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The state feedback regulator problem for regular
linear systems

Vivek Natarajan, David S. Gilliam and George Weiss

Abstract—This paper is about the state feedback regulator
problem for infinite-dimensional linear systems. The plant, as-
sumed to be an exponentially stable regular linear system, is
driven by a linear (possibly infinite-dimensional) exosystem via a
disturbance signal. The exosystem has its spectrum in the closed
right half-plane and also generates the reference signal for the
plant output. The regulator problem is to design a controller that,
while guaranteeing the stability of the closed-loop system without
the exosystem, drives the tracking error to zero. A particular
version of this problem is the state feedback regulator problem in
which the states of the exosystem and the plant are known to the
controller. Under suitable assumptions, we show that the latter
problem is solvable if and only if a pair of algebraic equations,
called the regulator equations, is solvable. We derive conditions,
in terms of the transfer function of the plant and eigenvalues
of the exosystem, for the solvability of the regulator equations.
Three examples illustrating the theory are presented.

I. INTRODUCTION

This paper is devoted to the tracking and disturbance rejec-
tion problem, also called the regulator problem, for a linear
infinite-dimensional plant from the special class of regular
linear systems, when the reference and disturbance signals
are produced by a linear unstable signal generator called the
exosystem. Regular systems model many physical systems
involving waves, beams, plates, shells, elastic media, heat
propagation, etc, see [3], [8], [9], [10], [20], [21], [22], [44],
[47], and they usually have unbounded control and observation
operators. However, in the literature on the regulator problem,
in order to avoid technical difficulties, it is usually assumed
that these operators are bounded. (A notable exception is [41],
on which we shall comment at the end of Section IV.) In this
paper we overcome this limitation.

There are two standard versions of the regulator problem:
In the first, called the state feedback regulator problem, the
controller is provided with full information of the state of the
plant and the exosystem, while in the second version, called
the error feedback regulator problem, only the tracking error
is available to the controller. In this work we will focus on
the state feedback version alone, and under the assumption
that the plant is exponentially stable. Indeed, we think that
stabilizing the plant and solving the regulator problem are
two distinct issues, and it would only obfuscate the theory to
present them mixed together. The exponential stability implies
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that for the state feedback we actually only need the state of
the exosystem (this is explained in detail in Remark IV.6).
We plan to address the error feedback regulator problem in a
follow-up paper. We mention that it is easy, in principle, to
design an error feedback controller if the plant together with
the exosystem are detectable via the tracking error. Indeed, the
straightforward approach is to use a full state observer, which
of course is infinite-dimensional. This is the approach taken in
several references, for example, in Byrnes, Lauko, Gilliam and
Shubov [4] or in Immonen and Pohjolainen [28]. For plants
that are already stable, the real challenge (that we shall address
in our follow-up paper) is to design a finite-dimensional error
feedback controller.

Pioneering work on the regulator problems for linear finite-
dimensional systems is in Francis [17], where the solvability of
these problems is shown to be equivalent to the solvability of a
pair of linear matrix equations called the regulator equations.
Similar results have been established for finite-dimensional
nonlinear systems in Byrnes and Isidori [6] (see also [7]) under
the assumption that the plant is locally exponentially stabiliz-
able and the exosystem has a Lyapunov stable equilibrium
at the origin with each initial condition in a neighborhood
of this origin being Poisson stable. It is shown in [6] that
the solvability conditions given in [17] can be generalized
naturally in terms of the solvability of a pair of nonlinear
equations – still called the regulator equations. These equations
express the existence of a manifold in the state space on
which the actual and reference outputs coincide and which
can be rendered attracting and invariant using feedback, see
also Knobloch, Isidori and Flockerzi [33]. A passivity-based
approach to the nonlinear regulator problem has been explored
in Jayawardhana and Weiss [29], [30]. Nonlinear regulator
theory has led to the immersion and invariance approach to
the stabilization and adaptive control of nonlinear plants, see
Astolfi and Ortega [1] and others.

In Byrnes et al [4], building on the results in [17], a
geometric theory of output feedback regulation for infinite-
dimensional linear plants with bounded control and obser-
vation operators driven by finite-dimensional exosystems has
been developed. In particular in [4] the solvability of both the
state and error feedback regulator problems has been charac-
terized in terms of the solvability of certain equations referred
to as the regulator equations. Also, simple criteria for the
solvability of the regulator equations have been derived. Under
similar assumptions as in [4], but with finite-dimensional input
and output spaces, an output regulation problem is addressed in
Deutscher [15], where the measured and regulated outputs are
allowed to be different. The proposed solution involves solving
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certain Sylvester and regulator equations and remarkably the
proposed controller is finite-dimensional. A relevant earlier
work in this direction is Schumacher [43] in which, under
rather strong assumptions on the infinite-dimensional plant, a
finite-dimensional controller has been proposed to solve the
error feedback regulator problem.

Regulator theory for infinite-dimensional linear systems
with bounded control and observation operators has been
significantly advanced by a group of researchers at Tampere
University of Technology (Finland) who have developed a
sophisticated theory of infinite-dimensional exosystems, see
for instance [24], [27], [28], [26], [39], [40]. The state feed-
back regulator problem for exponentially stabilizable linear
plants driven by infinite-dimensional exosystems generating
periodic signals was addressed in [27]. The results in [27] were
generalized in [28] by considering strongly stabilizable plants
and a broader class of exosystems, and addressing both the
state and error feedback regulator problems. The robustness
of solutions to the error feedback regulator problem was char-
acterized in [26] in terms of the controller having the Internal
Model Structure (IMS) and in [24] in terms of the controller
satisfying the G-conditions (as it is called in [39]). The recent
paper Boulite et al [2] builds on the above works to address the
state feedback regulator problem for polynomially stabilizable
linear plants driven by infinite-dimensional exosystems. By
introducing a new characterization for the solvability of a
Sylvester equation, alternate conditions for the solvability of
the state feedback regulator problem are presented in [2].

In this work we restrict the state operator S of the linear,
unstable and possibly infinite-dimensional exosystem to be
bounded. Our reason for imposing this restriction is to avoid
the following robustness problem: according to the internal
model principle due to Davison, or Wonham and Francis
[13], [18], all the unstable eigenvalues of S will be poles
of the controller, if we use an error feedback controller.
Thus, in the case of an exosystem with an unbounded set
of unstable eigenvalues, the closed-loop system cannot be
robustly stable with respect to small delays in the feedback
loop, see Logemann et al [34, Theorem 1.2]. Closely related
negative results are in Georgiou and Smith [19], and this
issue is explained in more detail in Weiss and Hafele [52,
Sec. 4]. There is also a positive result in this context: if the
error feedback controller is strictly proper (which can only
happen when the spectrum of S is bounded), then the closed-
loop system is robustly stable with respect to small delays, as
follows from [34, Theorem 1.1].

We extend the key results in [4] on the state feedback
regulator problem to plants with unbounded control and obser-
vation operators. There is considerable interest in plants with
boundary control and/or boundary observation, for which the
control and/or observation operators are unbounded, see for
instance Staffans [44], Tucsnak and Weiss [46], [47]. Probably
the most general class of distributed parameter systems for
which there is a well established and relatively simple repre-
sentation and feedback theory, are the regular linear systems
(see [44], [48], [49]). In this work we have chosen to formulate
the state feedback regulator problem for regular plants. We
also assume that the plant is exponentially stable and not just

stabilizable, the latter assumption being customary. This is not
limiting, since in regulator theory the problems of stabilization
and regulation can be decoupled and addressed sequentially.
Hence we shall assume that the plant has been stabilized via
a suitable feedback and we shall solve the regulator problem
for the exponentially stable plant.

A parallel approach to the regulator problem for stable
finite-dimensional plants was first developed in Davison [14].
This approach was extended to exponentially stable uncertain
regular plants in Logemann and Townley [37], but considering
only constant references and disturbances (see also [35], [36]
and [38] for relevant results), to plants in the Callier-Desoer
algebra in Hämäläinen and Pohjolainen [23] and to exponen-
tially stable well-posed plants in Rebarber and Weiss [42]. The
finite-dimensional controller proposed in [42] solves the error
feedback regulator problem. Sampled-data versions of this
controller can be found in Ke, Logemann and Rebarber [31],
[32]. In spite of the results in the cited papers, in this work we
pursue the state feedback regulator problem (and will address
the error feedback regulator problem in a future work) in the
hope that, as in finite-dimensions, the state space approach
developed here will be more suitable (in comparison to the
approach in [23], [42], [32]) for a generalization addressing the
regulator problem for non-linear infinite-dimensional plants.

In the last section we show how the regulator theory devel-
oped in this work can be applied to some systems described by
PDEs, all with unbounded control and observation operators.
The first example is a one-dimensional heat equation with
Robin boundary control at one end of the interval, a distur-
bance entering through the other end, and observation at an
interior point. The exosystem is 4-dimensional, has a nontrivial
Jordan block decomposition and the disturbance generated
may grow linearly. In the second example we consider the
heat equation on the two-dimensional unit rectangle, with
boundary control through a part of the boundary. The outputs
are averages over some boundary regions, the references are
constant and there are no disturbances. In the third example we
consider tracking for a Rayleigh beam with structural damping.
The control is the torque applied at one end-point and the
output is the angular velocity at the same point. This output
is required to track a sinusoidal reference signal.

II. BACKGROUND ON REGULAR LINEAR SYSTEMS

This section is a very brief overview of regular systems
theory, mostly following [45], [46], [48]. For a Hilbert space
Y and α ∈ R we define the weighted function space

L2
α([0,∞);Y ) =

{
φ ∈ L2

loc([0,∞);Y )

∣∣∣∣∫ ∞
0

e−2αt‖φ(t)‖2dt <∞
}
,

with the norm being the square-root of the integral appearing
above. For any a ∈ R we define the open and closed right
half-planes bounded by a, by

C+
a =

{
s ∈ C

∣∣Re s > a
}
, C+

a =
{
s ∈ C

∣∣Re s ≥ a
}
.

Let Z be a Hilbert space and A the generator of an
operator semigroup (also called strongly continuous semigroup
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of operators) T on Z. We denote by ρ(A) the resolvent set of
A. We define two new Hilbert spaces as follows: for β ∈ ρ(A),

Z1 = D(A) with ‖z‖1 = ‖(βI −A)z‖
and Z−1 is the completion of Z with respect to the norm

‖z‖−1 = ‖(βI −A)−1z‖ .
These spaces are independent of the choice of β and we have
the dense embeddings

Z1 ↪→ Z ↪→ Z−1 . (2.1)

Let Zd1 be the analogue of the space Z1 but for the adjoint
semigroup generator A∗. Then Z−1 may also be regarded as
the dual of Zd1 with respect to the pivot space Z.

The operators Tt extend to Z−1, and the generator of the
extended semigroup is an extension of A to an operator in
L(Z,Z−1). We use the same notation Tt and A for these
extended operators. It will be useful to note that for β ∈ ρ(A),

(βI −A)−1 ∈ L(Z−1, Z) , (βI −A)−1 ∈ L(Z,Z1) .

We refer to [46] for more details about these spaces and
extensions. We denote by ω0(T) the growth bound of the

semigroup T (thus ω0(T) = lim
t→∞

1

t
log ‖Tt‖). Recall that T

(or A) is called exponentially stable if ω0(T) < 0.
If C ∈ L(Z1, Y ), where Y is another Hilbert space, then the

Λ-extension of C (with respect to A), denoted CΛ, is defined
as follows (see [49]):

CΛz = lim
λ→+∞

Cλ(λI −A)−1z (2.2)

and its domain D(CΛ) consists of those z ∈ Z for which the
above limit exists.

We call C an admissible observation operator for T if for
some (hence, for every) τ > 0 there exists mτ > 0 such that∫ τ

0

‖CTtz‖2dt ≤ mτ‖z‖2 ∀ z ∈ D(A) . (2.3)

In this case, for every z ∈ Z, the formula y(t) = CΛTtz
makes sense for almost every t ≥ 0 and it defines a function
y ∈ L2

α([0,∞);Y ), for every α > ω0(T). Also, (2.3) becomes
valid for all z ∈ Z if we replace C with CΛ. C is called
bounded if it can be extended such that C ∈ L(Z, Y ) and
unbounded otherwise. The dual of the above admissibility
concept can be expressed as follows: if U is a Hilbert space
and B ∈ L(U,Z−1), then B is called an admissible control
operator for T if for some (hence, for every) τ > 0 and for
every u ∈ L2([0,∞);U),∫ τ

0

Tτ−σBu(σ)dσ ∈ Z .

Note that this integral gives the strong solution of ż(t) =
Az(t)+Bu(t) at time τ , if z(0) = 0. In this case, z(τ) depends
continuously on u and on τ , hence there exists κτ > 0 such
that ∥∥∥∥∫ τ

0

Tτ−σBu(σ)dσ

∥∥∥∥ ≤ κτ‖u‖L2([0,τ ];U) .

B is called bounded if B ∈ L(U,Z), and unbounded other-
wise. It can be shown that if B is admissible and α > ω0(T)
then there exists M ≥ 0 such that for all s ∈ C+

α ,

‖(sI −A)−1B‖ ≤ M√
Re s− α

. (2.4)

Definition II.1. Consider the generator A of a strongly con-
tinuous semigroup T on Z, an admissible control operator
B ∈ L(U,Z−1) and an admissible observation operator
C ∈ L(Z1, Y ), as defined earlier. The triple (A,B,C) is
called regular, in the sense of [48], [49], if in addition the
following conditions hold:
(1) CΛ(sI − A)−1B exists for some (hence, for every) s ∈
ρ(A) (this means that we have (sI −A)−1BU ⊂ D(CΛ)).
(2) The mapping G0(s) = CΛ(sI−A)−1B, called the transfer
function associated to the triple (A,B,C), is bounded on some
right half-plane.

The above assumptions imply that G0(s)v→ 0, as s→+∞
along the real axis, for every v ∈ U . The fact that (A,B,C) is
a regular triple is equivalent to the fact that for some (hence,
for every) D ∈ L(U, Y ), the equations

ż(t) = Az(t) +Bu(t) , y(t) = CΛz(t) +Du(t) , (2.5)

define a regular linear system Σ. This system has input space
U , state space Z and output space Y . The signals u, z and
y are called the input, state trajectory and output of Σ. A is
called the semigroup generator of Σ, B is called the control
operator of Σ, C is called the observation operator of Σ and
D is called the feedthrough operator of Σ. For any initial state
z(0) = z0 ∈ Z and for any u ∈ L2

α([0,∞);U), the equations
(2.5) describing Σ have unique solutions z and y such that z is
continuous, y ∈ L2

γ([0,∞);Y ) for all γ ≥ α with γ > ω0(T)
and both equations hold for almost every t ≥ 0. The transfer
function of Σ is G(s) = G0(s) +D, which means that

ŷ(s) = C(sI −A)−1z0 + G(s)û(s) ,

where a hat is used to denote the Laplace transformation, and
this formula holds for all s in the right half-plane C+

γ . The
generating operators of Σ are (A,B,C,D) and every regular
linear system is determined by its four generating operators.

An operator-valued analytic function defined on a domain
containing a right half-plane is called proper if it is bounded
on some right half-plane C+

a , and it is called regular if it
is proper and if it has a strong limit at +∞ along the real
axis. If the input space is finite-dimensional, “strong limit”
simply means “limit”. It is clear that the transfer function of a
regular linear system is regular. In recent years, many systems
described by partial differential equations have been proven to
be regular, especially by B.Z. Guo and his collaborators, see
[8], [9], [10], [20], [21], [22] and also [3].

III. THE PLANT, THE EXOSYSTEM AND THE ERROR

In this section we describe the basic assumptions about
the plant to be controlled and the exosystem, and we derive
some simple consequences of these assumptions. The plant is
described by the following equations (for t ≥ 0):{

ż(t) = Az(t) +Bu(t) +B1d(t), (state equation)

y(t) = CΛz(t) +Du(t) +D1d(t). (output)
(3.1)

The state of this system is z(t), its input signal is [ ud ] and
its output signal is y. We regard u as the control input (to be
generated by a controller) while d is a disturbance. For each
t ≥ 0 we have z(t) ∈ Z, where the state space Z is assumed
to be a Hilbert space, u(t) ∈ U , d(t) ∈ U1 and y(t) ∈ Y ,
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where U , U1 and Y are Hilbert spaces. The operator A is
the generator of an exponentially stable operator semigroup
T on Z. The control operator B ∈ L(U,Z−1) is admissible
for T, while B1 ∈ L(U1, Z−1) (not necessarily admissible).
The observation operator C ∈ L(Z1, Y ) is admissible for T,
D ∈ L(U, Y ) and D1 ∈ L(U1, Y ). We assume that the triple
(A,B,C) is regular and for some (hence, for every) s ∈ ρ(A),
the product CΛ(sI − A)−1B1 exists (which is weaker than
demanding (A,B1, C) to be regular). The assumption that the
triple (A,B,C) is regular can be relaxed (see Remark V.6).

We assume that there exists a linear system with no input,
referred to as the exosystem (sometimes called the exogenous
system), that produces both the reference output r and the
disturbance signal d: for all t ≥ 0,
ẇ(t) = Sw(t) , r(t) = Q1w(t) , d(t) = C1w(t) . (3.2)

Here S ∈ L(W ), where W is a Hilbert space, and its spectrum
σ(S) is a subset of C+

0 , i.e., the exosystem is completely
unstable. In the applications that we have in mind, σ(S)
is on the imaginary axis. We have Q1 ∈ L(W,Y ) and
C1 ∈ L(W,U1). We refer to the difference between the
measured and reference outputs as the error :
e(t) = y(t)− r(t) = CΛz(t) +Du(t) +D1d(t)−Q1w(t)

= CΛz(t) +Du(t) +Qw(t) ,

where Q ∈ L(W,Y ) is defined by Q = D1C1 −Q1.
We will also need to consider the combined plant Σp

representing the plant and the exosystem together, on the
combined state space X = Z ×W , with the state

x(t) =

[
z(t)
w(t)

]
∈ X = Z ×W ,

input space U and output space Y , described by the equations

ẋ(t) = Apx(t) +Bpu(t), Ap =

[
A P
0 S

]
, Bp =

[
B
0

]
, (3.3)

e(t) = CpΛx(t)+Dpu(t), Cp =
[
CΛ Q

]
, Dp = D, (3.4)

where P = B1C1 and
D(Ap) = D(Cp) =

{[
z
w

]
∈ X

∣∣∣∣ Az + Pw ∈ Z
}
. (3.5)

Remark III.1. We define a subspace of Z as follows:
Z
∼

= D(A)+(λI −A)−1BU

+ (λI −A)−1B1U1 ⊂ D(CΛ) , (3.6)

where λ ∈ ρ(A). It is easy to see that Z
∼

is independent of
λ and the inclusion Z

∼
⊂ D(CΛ) follows from the regularity

of (A,B,C) and the assumption (made a little earlier) that
CΛ(λI −A)−1B1 exists. For any z0 ∈ Z we have
z0 ∈ Z∼ ⇔ ∃u0 ∈U, d0 ∈U1 so that Az0 +Bu0 +B1d0 ∈Z,
where A is regarded as an operator from Z to Z−1 (this is easy
to verify). Hence, D(Ap) ⊂ Z

∼
×W , so that there is indeed

no problem defining Cp on D(Ap).
Lemma III.2. Ap defined in (3.3), (3.5) generates an operator
semigroup Tp on X .

Proof: First we write down the formula for Tpt and
then we check that this formula indeed defines an operator
semigroup on X:

Tpt
[
z
w

]
=

[
Ttz +

∫ t
0
TσPeS(t−σ)w dσ
eStw

]
. (3.7)

To see that this is in X , we integrate by parts. We rewrite the
integral term in (3.7):∫ t

0

TσPeS(t−σ)w dσ = A−1TσPeS(t−σ)w
∣∣∣t
0

−
∫ t

0

A−1TσP
d

dσ

[
eS(t−σ)w

]
dσ

= TtA−1Pw −A−1PeStw

+

∫ t

0

TσA−1PSeS(t−σ)wdσ . (3.8)

Since A−1P ∈ L(W,Z), the integral term in (3.7) is a
continuous Z-valued function of t. This shows that Tp is a
strongly continuous family of operators in L(X). Obviously
Tp0 = I and the semigroup property is easy to verify. A
short computation shows that the generator of this operator
semigroup is Ap defined in (3.3) and (3.5).

Consider the spaces X1 and X−1 introduced in Section II.
We have X1 = D(Ap), of course, and X−1 = Z−1 × W ,
which is easy to verify. The domain of Cp is (by definition)
D(Ap) and CpΛ in (3.4) is the Λ-extension of Cp, as defined
in Section II, but of course with Ap in place of A. We shall
now prove that Σp is a regular linear system. This combined
plant is partially stable (since A is stable) but not stabilizable,
because there is no way to influence the component w of the
state. The problem we want to solve in this paper is to make
the output signal e of Σp small, meaning that it belongs to a
weighted L2 space, see Section IV for details.

Proposition III.3. The combined plant Σp from (3.3)–(3.5) is
regular. In particular, Bp and Cp are admissible for Tp and
the transfer function of Σp is

Gp(s) = CpΛ(sI −Ap)−1Bp +Dp

= CΛ(sI −A)−1B +D. (3.9)

The operator CpΛ can be described as follows:

D(CpΛ) = D(CΛ)×W and CpΛ

[
z
w

]
= CΛz+Qw. (3.10)

Proof: The admissibility of Bp follows from∫ t

0

Tpt−σBpu(σ)dσ =

[∫ t
0
Tt−σBu(σ)dσ

0

]
,

together with the admissibility of B for T. To show that Cp
is admissible, we adopt an unusual approach: we find it easier
to prove the version of (2.3) with the Λ-extension CpΛ in
place of C and Tp in place of T, and using an arbitrary initial
state [ zw ] ∈ X , rather than an initial state in D(Ap). First we
claim that for every s ∈ ρ(A), CΛ(sI−A)−1B1 ∈ L(U1, Y ).
Indeed, as assumed at the beginning of Section III, CΛ(sI −
A)−1B1 exists and, according to (2.2), it is the strong limit
of the family of operators Cλ(λI − A)−1(sI − A)−1B1 ∈
L(U1, Y ), as λ → +∞. Our claim now follows from the
uniform boundedness principle. Since P = B1C1, it follows
that

CΛ(sI −A)−1P ∈ L(W,Y ) . (3.11)

We integrate again by parts in (3.8), obtaining
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∫ t

0

TσPeS(t−σ)wdσ = TtA−1Pw −A−1PeStw

+TtA−2PSw −A−2PSeStw

+A−1

∫ t

0

TσA−1PS2eS(t−σ)wdσ . (3.12)

Notice that the last integral is a continuous Z-valued function
of t, hence the last term (which is A−1 applied to the integral)
is a continuous Z1-valued function of t.

We claim that for every w ∈W , the formula

f(t) = CΛ

∫ t

0

TσPeS(t−σ)wdσ

makes sense for almost every t ≥ 0, and for every τ > 0 there
is a kτ ≥ 0 such that∫ τ

0

‖f(t)‖2dt ≤ kτ‖w‖2. (3.13)

Indeed, this follows from (3.12), (3.11) (with s = 0) and
the admissibility of C for T. To complete the proof of the
admissibility of Cp, we have to verify (3.10) first.

To compute CpΛ, note that (3.3) implies that for all λ ∈
ρ(A) ∩ ρ(S),

(λI−Ap)
−1

=

[
(λI −A)

−1

(λI −A)
−1

P (λI − S)
−1

0 (λI − S)
−1

]
. (3.14)

Hence, for all z ∈ Z and w ∈W ,

Cpλ(λI −Ap)−1

[
z
w

]
= Cλ(λI −A)−1z +Qλ(λI − S)−1w

+ CΛλ(λI −A)−1P (λI − S)−1w

= Cλ(λI −A)−1z +Qλ(λI − S)−1w

+ CΛ(λI −A)−1AA−1P
[
I + (λI − S)−1S

]
w

= Cλ(λI −A)−1z +Qλ(λI − S)−1w

+
[
Cλ(λI −A)−1− CΛ

]
A−1P

[
I + (λI − S)−1S

]
w.

From here, using (3.11) and the fact that limλ→+∞ Cλ(λI−
A)−1A−1P = CΛA

−1P , it is easy to derive that (3.10) holds.
Now we can check that Cp is admissible. For this, we will

check that for all τ > 0, there exists mτ ≥ 0 such that for all
z ∈ Z and all w ∈W ,∫ τ

0

∥∥∥∥CpΛTpt [zw
]∥∥∥∥2

dt ≤ mτ

(
‖z‖2 + ‖w‖2

)
,

which implies the condition (2.3). It is easy to see that this
follows from (3.10), (3.7), (3.13) and the admissibility of C
for T. The formula (3.9) follows from (3.10) and (3.14) by a
simple computation. Now conditions (1) and (2) in Definition
II.1 follow from (3.9) and the regularity of (A,B,C).

The Sylvester equation
ΠS = AΠ + P +BL, (3.15)

which must be solved for Π, when L ∈ L(W,U) is given, will
play an important role in the sequel. The intuitive meaning of
this equation is as follows: Consider the combined plant Σp
from (3.3)–(3.5) with the linear state feedback u = Lw, as
shown in Figure 1. Then it can be shown (using the exponential
stability of A) that in steady state we have z(t) = Πw(t), i.e.,
limt→∞ ‖z(t)−Πw(t)‖ = 0.

Lemma III.4. The Sylvester equation (3.15) has a unique
solution Π ∈ L(W,Z), moreover Ran Π ⊂ Z

∼
, so that the

product CΛΠ exists and is in L(W,Y ).

Proof: Suppose that (3.15) has a solution Π. Then for
each t ≥ 0 and w ∈W ,

TtΠSe−Stw − TtAΠe−Stw = Tt(P +BL)e−Stw,

which is equivalent to

− d

dt
(TtΠe−Stw) = Tt(P +BL)e−Stw.

Integrating the above equation in Z−1 on the interval [0,∞),
we get

Πw =

∫ ∞
0

Tt(BL+ P )e−Stwdt (3.16)

which shows that Π is unique. Via integration by parts, as in
(3.8), we get

Πw = −A−1(BL+ P )w+∫ ∞
0

TtA−1(BL+ P )e−StSwdt . (3.17)

Since A−1(P+BL) ∈ L(W,Z), we can conclude from (3.17)
that Π ∈ L(W,Z). Multiplying both sides of (3.17) by A ∈
L(Z,Z−1), we can verify that Π as defined in (3.16) solves
(3.15). From (3.15) we obtain that

Π = A−1ΠS −A−1P −A−1BL,

which implies that Ran Π ⊂ Z
∼

and therefore CΛΠ exists
(see (3.6)). This operator is the strong limit of the operators
Cλ(λI − A)−1Π ∈ L(W,Y ) as λ → +∞. According to the
uniform boundedness principle we have CΛΠ ∈ L(W,Y ).

Remark III.5. Sometimes instead of the first equation of the
plant from (3.1), the evolution of the state z of the plant is
determined via a boundary control system as follows:

ż(t) = Ãz(t) , Gz(t) = Bu(t) + B1d(t) . (3.18)
Here, for some Hilbert spaces Z

∼
and Ũ such that Z

∼
⊂ Z with

continuous embedding,

Ã ∈ L(Z
∼
, Z), G ∈ L(Z

∼
, Ũ), B ∈ L(U, Ũ), B1 ∈L(U1, Ũ).

The operators Ã and G define a boundary control system in
the sense of [46, Section 10.1] (with input space Ũ and state
space Z), if the following two assumptions hold:

(i) G is onto,
(ii) A = Ã|KerG generates an operator semigroup on Z.
If these assumptions hold, and using the notation Z−1 from

Section II, then there is a unique B̃ ∈ L(Ũ , Z−1) such
that Ã = A + B̃G, where A is regarded as an operator
in L(Z,Z−1). Moreover, for every s ∈ ρ(A) we have
(sI − A)−1B̃ ∈ L(Ũ , Z

∼
) and G(sI − A)−1B̃ = I . Notice

that we have Gφ = 0 for all φ ∈ D(A). Moreover, we have

Z
∼

= Z1 + (sI −A)−1B̃Ũ . (3.19)

Indeed, all this follows from Proposition 10.1.2 in [46] and
the text around it, if we use the following correspondence
of the notation: what is called X,Z,U, L,G,A,B in [46] is
called here (in the same order) Z,Z

∼
, Ũ , Ã, G,A, B̃. Now we

can rewrite (3.18) exactly as the first equation in (3.1), if we
denote B = B̃B and B1 = B̃B1. It is easy to see from (3.19)
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that if Ran [B B1] = Ũ , then Z
∼

as defined in Remark III.1 is
the same as Z

∼
introduced above.

We shall see at the end of Section IV that our main result has
a neat version for boundary control systems, and this version
is much easier to apply when we design a state feedback for a
boundary controlled beam equation at the end of Section VI.

IV. THE STATE FEEDBACK REGULATOR PROBLEM

We continue to use the assumptions and the notation from
Section III. In particular, recall that Q = D1C1 − Q1

and P = B1C1. In the state feedback regulator problem,
stated below, we consider the state of the combined plant
Σp to be accessible to the controller, which is a static linear
feedback. Our terminology and notation are consistent with the
treatment of the finite-dimensional case in Knobloch, Isidori
and Flockerzi [33], but we assume that A is exponentially
stable, since (as explained in Section I) we do not want to
discuss here the stabilization problem.

Problem IV.1. The linear state feedback regulator problem:
For the combined plant Σp from (3.3)–(3.5), find a feedback
control law in the form u = Lw, with L ∈ L(W,U), such that
for the resulting closed-loop system with no input, described
by [

ż
ẇ

]
=

[
A P +BL
0 S

] [
z
w

]
:= ALp

[
z
w

]
, (4.1)

e =
[
CΛ Q+DL

] [z
w

]
, (4.2)

we have e ∈ L2
α([0,∞);Y ) for some α < 0 and for all initial

conditions z(0) = z0 ∈ Z and w(0) = w0 ∈ W (i.e., for any
initial state in X).

To clarify that the equations (4.1), (4.2) are correctly for-
mulated, we investigate the closed-loop system obtained by
subjecting Σp to state feedback via [0 L].

Figure 1. The closed-loop system corresponding to the state
feedback regulator problem. The closed-loop system is not
asymptotically stable, but the error is in L2

α([0,∞);Y ) with
α < 0, like the output of an exponentially stable system.

Proposition IV.2. For every L ∈ L(W,U), if we define Fp ∈
L(Z ×W,U) by Fp =

[
0 L

]
, then the following holds:

(1) The triple (Ap , Bp , Fp) is regular (with state space X).
(2) The transfer function

[
I−Fp(sI−Ap)−1Bp

]−1
is proper

(actually, it is I because Fp(sI −Ap)−1Bp = 0).
(3) The operator ALp = Ap+BpFp (see (4.1)) with its natural

domain,

D(ALp ) =

{[
z
w

]
∈ X

∣∣∣∣Az + (P +BL)w ∈ Z
}
,

is the generator of an operator semigroup Tp,L on X . For

each t ≥ 0, Tp,Lt has the upper triangular form
[
Tt ∗
0 eSt

]
.

(4) If we define CLp to be the restriction of [CΛ Q+DL] to
D(ALp ), then CLpΛ (the Λ-extension of CLp ) satisfies

CLpΛ =
[
CΛ Q+DL

]
and (ALp , Bp , C

L
p ) is regular (with state space X).

Proof: From Proposition III.3 we know that
(Ap, Bp, Cp, Dp) are the generating operators of a regular
linear system with state x = [ zw ] and output e. We build an
extension Σ̃p of this system by adding to it a second output
v = Fpx = Lw. Since Fp is bounded, using (2.4) we get that
claim (1) holds and Σ̃p is a regular linear system with the
generating operators (Ap, Bp, C̃p, D̃p), where

C̃p =

[
CΛ Q
0 L

]
, D̃p =

[
D
0

]
.

We are interested in the closed-loop system Σ̃Kp obtained
from Σ̃p by applying to it the output feedback operator K =

[0 I]. For Σ̃Kp to be well-posed, according to [49, Proposition
3.6 and Theorem 6.1], we need that I − KG̃ has a proper
inverse, where G̃ is the transfer function of Σ̃p. It is easy
to check that KG̃ = Fp(sI − Ap)−1Bp = 0, so that indeed
Σ̃Kp is well-posed and also our claim (2) holds. According to
[49, Proposition 4.6 and Theorem 4.7] Σ̃Kp is regular, and its
feedthrough operator is D̃p. From [49, Proposition 5.3 and
Theorem 7.2] we get that the semigroup generator of Σ̃Kp
is ALp , which confirms the first part of our claim (3). The
upper triangular form of Tp,Lt follows directly from the upper
triangular form of ALp . Using again [49, Theorem 7.2] we see
that the observation operator of Σ̃Kp is

C̃Kp =

[
CΛ Q+DL
0 L

]
,

with domain D(ALp ). According to [49, Proposition 7.1]

and (3.10), its Λ-extension is
[
CΛ Q+DL
0 L

]
, with domain

D(CΛ) × W . Looking at the first line of C̃Kp and its Λ-
extension, we see that claim (4) is also true.

Lemma IV.3. If R ∈ L(W,Y ) is such that the function m(t) =
ReStw0 belongs to L2

α([0,∞);Y ) for some α < 0 and all
w0 ∈W , then R = 0.

Proof: Fix 0 < β < |α| and w0 ∈W and define the func-
tion v(t) = eβtm(t). We can factor v(t) = e(α+β)t[e−αtm(t)].
Since α+ β < 0 and m ∈ L2

α([0,∞);Y ), both factors are in
L2, so that v ∈ L1([0,∞);Y ) and hence

v̂(s) = R((s− β)I − S)−1w0 , v̂ ∈ H∞(C+
0 ;Y ) . (4.3)

This needs some explanation. The above formula for v̂ only
holds for s − β in some right half-plane contained in ρ(S).
Nevertheless, v̂ is defined on all of C+

0 and it is an analytic
continuation of the function defined by the above formula.

Let ω = β/2. Since σ(S) ⊂ C+
0 , we have the following

bound for the semigroup e−St : ‖e−St‖ ≤ Mωe
ωt for some

Mω ≥ 1 and all t ≥ 0. This implies that
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‖(sI + S)−1‖ ≤ Mω

Re s− ω
∀ s ∈ C+

ω ,

or equivalently that

‖((s− β)I − S)−1‖ ≤ Mω

ω − Re s
for Re s < ω.

This, along with (4.3), shows that v̂ has a bounded analytic
continuation to the left half-plane where Re s < ω. Since we
already know that v̂ is bounded and analytic on C+

0 , it follows
that it is a bounded entire function. By Liouville’s theorem, v̂
is constant. It is easy to see that the limit of v̂ at infinity is 0,
and hence v̂ = 0. Therefore, for every t ≥ 0 we have v(t) = 0
and hence m(t) = 0. Since this is true for every w0 ∈W , we
get that R = 0.

The next theorem is the main result of this section and it
gives necessary and sufficient conditions for the solvability of
the state feedback regulator problem.

Theorem IV.4. Suppose that there exist operators Π ∈
L(W,Z) and Γ ∈ L(W,U) satisfying the regulator
equations

ΠS = AΠ +BΓ + P, (4.4)
0 = CΛΠ +DΓ +Q. (4.5)

The first regulator equation holds in L(W,Z) and the
second holds in L(W,Y ). In this case a feedback law
solving the linear state feedback regulator problem is

u(t) = Γw(t) . (4.6)

Conversely, if an operator L ∈ L(W,U) solves the
linear state feedback regulator problem, then there exists
Π ∈ L(W,Z) such that, taking Γ = L, the equations
(4.4)–(4.5) are satisfied.

We mention that (in the context of the above theorem) if L
exists, it may be non-unique, as explained in Remark V.4.

Proof: We start by proving the second (converse) part of
the theorem. Suppose that u(t) = Lw(t) solves the linear state
feedback regulator problem. According to Lemma III.4 the
Sylvester equation (3.15) has a unique solution Π ∈ L(W,Z)
for this L. Hence Γ = L and Π satisfy the first regulator
equation (4.4). We want to show that this Γ and Π solve the
second regulator equation (4.5) as well. For any w0 ∈W , we
claim that

[
Πw0
w0

]
∈ D(ALp ) and

Tp,Lt
[
Πw0

w0

]
=

[
ΠeStw0

eStw0

]
∀ t ≥ 0 . (4.7)

Indeed, if we differentiate the right-hand side, using (3.15) we
obtain
d

dt

[
ΠeStw0

eStw0

]
=

[
(AΠ +BL+ P )eStw0

SeStw0

]
= ALp

[
ΠeStw0

eStw0

]
.

Recall that Ran Π ⊂ Z
∼
⊂ D(CΛ). Thus we can apply[

CΛ Q+DL
]

to (4.7) and use (4.2) to obtain that

e(t) = (CΛΠ +DL+Q)eStw0 ∀ t ≥ 0 , (4.8)

when the initial condition for (4.1) is
[

Πw0
w0

]
. By assumption,

for some α < 0, e ∈ L2
α([0,∞);Y ) for all w0 ∈ W and

σ(S) ⊂ C+
0 . According to Lemma IV.3 (with R = CΛΠ +

DL+Q) we get that CΛΠ +DL+Q = 0. Thus, (4.5) holds
with Γ = L.

Now we prove the first part of the theorem. Suppose
that the regulator equations (4.4) and (4.5) are satisfied by
Π ∈ L(W,Z) and Γ ∈ L(W,U). Define L = Γ, then the
first regulator equation becomes (3.15). We define a closed
subspace X+ of X = Z×W as the graph of the mapping Π,
i.e.,

X+ =

{[
Πw
w

] ∣∣∣∣w ∈W} .
As already mentioned at (4.7), X+ ⊂ D(ALp ) and X+ is
Tp,Lt -invariant. For any initial condition [ z0w0

] ∈ X we have

Tp,Lt
[
z0

w0

]
= Tp,Lt

[
Πw0

w0

]
+ Tp,Lt

[
z0 −Πw0

0

]
.

Formula (4.7) and the upper triangular form of Tp,Lt (claim
(3) in Proposition IV.2) imply that

Tp,Lt
[
z0

w0

]
=

[
ΠeStw0

eStw0

]
+

[
Tt(z0 −Πw0)

0

]
.

Applying [CΛ Q+DL] to the above equation, using (4.2)
and CΛΠ +Q+DL = 0, we get that

e(t) = CΛTt(z0 −Πw0) .

Since T is exponentially stable and CΛ is an admissible
observation operator for T, it follows that e ∈ L2

α([0,∞);Y )
for some α < 0. Therefore, the linear state feedback regulator
problem is solved by u = Γw.
Remark IV.5. In the first part of the above proof, where the ne-
cessity of the regulator equations (4.4) and (4.5) is established,
the existence of the mapping Π that solves (4.4) for the given
L follows from Lemma III.4. The existence of such a Π can
also be inferred using the notions of spectral decomposition
and spectral projections, see [12, Lemma 2.5.7]. The rest of
the proof of necessity remains the same.
Remark IV.6. This long remark is about a more general version
of the state feedback regulator problem. The feedback usually
encountered in the state feedback regulator theory for possibly
unstable plants with bounded control and observation operators
is of the form u = Fz + Lw, where F ∈ L(Z,U) and L ∈
L(W,U), see for instance [4], [28]. In this paper, where we
generalize the theory to regular linear systems, it would seem
natural to consider in Problem IV.1 a possibly unstable A and
a feedback control law of the form

u(t) = FΛz(t) + Lw(t) ,

where F ∈ L(Z1, U) is a stabilizing state feedback operator
for the plant. This means (see [50]) that (A,B, F ) is regular
(see Definition II.1), the transfer function [I − FΛ(sI −
A)−1B]−1 is proper and A + BFΛ is exponentially stable.
Of course, the requirement on e would remain the same. This
is a generalization of the state feedback regulator problem,
as we allow unstable plants and we have a larger class of
feedback laws to choose from, and for certain additional
control objectives this might be desirable. In this case, in
Proposition IV.2 we would have to take Fp = [FΛ L], with
D(Fp) = D(Ap). With this more general Fp, claims (1) and
(2) in Proposition IV.2 would remain unchanged (but now they
would be less trivial to prove, and the transfer function in (2)
would not be I). In claim (3) we would have to modify the
domain to
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D(ALp ) =

{[
z
w

]
∈ X

∣∣∣∣(A+BFΛ)z + (P +BL)w ∈ Z
}

and the restriction of Tp,Lt to Z would be TFt . Here TFt is
the exponentially stable operator semigroup generated by A+
BFΛ. In claim (4) [CΛ Q+DL] would have to be replaced
with [CΛ +DFΛ Q+DL].

If we adopt the above more general statement of the state
feedback regulator problem, with a possibly unstable A for
which a stabilizing state feedback operator F exists, then
Theorem IV.4 remains valid, except that its last line (equation
(4.6)) has to be replaced with

u(t) = FΛz(t) + (Γ− FΛΠ)w(t) .

The proof of this more general version of Theorem IV.4 is
similar to the proof given above. If we assume that A is
exponentially stable (for reasons mentioned at the beginning of
Section I), then comparing the two versions of Theorem IV.4
we see that the solvability of Problem IV.1 is equivalent to
the solvability of its more general version. This is one reason
why we have adopted the simpler version of the problem in
this paper. The other reason is that when we shall solve the
error feedback regulator problem in a follow-up paper, we
shall use the feedback law u = Lŵ, where L solves the state
feedback regulator problem as stated in this paper, while ŵ is
an estimate of w obtained by a finite-dimensional estimator.

When solving the regulator problem for a plant that is a
boundary control system, it may be advantageous to use an
alternative form of (4.4), as described below.

Proposition IV.7. Suppose that the first plant equation from
(3.1) can be written alternatively as a boundary control system,
as in (3.18) (with the spaces and operators as in Remark
III.5). Then the first regulator equation (4.4) can be rewritten
equivalently as the following two equations:

ΠS = ÃΠ , GΠ = BΓ + B1C1 . (4.9)

Proof: Assume that the first regulator equation holds. We
have explained in Remark III.5 that the plant can be written in
the standard form (3.1) if we denote B = B̃B and B1 = B̃B1.
Hence the first regulator equation is

ΠS = AΠ + B̃
(
BΓ + B1C1

)
. (4.10)

We apply GA−1 to both sides and use the fact that GA−1 is
zero on Z:

GΠ +GA−1B̃
(
BΓ + B1C1

)
= 0 .

Now we recall from Remark III.5 that for every s ∈ ρ(A),
G(sI − A)−1B̃ = I , so that GA−1B̃ = −I . Hence, the first
regulator equation implies that GΠ = BΓ+B1C1, as claimed
in the second part of (4.9). If we substitute this formula into
(4.10), we get ΠS = AΠ + B̃GΠ. Since (as mentioned in
Remark III.5) we have Ã = A+ B̃G (where A ∈ L(Z,Z−1)),
we obtain from here the first part of (4.9).

Conversely, suppose that (4.9) holds. From the first equation
we obtain, using that Ã = A+ B̃G, that ΠS = AΠ + B̃GΠ.
Express here GΠ using the second equation from (4.9), to
obtain ΠS = AΠ + B̃

(
BΓ + B1C1

)
. Using that B̃B = B,

B̃B1 = B1 and P = B1C1, we get (4.4).

Remark IV.8. The recent paper Paunonen and Pohjolainen
[41] explores the error feedback regulator problem for a plant

of the type (3.1), with bounded B1, D1 = 0 and with
unbounded B ∈ L(U,Z−1) and C ∈ L(Z1, Y ) but without
any admissibility or well-posedness assumptions. The error
feedback controller is possibly infinite-dimensional as well,
but its control operator is bounded. The authors assume that
the interconnection of the two systems leads to a strongly
continuous and strongly stable semigroup on the product state
space. Moreover, they assume that a certain Sylvester equation
has a solution in the right space. The exosystem operator S
is allowed to be unbounded, with imaginary eigenvalues and
Jordan blocks. Under these assumptions, they show that the
controller solves a version of the error feedback problem iff
certain equations, formulated in terms of the operators of the
closed loop system, are solvable. (They call these equations
the regulator equations.) They also explore a robust version
of the output regulation problem. We think that there is no
overlap at all between our results and those of [41].

V. SOLVABILITY OF THE REGULATOR EQUATIONS

In Section IV we have characterized the solvability of the
state feedback regulator problem in terms of the solvability
of the regulator equations. In this section, following Byrnes
et al [4], we characterize the solvability of the regulator
equations in terms of the nonresonance condition between the
system transmission zeros and the natural frequencies of the
exosystem. Under some reasonable additional assumptions on
S, we also give an explicit formula for the feedback operator
L that solves the state feedback regulator problem.

Assumptions. We continue to use the assumptions and the
notation of Section III. Thus, the plant to be controlled is
described by (3.1) and the exosystem by (3.2). In addition,
we assume that W is finite-dimensional and certain eigen-
vectors of S are an (algebraic) basis in W (i.e., S has no
Jordan blocks). The basis assumption is made to simplify our
presentation and can be dropped (see Remark V.3).

Recall that since A is exponentially stable and S is com-
pletely unstable, σ(A) ∩ σ(S) = ∅. Denote ω0 = ω0(T) < 0.
We denote G(s) = CΛ(sI −A)−1B+D, defined on C+

ω0
, so

that G is the transfer function of the plant from u to y.
Definition V.1. s0 ∈ C+

ω0
is a transmission zero of G if G(s0)

is not onto.
The following theorem is the main result of this section.

Theorem V.2. The regulator equations (4.4) and (4.5) are
solvable for any P ∈ L(W,Z−1) and any Q ∈ L(W,Y )
such that CΛ(sI − A)−1P exists for some (hence, for
every) s ∈ ρ(A), if and only if each λ ∈ σ(S) is not a
transmission zero of G.

In this case, a feedback operator L that solves Problem
IV.1 is defined by its action on a basis of eigenvectors wi
of S as follows:

Lwi = −G∗(λi) [G(λi)G
∗(λi)]

−1

·
[
CΛ(λiI −A)−1Pwi +Qwi

]
, (5.1)

where λi is the eigenvalue corresponding to wi.

Proof: Suppose that the regulator equations are solvable
for any P and Q such that CΛ(sI − A)−1P exists for some
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s ∈ ρ(A). Then from Theorem IV.4, for each such P and Q,
there exists a feedback law u = Lw that solves Problem IV.1.
With this feedback, the equations of the closed-loop system
are (4.1) and (4.2). It is easy to see that

ê(s) = C(sI −A)−1z(0) + H(s)(sI − S)−1w(0) , (5.2)

where
H(s) = CΛ(sI−A)−1(P+BL)+Q+DL ∀ s ∈ C+

ω0
, (5.3)

and the formula for ê(s) holds on any right half-plane to the
right of σ(S). Choosing z(0) = 0 and w(0) = wi, we obtain

ê(s) = H(s)
wi

s− λi
. (5.4)

By analytic continuation, this remains valid on C+
ω0

, except
at the point λi. Since the feedback u = Lw solves the state
feedback regulator problem, e ∈ L2

α([0,∞);Y ) for some α <
0, so that ê is analytic on C+

α . Comparing this with (5.4), we
get

H(λi)wi = 0 ∀ λi ∈ σ(S) . (5.5)

Since this equality must hold for any P and Q as in the
theorem, we get

RanG(λi) = Y ∀ λi ∈ σ(S) . (5.6)

Indeed, this follows from the fact that when P = 0, then
H = GL+Q.

Conversely, suppose that the condition (5.6) holds, so that
G(λi)G

∗(λi) is bijective and therefore, using the bounded
inverse theorem, invertible. On the set of eigenvectors of S,
which is a basis in W , define L using (5.1). It then follows
that

−G(λi)Lwi = CΛ(λiI −A)−1Pwi +Qwi

and from here we can easily derive (5.5). From (5.2) we see
that the component of e due to z(0) is in L2

α([0,∞);Y ) for
any α such that ω0 < α < 0. By using superposition in (5.2)
we see that it is enough to verify that e ∈ L2

α([0,∞);Y ) (with
α < 0) when z(0) = 0 and w(0) = wi. In this case,

ê(s) = H(s)
wi

s− λi
∀ s ∈ C+

γ , (5.7)

for some γ > 0 with C+
γ ∩σ(S) = ∅. Using (5.5) and analytic

continuation, we can rewrite (5.7):

ê(s) = [H(s)−H(λi)]
wi

s− λi
∀ s ∈ C+

ω0
.

Using (5.3) and the resolvent identity, this becomes

ê(s) = − C(sI −A)−1(λiI −A)−1(P +BL)wi .

Notice that the vector zi = −(λiI − A)−1(P + BL)wi is
in Z. Therefore, for almost every t ≥ 0, e(t) = CΛTtzi,
which shows (as explained in Section II after (2.3)) that e ∈
L2
α([0,∞);Y ) for any α such that ω0 < α < 0.
Thus, the linear state feedback regulator problem, and

consequently also the regulator equations (see Theorem IV.4)
can be solved using L defined in (5.1).

Remark V.3. All the conclusions of Theorem V.2, except the
formula for L, remain valid when the eigenvectors of S do
not span W . In this case, L is given by more complicated
formulas. For example, assume that some of the eigenvalues
λi correspond to Jordan blocks of order 2, which means that
we can find for them an eigenvector wi and a generalized

eigenvector w̃i such that Sw̃i = λiw̃i + wi. We assume for
simplicity that there are no Jordan blocks of higher order for
S. Any vector in W has a unique representation as a linear
combination of the eigenvectors wi, i ∈ {1, 2, . . . p}, and the
generalized eigenvectors w̃i, which exist for a subset J ⊂
{1, 2, . . . p} of the indices i. Thus, L is completely defined
by its action on these vectors.

Only the “conversely” part of the proof of Theorem V.2
needs to be adjusted in this more general situation. If G(λi)
is onto for each eigenvalue, we have to construct L ∈ L(W,U)
that solves the state feedback regulator problem.

We define L as follows: Lwi is defined by (5.1), while

Lw̃i = −G∗(λi) [G(λi)G
∗(λi)]

−1[
CΛ(λiI −A)−1Pw̃i

+ Qw̃i −CΛ(λiI −A)−2(P +BL)wi
]
. (5.8)

By using superposition in (5.2) it is enough to verify e ∈
L2
α([0,∞);Y ) for z(0) = 0 and w(0) = wi or w(0) = w̃i.

But for w(0) = wi we have already verified this in the proof
of Theorem V.2. Thus, it remains to verify the case z(0) = 0
and w(0) = w̃i. Then, using (5.5),

ê(s) = H(s)

(
wi

(s− λi)2
+

w̃i
s− λi

)
=

1

s− λi

(
H(s)−H(λi)

s− λi
wi + H(s)w̃i

)
. (5.9)

Due to (5.5), the expression in the large parentheses above is
analytic for s in a neighborhood of λi, regardless of the choice
of Lw̃i. Our choice in (5.8) is dictated by the need to ensure
that this large parentheses converges to zero when s→λi (so
that ê is analytic on Cω0 ). Indeed, the choice (5.8) implies that

H′(λi)wi + H(λi)w̃i = 0 .

Hence, we can subtract the above zero expression from the
expression in the large parentheses in (5.9), obtaining that

ê(s) =
1

s− λi

(
H(s)−H(λi)

s− λi
−H′(λi)

)
wi

+
H(s)−H(λi)

s− λi
w̃i .

Using (5.3) and twice the resolvent identity, this becomes

ê(s) = C(sI −A)−1(λiI −A)−2(P +BL)wi

− C(sI −A)−1(λiI −A)−1(P +BL)w̃i .

From this it follows that e ∈ L2
α([0,∞);Y ) for any α ∈

(ω0, 0), as at the end of the proof of Theorem V.2.
Remark V.4. The feedback operator L in Theorem V.2 (and
also in Remark V.3) is not unique, in general. Indeed, every-
thing in this theorem and its proof (and also in the remark)
remains valid if we replace G∗(λi)[G(λi)G

∗(λi)]
−1 with

some other right inverse of G(λi).
From Theorem V.2 it follows that for a given pair P and

Q, (5.6) is a sufficient condition for the regulator equations to
be solvable. When U = C and Y = C, under an additional
hypothesis, this condition also becomes necessary.
Corollary V.5. Let U = Y = C. Assume that the pair
(Ap , Cp) is detectable in the sense of [50] and Hp ∈
L(U,X−1) detects this pair (this implies that (Ap , Hp , Cp)
is a regular triple and Ap+HpCpΛ generates an exponentially



10

stable semigroup). Then the regulator equations (4.4) and (4.5)
have a solution for a given P ∈ L(W,Z−1) and Q ∈ L(W,Y )
such that CΛ(sI −A)−1P exists for some (hence, for every)
s ∈ ρ(A), if and only if for each λi ∈ σ(S), G(λi) 6= 0.

Proof: The sufficiency of the condition G(λi) 6= 0
follows from Theorem V.2. To establish its necessity assume
that a feedback law u = Lw solves the state feedback regulator
problem. Each λi ∈ σ(S) is also an eigenvalue of Ap with the
corresponding eigenvector being

vi =

[
(λiI −A)−1Pwi

wi

]
,

where wi is the eigenvector of S corresponding to λi. It
follows from (3.6) and (3.10) that vi ∈ D(CpΛ). We will show
that CpΛvi 6= 0 for each i ∈ {1, 2, . . . , k}.

Fix i and consider the exponentially stable system

Θ̇ = (Ap +HpCpΛ)Θ, Θ(0) = vi .

Assume that CpΛvi = 0. Then CpΛTpt vi = eλitCpΛvi = 0.
Clearly the function Θ(t) = Tpt vi is the unique classical so-
lution to the above exponentially stable system and Tpt vi → 0
as t→∞. Since Ap is upper triangular, so is Tpt (claim (3) in
Proposition IV.2 with L = 0). In particular, Tpt vi → 0 implies
that eStwi → 0, as t → ∞, which is impossible. Therefore
CpΛvi 6= 0 for all i and for each λi ∈ σ(S),

CΛ(λiI −A)−1Pwi +Qwi 6= 0 .

This fact along with (5.5), which holds here for reasons similar
to those in the proof of Theorem V.2, implies that CΛ(λiI −
A)−1B +D 6= 0, i.e., G(λi) 6= 0 for each λi ∈ σ(S).

Remark V.6. At the beginning of Section III we have assumed
that (A,B,C) is regular. This will be convenient for our
planned follow-up paper about the error feedback regulator
problem. However, all our results in Sections III, IV and
V except Propositions III.3 and IV.2 remain valid when we
replace the assumption that (A,B,C) is regular with the
weaker assumption that C is admissible for the semigroup
generated by A, B maps into Z−1 and for some (hence,
for every) s ∈ ρ(A), the product CΛ(sI − A)−1B exists.
In Proposition III.3, the claim that the triple (Ap , Bp , Cp) is
regular must be replaced with the claim that Bp ∈ L(U,X−1),
Cp ∈ L(D(CΛ) ×W, Y ) is admissible for Tp and for some
(hence, for every) s ∈ ρ(Ap), the product CpΛ(sI −Ap)−1Bp
exists. The claims regarding triples of operators in Proposition
IV.2 (claims (1) and (4)) must be similarly modified.

VI. EXAMPLES OF STATE FEEDBACK REGULATION

We present three examples of state feedback regulation
which illustrate our theory. In these examples the plant is
an infinite-dimensional control system governed by either a
parabolic or hyperbolic partial differential equation with the
controls acting via the boundary conditions (in fact, we con-
sider one- and two-dimensional heat equations on the domains
[0, 1] and [0, 1]× [0, 1], respectively, and a Rayleigh beam on
[0, π]). In each example we solve the regulator equations to
obtain the desired feedback control law and we illustrate its
performance via numerical simulation.

Example VI.1. Consider a one-dimensional heat equation on
the interval [0, 1] with a Robin boundary control u(t) at the
right end point (x = 1) and a Neumann boundary disturbance
d(t) acting at the left end:

∂z

∂t
(x, t) =

∂2z

∂x2
(x, t), x ∈ (0, 1) , z(x, 0) = ϕ(x) , (6.1)

−∂z
∂x

(0, t) = d(t) ,
∂z

∂x
(1, t) + kz(1, t) = u(t) , (6.2)

where ϕ(x) ∈ L2(0, 1) and k > 0 is a constant. Assume that
the output y(t) is obtained via point evaluation of the state
z(x, t) at a prescribed point x1 ∈ [0, 1]:

y(t) = Cz(t) = z(x1, t) . (6.3)
Our objective is to design a state feedback law which guar-

antees that the output (6.3) tracks a given sinusoidal reference
r(t) = M sin(ωt + ψ), where M,ω, ψ ∈ R, while rejecting
a known disturbance d(t) = c1 + c2t, where c1, c2 ∈ R. For
this, we construct the exosystem as in (3.2), with

S =


0 ω 0 0
−ω 0 0 0
0 0 0 1
0 0 0 0

 , Q1 =
[
1 0 0 0

]
,

C1 =
[
0 0 1 0

]
.

(6.4)

It is clear that if we choose a suitable initial state w(0), this
exosystem will generate the given signals r and d. We intend
to apply Theorem IV.4 to find a feedback law of the form
u(t) = Γw(t), where Γ ∈ R4 ensures that for some α < 0, the
error e = y− r is in L2

α([0,∞);C) for every initial condition
of the plant and the exosystem.

The system (6.1)–(6.3) can be reformulated in the abstract
form (3.1) (see also [3] where a similar heat equation is con-
sidered in higher dimensions). Here we merely list the relevant
spaces and operators, working with real-valued functions only:

1) Z = L2[0, 1], U = Y = R, A = d2/dx2 with
D(A) = {ϕ ∈ H2(0, 1) |ϕ′(0) = ϕ′(1) + kϕ(1) = 0}.

2) We have A∗ = A, so that (as explained after (2.1)) we
may regard Z−1 as the dual of Z1 with respect to the
pivot space Z. In particular, the distributions δξ (Dirac
pulse at the point ξ) are in Z−1 for any ξ ∈ [0, 1].

3) The operators B,B1 ∈ L(U,Z−1) are B = δ1, B1 = δ0.
4) The operator C ∈ L(Z1, Y ) is defined by Cφ = φ(x1).

It can be verified that D(CΛ) ⊃ H1(0, 1).
Thus we can replace the original plant (6.1)–(6.3) with the

following system:

ż = Az +B1d+Bu, y = CΛz . (6.5)

The well-posedness and regularity of the system (6.5) can be
established via trivial modifications to the results in [3]. It
is easy to verify that A is strictly negative and generates an
exponentially stable analytic semigroup.

A straightforward calculation shows that for all s ∈ C with
Re s ≥ 0 and x1 ∈ [0, 1], the transfer function for the system
(6.5) is (see [5])

G(s) = CΛ (sI −A)
−1
B =

cosh(x1
√
s)√

s sinh(
√
s) + k cosh(

√
s)
.

It is easy to see that for each k > 0, G is regular with
feedthrough zero.
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For the plant (6.5) driven by the exosystem determined
in (6.4), we seek a control law in the form u = Γw
that solves the regulator problem. Thus we seek mappings
Π ∈ L(R4, L2(0, 1)) and Γ ∈ L(R4,R) which satisfy the
regulator equations

ΠSw = AΠw +BΓw +B1C1w, (6.6)

0 = CΛΠw −Q1w, (6.7)

for all w ∈ R4. Since G(0) 6= 0, it follows from Theorem V.2
and Remark V.3 that such mappings exist if G(iω) 6= 0. Note
that these equations consist of a coupled system of one dimen-
sional elliptic boundary value problems (6.6) subject to the
algebraic constraint (6.7) and can be easily solved using ele-
mentary techniques. With the notation Γ =

[
γ1 γ2 γ3 γ4

]
where γj ∈ R, we obtain

γ1 =
Re (G(iω))

|G(iω)|2
, γ2 =

Im (G(iω))

|G(iω)|2
,

γ3 = kx1 − k − 1 , γ4 = −k
3
x3

1 +
k

2
x1 + x1 −

k

6
− 1

2
.
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Figure 2. Plot of the tracking error in Example
VI.1. The error tends to zero.
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Figure 3. Plot of the reference signal sin(2t) and
of the plant output.

For the numerical simulation we take the initial condition
ϕ(x) = 3 cos(πx), k = 0.5, disturbance signal d(t) = 0.1(t+
1), reference signal r(t) = sin(2t) and observation point x1 =
0.25. The results are presented in Figures 2 and 3.

Example VI.2. We consider a set-point problem for
the heat equation on the rectangular domain Ω =

{(x1, x2) : 0 < x1 < 1, 0 < x2 < 1} ⊂ R2. The plant has
boundary controls (u1(t), u2(t)) imposed on two subsets of
its boundary:

∂z

∂t
(x, t) = ∆z(x, t) , x = (x1, x2) ∈ Ω , (6.8)

∂z

∂n
(x, t)

∣∣
∂Ω1

+ 2k

∫ 1
2

0

z(0, x2, t) dx2 = u1(t) , (6.9)

∂z

∂n
(x, t)

∣∣
∂Ω2

+ 2k

∫ 1

1
2

z(1, x2, t)dx2 = u2(t) , (6.10)

∂z

∂n
(x, t)

∣∣
∂Ω0

= 0, z(x, 0) = ϕ(x) , (6.11)

where n denotes the outward normal, k > 0 is a constant and

∂Ω1 =
{
x = (x1, x2)

∣∣x1 = 0, 0 ≤ x2 ≤ 1/2
}
,

∂Ω2 =
{
x = (x1, x2)

∣∣x1 = 1, 1/2 ≤ x2 ≤ 1
}
,

∂Ω0 = ∂Ω− ∂Ω1 − ∂Ω2 .

The domain Ω and its boundary are shown in Figure 4. The
plant outputs are

y1(t) = 2

∫ 1
2

0

z(0, x2, t) dx2, y2(t) = 2

∫ 1

1
2

z(1, x2, t) dx2 .

Let u = [ u1
u2

] and y = [ y1y2 ]. Then the plant (6.8)–(6.11) can
be rewritten in the abstract form (2.5), with state space Z =
L2(Ω). Here A = ∆ with

D(A) =

{
ϕ ∈ H2(Ω)

∣∣∣∣ ∂ϕ

∂n
(x, t)

∣∣
∂Ω0

= 0,

∂ϕ

∂n
(x, t)

∣∣
∂Ω1

+ 2k

∫ 1
2

0

ϕ(0, x2, t) dx2 = 0,

∂ϕ

∂n
(x, t)

∣∣
∂Ω2

+ 2k

∫ 1

1
2

ϕ(1, x2, t) dx2 = 0

}
.

For each φ ∈ D(A), we have

〈Aφ, φ〉Z = −
∫

Ω

[(
∂ϕ

∂x1

)2

+

(
∂ϕ

∂x2

)2
]

dx

−2k

(∫ 1
2

0

φ(0, x2) dx2

)2

− 2k

(∫ 1

1
2

φ(1, x2) dx2

)2

,

which implies that for some small δ > 0, A+δI is dissipative.
Hence the semigroup associated with A is exponentially stable.

Figure 4. The rectangular domain Ω. The part of
the boundary ∂Ω0 is insulated. The control signal
is applied on the rest of the boundary.



12

The control operator is defined by

Bu = B1u1 +B2u2 = δ∂Ω1
u1 + δ∂Ω2

u2 ∈ H̃−2(Ω) ⊂ Z−1 .

For the definition of the space H̃−2(Ω), and further details,
see [3]. The definition of the operator C follows directly.
The well-posedness and regularity of the above system can
be established as in Byrnes et al [3].
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Figure 5. The constant reference signal of mag-
nitude −1 and the plant output y1 (average tem-
perature on ∂Ω1).
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Figure 6. The constant reference signal of mag-
nitude 3 and the plant output y2 (average temper-
ature on ∂Ω2).
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Figure 7. The temperature profile on the square
domain Ω at time t = 5.

Our objective in this example is to drive the average
temperature on ∂Ωj to a given constant Mj for j = 1, 2,
i.e., yj(t)−Mj ∈ L2

α([0,∞);R) for some α < 0. Therefore,
in the exosystem (3.2), we choose

S =

[
0 0
0 0

]
, Q1 =

[
1 0
0 1

]
.

According to our theory, we have to solve the regulator
equations

0 = ΠS = AΠ +BΓ , CΠ−Q1 = 0 . (6.12)

We denote by G the transfer function of the plant. It can be
checked that G(0) has the following structure: G(0) =

[
g h
h g

]
,

where g > h > 0, so that G(0) is onto. According to Theorem
V.2 we can solve (6.12) and

Γ = G(0)−1Q1 = − (CΛA
−1B)−1 .

In this problem we approximate Γ numerically by solving
the elliptic boundary value problem defined by the first equa-
tion in (6.12) under the constraint imposed by the second
equation. For the simulations we set k = 1, M1 = −1,
M2 = 3 and ϕ(x) = 0. The numerical results are shown
in Figures 5, 6 and 7.
Example VI.3. We consider a harmonic tracking problem for a
damped Rayleigh beam, in the presence of structural damping
(see [25]). We denote the transverse displacement of the beam
at the position x ∈ [0, π] and the time t ≥ 0 by q(x, t). The
beam equation, influenced by a boundary control u(t), is:

∂2q(x, t)

∂t2
−α∂

4q(x, t)

∂x2∂t2
−a∂

3q(x, t)

∂x2∂t
+
∂4q(x, t)

∂x4
= 0 , (6.13)

q(0, t)=q(π, t)=
∂2q

∂x2
(π, t)=0, − ∂

2q

∂x2
(0, t) = u(t), (6.14)

y(t) =
∂2q

∂x∂t
(0, t) . (6.15)

Here α > 0 is proportional to the moment of inertia of the
cross section of the beam and a > 0 is the damping coefficient.
This equation models a single-input-single-output boundary
control system with u being the torque applied at x = 0 and
the output y being the angular velocity at the same point.

We now briefly discuss the state space formulation for the
Rayleigh beam and refer to Weiss and Curtain [51] for more
details. Let H = H1

0(0, π) and V = H2(0, π) ∩ H1
0(0, π).

Define the inner product on H such that

〈ϕ, ψ〉H =

〈(
I − α d2

dx2

)
ϕ, ψ

〉
L2(0,π)

∀ ϕ, ψ ∈ V .

Consider the operator R : L2[0, π]→V defined as

R =

(
I − α d2

dx2

)−1

.

As a bounded operator on L2[0, π], R is strictly positive and
it leaves both H and V invariant. We define the operator A0 :
D(A0)→ H by

D(A0) =

{
ϕ ∈ H3(0, π)

∣∣∣∣ ϕ(0) = ϕ(π) = 0 ,

d2ϕ

dx2
(0) =

d2ϕ

dx2
(π) = 0

}
,
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A0ϕ =
d4

dx4
(Rϕ) ∀ ϕ ∈ D(A0) .

The operator A0 is strictly positive, self-adjoint and commutes
with R. We will use the following notation: H1 = D(A0),
H 1

2
= V , H− 1

2
= L2[0, π] and H−1 = H−1(0, π). A0 can

be extended to a bounded operator from H 1
2

to H− 1
2

that
commutes with R (hence, also with R−1).

We now rewrite (6.13)–(6.14) as a boundary control system
as in Remark III.5. We consider the transverse displacement q
and the velocity q̇ to be the state variables. Let Z = H 1

2
×H

and U = C be the state space and the input space. It is now
easy to see that the following operator A : D(A)→Z is m-
dissipative, hence a generator:

D(A) = H1 ×H 1
2
, A =

[
0 I
−A0 −A1

]
,

where A1 = − aR d2

dx2 ∈ L(V ). Note that A1 ≥ 0 on V and
on H . Define Ã0, the obvious extension of A0 to

D(Ã0) =

{
ϕ ∈ H3(0, π)

∣∣∣∣ ϕ(0) = ϕ(π) = 0,
d2ϕ

dx2
(π) = 0

}
,

and we define Ã :Z
∼
→Z, an extension of A, and G :Z

∼
→U by

Z
∼

= D(Ã0)×V, Ã =

[
0 I

−Ã0 −A1

]
, G

[
z1

z2

]
= −d2z1

dx2
(0).

Then the equations (6.13)–(6.14) can be written exactly as in
(3.18), with B = I and B1 = 0. Notice that the restriction of
Ã to KerG is A, as required. Moreover, Z

∼
defined above (as

in Remark III.5) coincides with Z
∼

from Remark III.1.

Define the operator C0 ∈ L(H 1
2
,C) by C0ϕ = dϕ

dx (0) and
the observation operator C : D(A)→C by C =

[
0 C0

]
,

which corresponds to the output equation (6.15). When a = 0
(no structural damping), it is established in [51] that the above
boundary control system with the observation operator C is
regular. Since A1 is a bounded operator, it follows from
[49], that the same is true when a 6= 0. In order to see
that A is exponentially stable one can, with straightforward
modifications, apply Proposition 3.14 and Theorem 3.18 in
[16] (in their notation, set A = −A0 and B = −A1). We
mention that the control operator is B = C∗.

We denote the two components of the state z by z1

(displacement) and z2 (velocity). We want to design a control
u such that the output y in (6.15) tracks a prescribed sinusoidal
trajectory r(t) = M sin(ωt + ψ) of known frequency ω > 0,
amplitude M , and phase ψ, i.e., the error e = y − r is in
L2
δ [0,∞) for some δ < 0. For any M and ψ, the signal r can

be generated by the exosystem in (3.2) with

S =

[
0 ω
−ω 0

]
, Q1 =

[
1 0

]
.

Using the notation Π =

[
Π1 Π2

Π3 Π4

]
and Γ =

[
Γ1 Γ2

]
, the

first regulator equation (4.4) rewritten in the equivalent form
(4.9) becomes

− ω2Π1 + Ã0Π1 − ωA1Π2 = 0 , (6.16)

−ω2Π2 + Ã0Π2 + ωA1Π1 = 0 , (6.17)

ωΠ1 = Π4 , −ωΠ2 = Π3 , (6.18)

−d2Π1

dx2
(0) = Γ1 , −d2Π2

dx2
(0) = Γ2 . (6.19)

From (6.16) and (6.17), using the definitions of Ã0, A1 and
R, we get that

Π′′′′1 + αω2Π′′1 + aωΠ′′2 − ω2Π1 = 0 , (6.20)
Π′′′′2 + αω2Π′′2 − aωΠ′′1 − ω2Π2 = 0 . (6.21)
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Figure 8. The control signal u = Γw for the
Rayleigh beam in Example VI.3.
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Figure 9. The sinusoidal reference signal and the
plant output.
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Figure 10. The tracking error in Example VI.3.
This error tends to zero.

Since Ran Π ⊂ Z
∼

(see Lemma III.4), we have Π1,Π2 ∈
D(Ã0) and therefore

Π1(0) = Π2(0) = Π1(π) = Π2(π) = 0 , (6.22)

Π′′1(π) = Π′′2(π) = 0 . (6.23)
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The second regulator equation (4.5) and (6.18) give
Π′1(0) = 0 , Π′2(0) = − 1/ω . (6.24)

The ordinary differential equations in (6.20), (6.21), along
with the boundary conditions (6.22), (6.23) and (6.24), are
first solved for Π1 and Π2. The functions Π3, Π4, Γ1 and Γ2

can then be computed from (6.18) and (6.19).
For our numerical simulations we choose α = 1, a = 2,

M = 1 and ω = 1. Hence the signal to be tracked is
r(t) = sin(t). We set the initial conditions to be z1(x, 0) = 0,
z2(x, 0) = 0. The system (6.19)–(6.24) was solved using the
finite element package COMSOL [11] on the time interval
0 < t < 50. Our choice of using COMSOL is motivated by
its flexibility for solving coupled multi-physics problems. The
simulation results are presented in Figures 8, 9, 10 and 11.
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Figure 11. Displacement profile on the interval
[0, π] as a function of time.
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[23] T. Hämäläinen and S. Pohjolainen, “A finite-dimensional robust
controller for systems in the CD-algebra,” IEEE Trans. Automatic
Control, vol. 45, pp. 421-431, 2000.
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