ) = q1.
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Thus we have found v ∈ L2([0, T ];Cm) such that the
solution of the equations (3.1)–(3.3) satisfies z(T ) = z1 and
q(T ) = q1.

Proposition III.4. With the assumptions (i)–(iv) of Proposition
I.3, Σcasc described by (3.1)–(3.4) (with state space X×Cn)
is approximately controllable.

Proof. It has to prove the following fact: for any [ z1q1 ] ∈
X × Cn and δ > 0, there exists an input function v ∈
L2([0, T ];Cm) such that if q, u and z are as in (3.1)–(3.3)
with z(0) = 0, q(0) = 0, then∥∥∥[ z(T )

q(T )

]
−
[
z1

q1

]∥∥∥
X×Cn

≤ δ .

If we can achieve q(T ) = q1, then (using the definition of the
norm on X × Cn) the above estimate reduces to

‖z(T )− z1‖X ≤ δ . (3.10)

Thus, it will be enough to show that we can find v ∈
L2([0, T ];Cm) such that q(T ) = q1 and (3.10) holds.

The remaining part of the proof is similar to that of Proposi-
tion III.3. First, by Lemma III.2 and assumptions (ii) and (iii),
we get that the flow-inverse system of Σf , denoted by Σ×f (see
(3.8)–(3.9)) is controllable. From this fact, assumptions (i) and
(iv) and the dual version of Proposition II.16, we get the simul-
taneous approximate controllability of Σd and Σ×f . Now by
Proposition II.17, we can find a suitable u ∈ L2([0, T ];Cm) to
achieve q(T ) = q1 and (3.10). Following the same procedure
as at the end of the proof of Proposition III.3, we can show
that there exists v ∈ L2([0, T ];Cm) such that if q and z are the
solutions of (3.1)–(3.3) corresponding to z(0) = 0, q(0) = 0,
then q(T ) = q1 and (3.10) holds.

Now we consider a new cascaded system Σcasco as shown in
Figure 5, to study the observability of the coupled system Σcs
described by (1.1), (1.2) and (1.3) with output u. Since we are
only interested in observability, we assume that the external
input ue of Σcs is zero, so that v = −y. The output of Σcasco
is u. We can obtain Σcs from Σcasco via the feedback u0 = u.
The system Σcasco is described by:

ż(t) = Az(t) +Bu0(t) , (3.11)
v(t) = − CΛz , (3.12)
q̇(t) = aq(t) + bv(t) , (3.13)
u(t) = cq(t) + dv(t) . (3.14)

- Σd
- Σf

-
u0 v u

Fig. 5. The cascaded system Σcasco consisting of the well-posed and strictly
proper system Σd and the finite-dimensional system Σf = (a, b, c, d).

———————

Proposition III.5. The cascaded system Σcasco described by
(3.11)–(3.14) with input u0 and output u is well-posed and
regular on the state space X ×Cn. With the assumptions (i)–
(iv) of Theorem I.2, Σcasco is exactly observable in any time
T > T0.

Proof. The well-posedness and regularity of Σcasco can
be proved similarly as for Σcasc, see the comments after
Proposition III.1. Now we show its exact observability.

By assumption (iii) and Lemma III.2, we know that Σf
is flow-invertible and that its flow-inverse system, denoted
by Σ×f , is described by (3.8)–(3.9). From assumption (ii)
and Lemma III.2 it follows that Σ×f is observable. This fact
and assumptions (i) and (iv) imply, according to Theorem
II.15, that (A,C) and (a×,−d−1c) are simultaneously exactly
observable in any time T > T0.

We denote by g the transfer function of Σf , so that g(s) =
c(sI − a)−1b+ d. Since d is invertible by assumption (iii), g
has a proper rational inverse g−1 which is the transfer function
of Σ×f . For any T ≥ 0, we denote by ψ×T and FgiT the output
map and the input-map of Σ×f on the time interval [0, T ] (see
Section II for the terminology). The output function v of Σ×f
(see (3.9)) can be written as

v = ψ×T q0 + FgiT u. (3.15)

We denote by ΨT the output maps of (A,C). Assuming
u0 = 0, the output function v of Σd (see (3.12)) can be written
as v = −ΨT z0. Combining this with (3.15) we obtain

ΨT z0 + ψ×T q0 = −FgiT u.

The simultaneously exact observability result derived earlier
implies that for every T > T0 there exists kT > 0 such that

‖ΨT z0 + ψ×T q0‖ ≥ kT ‖ [ z0q0 ] ‖

(see (2.12)). We also have ‖FgiT u‖ ≤ ‖F
gi
T ‖ · ‖u‖. From the

last two estimates we clearly obtain the exact observability
inequality (2.11) for Σcasco.

Proposition III.6. With the assumptions (i)–(iv) of Proposition
I.4, Σcasco is approximately observable.

The proof is obtained by adjusting the previous proof.
Indeed, if we use Proposition II.16 instead of Theorem II.15,
we obtain that (A,C) and (a×,−d−1c) are simultaneously
approximately observable in some time T > 0. Now we
proceed as in the previous proof, but we have to modify its
last four lines, to show that u = 0 implies z0 = 0 and q0 = 0.
We omit the details.

IV. WELL-POSEDNESS, CONTROLLABILITY AND
OBSERVABILITY OF COUPLED SYSTEMS

In this section we prove the main well-posedness and
controllability results for the coupled systems Σcs from Figure
1 and Σc from Figure 3. We consider the output of Σcs and of
Σc to be [ uy ] (where u is the output of the finite-dimensional
subsystem Σf and y is the output of the infinite-dimensional
subsystem Σd). We also prove the exact and approximate
observability results for Σcs with output u only. We continue
to use the notation from Section III.

Proposition IV.1. The coupled system Σcs is well-posed and
regular on (Cm, X × Cn,C2m) with generating operators
(Acs,B, Ccs,D) and transfer function Gcs, where

Acs =

[
A−BdCΛ Bc
−bCΛ a

]
,
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D(Acs) =

{[
z
q

]
∈ X × Cn

∣∣∣∣ Acs [zq
]
∈ X × Cn

}
,

Ccs =

[
−dCΛ c
CΛ 0

]
, Gcs =

[
g
Gg

]
(I + Gg)−1 .

If B is bounded (i.e., B ∈ L(Cm, X)), then D(Acs) =
D(A)× Cn.

Proof. The coupled system Σcs can be considered as being
obtained from Σcasc via output feedback with the feedback
operator K =

[
0 −I

]
(as in Figure 4). From Proposition

III.1 we know that Σcasc is regular with the state space X×Cn.
From (3.5) we know that the transfer function of Σcasc is

Gcasc =

[
g
Gg

]
, where g is the transfer function of Σf , while

G is the transfer function of Σd.
Since g is proper and G is strictly proper, it follows that

(I − KGcasc)−1 = (I + Gg)−1 is proper, which means
that K =

[
0 −I

]
is an admissible feedback operator for

Σcasc. The feedback leading from Σcasc to Σcs fits into the
framework discussed in Proposition II.7. Using the formulas
for the closed-loop generating operators from Proposition II.7,
we obtain after a short computation that the generating oper-
ators of Σcs are indeed (Acs,B, Ccs,D), with Acs and Ccs as
described in the proposition. Using (3.5) and (2.8), we obtain
the formula for Gcs. It is easy to verify from the formula for
D(Acs) that if B is bounded, then D(Acs) = D(A)×Cn.

Proof of Theorem I.1 and Proposition I.3. The first part
(the well-posedness and regularity part) of Theorem I.1 is
contained in Proposition IV.1.

Now we prove the exact controllability part of Theorem I.1.
From Proposition IV.1 and its proof we know that the coupled
system Σcs can be considered as being obtained from Σcasc
(which is well-posed and regular) via output feedback with
the admissible feedback operator K =

[
0 −I

]
.

According to Proposition III.3, the assumptions (i)–(iv) in
Theorem I.1 imply that the cascaded system Σcasc (with state
space X × Cn) is exactly controllable in any time T > T0.
According to Proposition II.12, it follows that Σcs is also
exactly controllable (with state space X × Cn) in any time
T > T0.

The proof of Proposition I.3 is similar. According to Propo-
sition III.4, the assumptions (i)–(iv) in Proposition I.3 imply
that the cascaded system Σcasc (with state space X × Cn)
is approximately controllable. According to Proposition II.12,
it follows that Σcs is also approximately controllable (in the
same state space).

Proof of Theorem I.2 and Proposition I.4. The coupled
system Σcs described by (1.1), (1.2) and (1.3) with external
input ue = 0 and output u, can be considered as being obtained
from the cascaded system Σcasco described by (3.11)–(3.14)
via output feedback with the feedback operator I (as in
Figure 4 with K = I). The transfer function of Σcasco is
Gcasco = gG, where g and G are the transfer functions of
Σf and Σd respectively. From Proposition III.5 we know that
Σcasco is well-posed and regular with the state space X×Cn.
Since Gcasco is strictly proper, I is an admissible feedback
operator for Σcasco. From Proposition III.5 we also know

that under the assumptions (i)–(iv) of Theorem I.2, Σcasco
is exactly observable in any time T > T0. This observability
is preserved under admissible feedback, see Proposition II.12.
For approximate observability (Proposition I.4) the proof is
similar, but now we use Proposition III.6 to show that Σcasco
is approximately observable.

Now we analyze the well-posedness and controllability of
the more general coupled system Σc from Figure 3. We denote
by Σca the corresponding cascaded system shown in Figure 6.
This system is very similar to Σcasc, but now we have (1.4)
and (1.5) instead of (1.1) and (1.2), so that the input signal
is [ ue

uy ] (with values in Cm+p). The semigroup generator A
and the observation operator C are the same as for Σcasc
(see Proposition III.1) while the control operator and the
feedthrough operator of Σca are given by

Bca =

[
Bd −Bdf
b −bf

]
, Dca =

[
d −df
0 0

]
.

The transfer function of Σca is

Gca =

[
g −gf
Gg −Ggf

]
, (4.1)

where

g(s) = c(sI − a)−1b+ d, gf (s) = c(sI − a)−1bf + df ,

and G is the transfer function of Σd, which is strictly proper.

-

-
Σf

- Σd
-

ue

uy

u y

Fig. 6. The cascaded system Σca corresponding to Σc, consisting of a
well-posed and strictly proper system Σd and a finite-dimensional system
Σf = (a, b, bf , c, d, df ). To obtain from here Σc, we have to close the
feedback uy = y.

———————

Proposition IV.2. Σc is well-posed and regular on (Cm, X×
Cn,Cm+p) with generating operators (Ac,B, Cc,D) and
transfer function Gc, where

Ac =

[
A−BdfCΛ Bc
−bfCΛ a

]
,

D(Ac) =

{[
z
q

]
∈ X × Cn

∣∣∣∣ Ac [zq
]
∈ X × Cn

}
,

Cc =

[
−dfCΛ c
CΛ 0

]
, Gc =

[
I
G

]
(I + gfG)−1g .

If B is bounded (i.e., B ∈ L(Cm, X)), then D(Ac) = D(A)×
Cn. The operators B and D mentioned above are as defined
in Proposition III.1.

Proof. The coupled system Σc can be considered as being
obtained from Σca via output feedback with the feedback

operator K =

[
0 0
0 I

]
and then ignoring the second input of

the resulting closed-loop system (i.e., setting it to be zero).
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We have already seen that Σca is a regular system with
state space X × Cn, generating operators (A,Bca, C,Dca)
and transfer function Gca from (4.1). From the properness
of g and gf and the strict properness of G it is easy to see

that (I−KGca)−1 =

[
I 0
−Gg I + Ggf

]−1

is proper, which

means that K =

[
0 0
0 I

]
is an admissible feedback operator

for Σca. The feedback leading from Σca to Σc fits into the
framework discussed in Proposition II.7. The remaining part
of the proof is practically the same as for Proposition IV.1.

Proof of Theorem I.5. In the first step we point out that the
well-posedness part of Theorem I.5 is contained in Proposition
IV.2. Let [ zq ] be a state trajectory of Σc corresponding to
the input signal ue ∈ L2([0,∞);Cm), with initial conditions
z(0) = 0, q(0) = 0. Due to the well-posedness of Σc, z and
q are continuous functions of t (with values in X and in Cn).
Another consequence of the well-posedness is that the signals
u and y appearing in Figure 3 are in L2

loc and have Laplace
transforms.

The second step is to show that on any finite time interval,
ue (and hence all the above signals) can be expressed in a
continuous way from u. From q̇(t) = aq(t) + bue(t)− bfy(t)
we get, applying the Laplace transformation,

q̂(s) = (sI − a)−1[bûe(s)− bf ŷ(s)] , (4.2)

for all s in some right half-plane. Since u(t) = cq(t)+due(t)−
dfy(t), we obtain

û(s) = c(sI − a)−1[bûe(s)− bf ŷ(s)] + dûe(s)− df ŷ(s)

= g(s)ûe(s)− gf (s)ŷ(s) , (4.3)

where the rational transfer function g and gf are defined as
after (4.1).

Using ŷ(s) = G(s)û(s), we get

[I + gf (s)G(s)] û(s) = g(s)ûe(s) . (4.4)

Note that lims→∞ g(s) = d. Since d is invertible by assump-
tion (iii), it follows that g has a proper rational inverse. Now
(4.4) can be rewritten in the form

ûe(s) = g−1(s) [I + gf (s)G(s)] û(s) . (4.5)

As G is strictly proper, gfG is strictly proper too, so that ûe
is obtained from û via a proper transfer function. It is known
(see Subsection II-B) that this implies that on any finite time
interval [0, T ], the mapping from the restriction u|[0,T ] to the
restriction ue|[0,T ] is continuous (in the L2 norm).

The third step is to express q(τ) from u (where τ > 0
is fixed). If we substitute (4.5) into (4.2) and use again that
ŷ(s) = G(s)û(s), we get

q̂(s) = (sI − a)−1bg−1(s) [I + gf (s)G(s)] û(s)

− (sI − a)−1bfG(s)û(s)

= (sI − a)−1bg−1(s)û(s)

+ (sI − a)−1
[
bg−1(s)gf (s)− bf

]
G(s)û(s) . (4.6)

We remark that if p = m, bf = b, df = d, then
bg−1(s)gf (s)− bf = 0, so that (4.6) becomes much simpler.
This is the situation discussed in Theorem I.1.

Denote by Fgiτ (τ ≥ 0) the (bounded) input-output maps cor-
responding to the proper transfer function g−1, see Subsection
II-B for the meaning of this concept. Similarly, let Fgfτ and
FGτ (τ ≥ 0) be the (bounded) input-output maps corresponding
to the proper transfer functions gf and G, respectively. We
denote by φτ and φfτ (τ ≥ 0) the input maps of (a, b) and
(a, bf ), respectively (see Subsection II-A for this concept).
Then (4.6) shows that we have

q(τ) = φτ Fgiτ u+
[
φτ Fgiτ F

gf
τ − φfτ

]
FGτ u.

If we combine the above formula with (2.2), we obtain that[
z(τ)
q(τ)

]
=

[
Φτ
φτFgiτ

]
u+

[
0

φτ Fgiτ F
gf
τ − φfτ

]
FGτ u, (4.7)

where Φτ (τ ≥ 0) are the input maps of (A,B).
In the fourth step we show that if τ > T0, then the operators[
Φτ
φτFgiτ

]
appearing above are onto X ×Cn. During this step

we assume that p = m, bf = b and df = d. Since Φτ , φτ
and Fgiτ depend on A,B, a, b, c, d but not on bf or on df or
on C, this assumption does not entail any loss of generality.
According to the remark after (4.6), if p = m, bf = b and
df = d, then the second term on the right-hand side of (4.7)
is zero, so that [

z(τ)
q(τ)

]
=

[
Φτ
φτFgiτ

]
u. (4.8)

Denoting v = ue − y, from (4.3) we have û(s) = g(s)v̂(s).
Since g is proper, we can associate to it bounded input-output
maps Fgτ (note that Fgτ = [Fgiτ ]−1). Thus, u|[0,τ ] = Fgτv|[0,τ ] =
Fgτv for every τ ≥ 0. Combining this with (4.8), we obtain[

z(τ)
q(τ)

]
=

[
Φτ
φτFgiτ

]
Fgτv . (4.9)

Let z1 ∈ X , q1 ∈ Cn and τ > T0. According to Proposition
III.3 there exists v ∈ L2([0, τ ];Cm) such that z(τ) = z1 and
q(τ) = q1, in other words, the operator on the right-hand side

of (4.9) is surjective. This implies that
[

Φτ
φτFgiτ

]
is surjective.

In the fifth step we show that if T > T0, b1 ∈ Cn×p, d1 ∈
Cm×p then there exists a finite set FT ⊂ C (which depends
on T and the pair (b1, d1)) such that the operator

Φ̃T =

[
ΦT
φTFgiT

]
+

[
0

φT FgiT F
gf
T − φ

f
T

]
FGT ,

corresponding to bf = λb1 and df = λd1 is onto X ×Cn for

each λ ∈ C \ FT . Since
[

ΦT
φTFgiT

]
is surjective (see the fourth

step), it has a bounded right inverse RT . Then

Φ̃TRT = I +

[
0

φT FgiT F
gf
T − φ

f
T

]
FGTRT . (4.10)

Let Fgf1
T be the input-output map FgfT corresponding to λ =

1, and similarly, let φf1
T be the input map φfT corresponding

to λ = 1. Then from the definitions

FgfT = λFgf1
T , φfT = λφf1

T ,
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while the other operators on the right-hand side of (4.10) are
independent of λ. Thus, (4.10) becomes

Φ̃TRT = I + λ

[
0

φT FgiT F
gf1
T − φf1

T

]
FGTRT .

The second term on the right-hand side above is a finite-rank
operator of rank ≤ n. It follows that there exists a set FT ⊂ C
with at most n elements such that for λ 6∈ FT , Φ̃TRT is
invertible. Hence, for all such λ, Φ̃T is onto X × Cn.

The sixth step is to notice that whenever Φ̃T is onto, the
system Σc is exactly controllable in time T . Indeed, Φ̃T maps
u into

[
z(T )
q(T )

]
(see (4.7)), and from the second step we know

that on any finite time interval, ue can be expressed in a
continuous way from u, meaning that the operator F from
ue to u is invertible. Thus, the operator Φ̃TF that maps ue to[
z(T )
q(T )

]
is onto.

The last sentence of Theorem I.5 clearly follows from what
we have shown in the fifth and sixth steps. From the last
sentence of Theorem I.5 it follows that for each T > T0,
the set OT ⊂

(
Cn×p × Cm×p

)
of all those pairs (bf , df )

for which Σc is exactly controllable in time T , is dense. The
operator Φ̃T depends in an affine and hence continuous way
on the pair (bf , df ) (using the operator norm). Since the set of
surjective operators in L(L2([0, T ];Cm), X × Cn) is open, it
follows that the set OT is also open. The case df = 0 follows
by taking d1=0.

V. ILLUSTRATIVE EXAMPLE

Consider the system Σcs which consists of a flexible shaft
Σf with one end connected to the rigid body of a non-uniform
SCOLE beam system Σd, and the other end receiving the
control signal: the angular velocity ue. The flexible shaft can
be modelled as a torsional spring in parallel with a torsional
damper while the SCOLE system is a well-known model for
a system consisting of a flexible beam with one end clamped
and the other end linked to a rigid body. The SCOLE model
has two possible inputs: the torque and the force acting on the
rigid body, see Guo [3], Littman and Markus [6], [7]. Here
we use only its torque input.

We take the angular velocity of the rigid body, denoted by y,
and the torque acting on the rigid body from the shaft, denoted
by u, as the outputs of Σcs. From physical considerations, we
get the dynamic equations of Σcs as follows:

ρ(x)wtt(x, t) + (EI(x)wxx(x, t))xx = 0, (5.1)
(x, t) ∈ (0, l)× [0,∞) ,

w(0, t) = 0, wx(0, t) = 0, (5.2)
mwtt(l, t)− (EIwxx)x(l, t) = 0, (5.3)
Jwxtt(l, t) + EI(l)wxx(l, t) = u(t), (5.4)
y(t) = wxt(l, t), (5.5)
qt(t) = ue(t)− y(t), (5.6)
u(t) = Ksq(t) + Csqt(t), (5.7)

where (5.1)–(5.5) describe the SCOLE model Σd. The sub-
scripts t and x denote derivatives with respect to the time t and
the position x. l is the length of the beam, w is its transverse
displacement, while EI and ρ are its flexural rigidity and

mass density. m and J are the mass and the moment of
inertia of the rigid body (these are positive constants). We
assume that ρ,EI ∈ C4[0, l], 0 < ρ0 ≤ ρ(x) < ρ1 and
0 < EI0 ≤ EI(x) < EI1 where ρ0, ρ1, EI0, EI1 are positive
constants. (5.6)–(5.7) describe the flexible shaft Σf . q is the
angular difference between the two ends of the flexible shaft.
The parameter Ks > 0 is the torsional stiffness of the shaft
while Cs > 0 is its torsional damping.

From this description, it is easy to see that Σcs, Σd and Σf
fit the framework of coupled systems with the special structure
shown in Figure 1. It is clear that Σf is a one-dimensional
linear system with state q(t) ∈ C and its matrices are

a = 0, b = 1, c = Ks, d = Cs.

We define the norm on C by ‖q(t)‖2 = Ks|q(t)|2, which is
twice the physical energy in Σf .

Now we analyze the SCOLE model Σd. We introduce the
following auxiliary functions: z1(x, t) = w(x, t), z2(x, t) =
wt(x, t), z3(t) = wt(l, t), z4(t) = wxt(l, t). We define z(t) =
[z1(·, t), z2(·, t), z3(t), z4(t)]T (the superscript T means trans-
pose) to be the state of Σd at the time t. The natural energy
state space of Σd is

X = H2
l (0, l)× L2[0, l]× C2 ,

where

H2
l (0, l) =

{
h ∈ H2(0, l) | h(0) = hx(0) = 0

}
and Hn (n ∈ N) denote the usual Sobolev spaces. We define
the norm on X as follows: For any ξ = [ξ1 ξ2 ξ3 ξ4]

T ∈ X ,

‖ξ‖2 =

∫ l

0

EI(x)|ξ1xx(x)|2dx+

∫ l

0

ρ(x)|ξ2(x)|2 dx

+m|ξ3|2 + J |ξ4|2.

It is clear that ‖z(t)‖2 represents twice the physical energy in
Σd at the time t. Of course, the formulas z3(t) = wt(l, t) and
z4(t) = wxt(l, t) do not make sense for z(t) ∈ X , only for
smoother z(t) (for example, for z(t) ∈ D(A), defined below).

We define the generating operators of Σd as follows:

Aξ =


ξ2

−ρ−1(x)
(
EI(x)ξ1xx(x)

)
xx

m−1
(
EIξ1xx

)
x
(l)

−J−1EI(l)ξ1xx(l)

 ∀ ξ ∈ D(A),

D(A) =

{
ξ ∈

[
H4 ∩H2

l

]
×H2

l × C2
∣∣∣ ξ3 = ξ2(l)
ξ4 = ξ2x(l)

}
,

B =

[
0 0 0

1

J

]T
, C =

[
0 0 0 1

]
.

Note that we have suppressed the interval (0, l) for H4 and
H2
l in the the definition of D(A). We get the following state

space formulation of Σd from (5.1)–(5.5):{
ż(t) = Az(t) +Bu(t) ,

y(t) = Cz(t) .
(5.8)

From Guo and Ivanov [4, Proposition 1.1] we know that A is
skew-adjoint on X , so that it is the generator of a unitary group
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T. Clearly B and C are bounded on X (i.e., B ∈ L(C, X),
C ∈ L(X,C)), and the feedthrough operator is zero, so that
Σd is strictly proper (hence, regular). By Theorem I.1, Σcs
(with input ue, state [ zq ] and output [ uy ]) is well-posed and
regular with the state space X × C. The restriction of A
to D(A2) is skew-adjoint on X1 = D(A). From Guo [3,
Proposition 4.2] we know that B is admissible for T restricted
to X1. Clearly C ∈ L(X1,C), so that Σd is well-posed and
strictly proper on X1 as well, according to Propositions II.2
and II.5. By Theorem I.1, Σcs (with input ue, state [ zq ] and
output [ uy ]) is well-posed and regular with the state space
X1 × C as well.

Now we prove the exact controllability of Σcs on X1 × C
using Theorem I.1, and we also prove its approximate observ-
ability on X × C using Proposition I.4.

From [3, Theorem 4.3] we know that Σd described by (5.8)
is exactly controllable on X1. From [4, Corollary 2.2] we
know that Σd is approximately observable on X . Therefore
assumptions (i) of Theorem I.1 and of Proposition I.4 hold.

Clearly (a,b) is controllable, (a,c) is observable and d = Cs
is invertible. Hence assumptions (ii) and (iii) of Theorem I.1
and of Proposition I.4 are satisfied. By computation, we get

a× = − Ks

Cs
.

From [4, Propositions 1.1 and 1.2] we know that σ(A) consists
of simple eigenvalues that isolated, purely imaginary and non-
zero. Therefore ρ(A) = ρ∞(A). Since A and a× have no
common eigenvalues, we have σ(a×) ⊂ ρ∞(A). Thus, all the
four assumptions of Theorem I.1 and of Proposition I.4 are
satisfied. Therefore Σcs is exactly controllable on X1×C, and
it is approximately observable on X×C using only the output
u. Obviously, Σcs is approximately controllable on X × C.
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Semigroups, Birkhäuser-Verlag, Basel, 2009.

[14] J.A. Villegas, A Port-Hamiltonian Approach to Distributed Parameter
Systems, PhD Dissertation, University of Twente, 2007.

[15] G. Weiss, Transfer functions of regular linear systems. Part I: character-
izations of regularity, Transactions of the American Mathematical Society
342 (1994), 827–854.

[16] G. Weiss, Regular linear systems with feedback, Mathematics of Con-
trol, Signals, and Systems 7 (1994), 23–57.

[17] G. Weiss and R.F. Curtain, Dynamic stabilization of regular linear
systems, IEEE Trans. Aut. Control 42 (1997), 4–21.

[18] G. Weiss, O.J. Staffans and M. Tucsnak, Well-posed linear systems -
a survey with emphasis on conservative systems, Applied Mathematics
and Computer Science 11 (2001), 7–33.

[19] G. Weiss and X. Zhao, Well-posedness and controllability of a class of
coupled linear systems, SIAM J. Control and Optim. 48 (2009), 2719-
2750.

[20] X. Zhao and G. Weiss, Strong stabilization of a wind turbine tower
model, Proc. of the 48th IEEE Conf. on Decision and Control, Shanghai,
China, December 2009.

Xiaowei Zhao Xiaowei Zhao graduated from Bei-
jing University of Chemical Technology with the
BEng in Automatic Process Control in 2003, and
from Imperial College London with the MSc in
Control Systems and the PhD in Control Theory,
in 2004 and 2009 respectively. His PhD thesis con-
cerned the modelling and control of coupled infinite-
dimensional systems. He is currently a post-doctoral
researcher at the University of Oxford.

George Weiss George Weiss obtained the PhD in applied mathematics from
the Weizmann Institute (Israel) in 1989. He held positions at Ben Gurion
University, the University of Exeter and Imperial College London. He has
worked on the theory of well-posed linear systems. He is currently with the
Faculty of Engineering at Tel Aviv University, and works on control theory
and energy conversion.


