Innate oscillations and signal propagation in engineered neuronal circuits

Yael Hanein
School of Electrical Engineering

Mark Shein Idelson
Wednesday, Poster session
Collective activation and activity propagation in engineered networks of neuronal clusters

http://www.eng.tau.ac.il/~hanein
TAU

Neuro-Engineering
• Mark Shein
• Nitzan Herzog
• Moshe David Pur
• Lilach Bareket
• Giora Beit-Ya’akov
• Assaf Shoval
• Raya Sorkin
• Alon Greenbaum
• Tamir Gabay
• Moti Ben-David

CNT MEMS
• Assaf Ya’akovovitz (ME),
• Gabi Karp
• Orly Levy
• Ze’ev Abrams

nanoRectna
• Inbal Friedler,

Collaborators
• Eshel Ben-Jacob (Physics, TAU)
• Amir Ayali (Zoology, TAU)
• Sarit Anava
• Evelyne Sernagor (Neuro, UN)
• Christopher Adams
• Ori Cheshnovsky, Zvi Ioffe (Chem, TAU)
• Shlomo Yitzchaik (Chem, HUJI)
• Uri Banin (Chem, HUJI)
• Slava Krylov (ME, TAU)
• Andreas Griner (IMTEK, Germany)
• Jan Korvink (IMTEK, Germany)
• David Kauzlari’c
• Amir Boag (EE, TAU)
• Koby Scheuer (EE, TAU)
Engineered neuronal circuits

How do they form? How do they function?
Outline

• Motivation
• How self-engineering takes place?
 – Nano-topography (CNT)
• How does the activity of such systems look like?

• CNT based neuro-prosthetic devices
Motivation

- See the whole picture
- Function follows form
- Clusters are biologically relevant
Patterning

CNT electrodes

PDL patterns on TiN electrodes

Gabay et al. Nanotechnology, 2007
Self-assembled engineering

Clustered network development
First 7 DIV
PDL clusters on MCS electrode
Inter-cluster distance = 500μm
Cluster diameter = 200μm
cultured 05/11/09, Electrode 11953
Locust neurons on CNTs

Scale bar = 60 \mu m

Greenbaum et al., J NeuroSci Method 2009
Axonal Growth – Mechanics in Action
Double Clamped Beam Model

\[kC = T_0 \]
\[0.5(mN / m) \times 10^{-5} m = 5nN \]

Average value
The Axon and the Growth cone

- Axons: 1 μm thick and some are more than 1 m long
- Extensive growth, especially during developmental stages
- Extremely sensitive chemical sensors
- Mechanical tension
Mechanical Properties of Axons

\(\kappa \), Main spring constant \(\sim 0.05-0.7 \) mN/m > stiff \(E \sim 12 \) kPa (microtubules)

\(\kappa \), Secondary spring constant \(\sim 10^{-3} \) mN/m

\(\gamma \), neurite dissipation

\(M \), Molecular motors mechanical response

\(T_0 \), Neurite initial tension \(\sim 0-2 \) nN

\(T_{\text{max}} \), tension applied by Molecular Motors \(\sim 0-2 \) nN

Bernal PRL 2007, BioPhys J 2010
Role of Tension

- Tension and Network Wiring
- Tension and Cellular Mobility
- Tension and Cell Shape
- Tension and Adhesion
Axons and Tension

Anava et al, Biophysical Journal 2009
Neurite Pruning

Anava et al, Biophysical Journal 2009
“Synapses” with CNTs (antisynapsin)
Cell Mobility
Tension and Mobility

\[T_0 d_{up} = 2T_0 d_{down} \cos \theta \]
Tension, mobility & Clustering

Model
Actin, Mobility and Shape
Clustering
Preferred Adhesion to Rough Surfaces

Sorkin et al., Nanotechnology 2009

Greenbaum et al., J NeuroSci Method 2009
Twining – Thin Processes

Sorkin et al., Nanotechnology 2009
Twining and Scale

Sorkin et al., Nanotechnology 2009
Length Scales

Sorkin et al., Nanotechnology 2009
Tendrils and processes; Not Just a CNT Effect

Sorkin et al., Nanotechnology 2009
Entanglement

Neurons

Glia

Fluorescence confocal

HRSEM

Sorkin et al., Nanotechnology 2009
CNT Multi electrode array

SiO₂ TiN Si₃N₄

Si substrate

Ni+CNTs

Gabay et al. Nanotechnology, 2007
3D electrodes
Neuro Chips

- In vitro: Brain-on-a-chip
- In vivo: Neuroprosthetic Devices
Recordings with CNT MEA from Engineered Neural Circuits

Shein et al., Bio Med micro devices, 2009
Networks

Uniform

Engineered Clusters

Shein et al. 2009
Uniform networks

- Recruitment of the entire network (tens – hundreds of ms).
- All the neurons act as one unitary network – if the threshold for SB activation is reached, all the neurons in the network exhibit firing.
- High correlations are found both between adjacent as well as distant neurons.
Clusters;
Isolated and Connected
Isolated Cluster Activity
Onset of Bursting Activity
Isolated clusters

- Fast recruitment (tens of ms).
- All the neurons act as one unitary network.
- Persistent oscillations
Population Level Activity
Frequency range
Coupled clusters

- Restricted directionality
- Long delays between the activation of connected clusters
- Gating in the propagation of activity between clusters - not all initiated SBs propagate to the next cluster.
Clustered network

- Restricted directionality.
- Slow recruitment (hundreds of ms)
- Sequential activation of connected clusters.
- Correlations are high within each cluster and decrease in accordance with the topological distance between neurons.
- The SB is not necessarily activated in all the clusters in the network.
Neurons and CNTs
Flexible CNT Devices

After three months in the eye of a rat, Arie Solomon (TAU)
Summary

• Neuronal mechanics is very important in determining network structure
• Engineered networks are a very rich system for the investigation of neuronal systems
 – Oscillations
 – Asymmetry (gating)
• Three open questions:
 – How significant is the role of cellular mechanics in neuronal development and activity?
 – Are the precise details of neural networks matter?
 – Does spontaneous activity in developing networks determines their function?