Computer Assignment No. 2

Problem

Heat flow in a slab $0<x<L$.
$k=$ const., $f=0$. bc's: insulation at $x=0$ and $u(L)=0$. ic's: $\left.u\right|_{t=0}=u_{0}=$ const.

Maximum Principle

Extreme values of the solution of the homogeneous heat equation occur at $t=0$ or on the spatial boundary.

Computation

5 equal linear finite elements in space.
Backward Euler $(\alpha=1)$ in time.

$$
\Delta_{t}=\left\{\begin{array}{l}
0.25 h^{2} / k=0.01 L^{2} / k \\
0.025 h^{2} / k \\
0.0025 h^{2} / k
\end{array}\right.
$$

Nondimensional time is

$$
\frac{k t}{L^{2}}
$$

[Carslaw-Jaeger, 1959, p. 97]

$$
\Delta_{t}=0.025 h^{2} / k
$$

$$
\Delta_{t}=0.0025 h^{2} / k
$$

Exercise

1. Reproduce the numerical examples with the backward Euler method. Explain the results.
2. Repeat the numerical examples with the trapezoidal rule ($\alpha=1 / 2$). Try also a larger time step $\Delta_{t}=0.5 h^{2} / k$ (is it over the oscillation limit?).
3. Repeat the numerical examples with the explicit forward Euler method ($\alpha=0$, lumped "mass"). Try also a larger time step $\Delta_{t}=0.625 h^{2} / k$. Is it over the stability limit? Compare the stability limit based on the element-level estimate to the global value for this mesh.
