Preliminary

Hyperbolic functions $\quad \sinh ^{\prime} \alpha=\cosh \alpha, \cosh ^{\prime} \alpha=\sinh \alpha, \cosh ^{2} \alpha-\sinh ^{2} \alpha=1$
Euler formula $\quad e^{i \alpha}=\cos \alpha+i \sin \alpha$
Integration by parts

$$
\int_{0}^{T} \dot{\phi} \psi d t=-\int_{0}^{T} \phi \dot{\psi} d t+\left.(\phi \psi)\right|_{0} ^{T}, \quad \int_{0}^{L} \phi^{\prime} \psi d x=-\int_{0}^{L} \phi \psi^{\prime} d x+\left.(\phi \psi)\right|_{0} ^{L}
$$

Huygens-Steiner parallel axis theorem, the moment of inertia of a rigid body of mass m about an axis z

$$
I_{z}=I_{\mathrm{cm}}+m d^{2}
$$

I_{cm} is the moment of inertia about the parallel axis through the center of mass with perpendicular distance d.

SDOF - Free vibrations

Spring-mass-damper, IVP

$$
\begin{aligned}
m \ddot{x}+c \dot{x}+k x & =0 \\
x(0) & =x_{0} \\
\dot{x}(0) & =v_{0}
\end{aligned}
$$

Equation of motion, $\omega_{\mathrm{n}}=\sqrt{k / m}$ is natural frequency, $\xi=\frac{c}{2 \sqrt{k m}}$ is damping ratio

$$
\ddot{x}+2 \xi \omega_{\mathrm{n}} \dot{x}+\omega_{\mathrm{n}}^{2} x=0
$$

Solutions:

1. Underdamped $0<\xi<1$

$$
\begin{aligned}
x & =e^{-\xi \omega_{\mathrm{n}} t} X \cos \left(\omega_{\mathrm{d}} t-\phi\right) \\
X & =\sqrt{x_{0}^{2}+\left(\frac{\xi \omega_{\mathrm{n}} x_{0}+v_{0}}{\omega_{\mathrm{d}}}\right)^{2}} \\
\phi & =\arctan \left(\frac{\xi \omega_{\mathrm{n}} x_{0}+v_{0}}{x_{0} \omega_{\mathrm{d}}}\right)
\end{aligned}
$$

$\omega_{\mathrm{d}}=\sqrt{1-\xi^{2}} \omega_{\mathrm{n}}$ is damped frequency, X is amplitude, ϕ is phase angle.
Logarithmic decrement, displacements at two adjacent cycles give damping ratio

$$
\delta=\ln \frac{x(t)}{x\left(t+2 \pi / \omega_{\mathrm{d}}\right)}=\text { const., } \quad \xi=\frac{\delta}{\sqrt{4 \pi^{2}+\delta^{2}}}
$$

2. Critically damped $\xi=1$

$$
x(t)=\left(x_{0}+\left(\omega_{\mathrm{n}} x_{0}+v_{0}\right) t\right) e^{-\omega_{\mathrm{n}} t}
$$

3. Overdamped $\xi>1$

$$
x=e^{-\xi \omega_{\mathrm{n}} t}\left(\frac{\xi \omega_{\mathrm{n}} x_{0}+v_{0}}{\sqrt{\xi^{2}-1} \omega_{\mathrm{n}}} \sinh \left(\sqrt{\xi^{2}-1} \omega_{\mathrm{n}} t\right)+x_{0} \cosh \left(\sqrt{\xi^{2}-1} \omega_{\mathrm{n}} t\right)\right)
$$

SDOF - Periodic forced vibrations

Equation of motion, $F(t)$ is excitation force

$$
m \ddot{x}+c \dot{x}+k x=F(t)
$$

Harmonic excitation, ω is driving frequency

$$
F(t)=F_{0} \cos \omega t=F_{0} \operatorname{Re} e^{i \omega t}
$$

Equation of motion, $x_{\mathrm{st}}=F_{0} / k$ is static deflection

$$
\ddot{x}+2 \xi \omega_{\mathrm{n}} \dot{x}+\omega_{\mathrm{n}}^{2} x=\omega_{\mathrm{n}}^{2} x_{\mathrm{st}} \cos \omega t
$$

Particular solution (harmonic, steady-state)

$$
\begin{aligned}
x_{\mathrm{p}}(t) & =X^{\prime} \cos \left(\omega t-\phi^{\prime}\right) \\
X^{\prime}(\omega) & =\frac{x_{\mathrm{st}}}{\sqrt{\left(1-\left(\omega / \omega_{\mathrm{n}}\right)^{2}\right)^{2}+\left(2 \xi \omega / \omega_{\mathrm{n}}\right)^{2}}} \\
\phi^{\prime}(\omega) & =\arctan \left(\frac{2 \xi \omega / \omega_{\mathrm{n}}}{1-\left(\omega / \omega_{\mathrm{n}}\right)^{2}}\right)
\end{aligned}
$$

Frequency response ($\left.X^{\prime}=x_{\mathrm{st}}|G|\right)$

$$
G(\omega)=\frac{X(\omega)}{x_{\mathrm{st}}}=\frac{1}{\left(1-\left(\omega / \omega_{\mathrm{n}}\right)^{2}\right)+2 i \xi \omega / \omega_{\mathrm{n}}}
$$

Resonance $(\xi<1 / \sqrt{2})$

$$
X_{\mathrm{res}}=\max _{\omega} X^{\prime}=\left.X^{\prime}\right|_{\omega=\sqrt{1-2 \xi^{2}} \omega_{\mathrm{n}}}=\frac{x_{\mathrm{st}}}{2 \xi \sqrt{1-\xi^{2}}}
$$

Total undamped solution (transient + harmonic) at resonance

$$
x=\frac{x_{\mathrm{st}}}{2} \omega_{\mathrm{n}} t \sin \omega_{\mathrm{n}} t
$$

Unbalanced mass m with eccentricity e, rotating with velocity ω within larger mass $M-m$

$$
M \ddot{x}+c \dot{x}+k x=m e \omega^{2} \sin \omega t
$$

x is position of big mass, with amplitude (phase unchanged)

$$
|X|=e \frac{m}{M} \frac{\left(\omega / \omega_{\mathrm{n}}\right)^{2}}{\sqrt{\left(1-\left(\omega / \omega_{\mathrm{n}}\right)^{2}\right)^{2}+\left(2 \xi \omega / \omega_{\mathrm{n}}\right)^{2}}}
$$

Vibration isolation, transmissibility >1 for $0<\omega / \omega_{\mathrm{n}}<\sqrt{2}$, design isolation mount such that $\omega_{\mathrm{n}}<\omega / \sqrt{2}$.
Harmonic motion of support, amplitude ratio as forces in vibration isolation.
Vibration measurement, relative motion as in unbalanced mass.
Periodic excitation $F(t)=F(t+T)$ with period $T=2 \pi / \omega_{0}$.
Expansion of periodic excitation as (complex) Fourier series, $\omega_{p}=p \omega_{0}$.

$$
F(t)=\frac{1}{2} A_{0}+\operatorname{Re}\left(\sum_{p=1}^{\infty} A_{p} e^{i \omega_{p} t}\right)
$$

Complex Fourier coefficients

$$
A_{p}=\frac{2}{T} \int_{-T / 2}^{T / 2} F(t) e^{-i \omega_{p} t} d t, \quad p=0,1, \ldots
$$

Particular solution is superposition of harmonics

$$
\begin{aligned}
x & =\frac{A_{0}}{2 k}+\operatorname{Re}\left(\sum_{p=1}^{\infty} \frac{A_{p}}{k} \frac{e^{i\left(\omega_{p} t-\phi_{p}\right)}}{\sqrt{\left(1-\left(\omega_{p} / \omega_{\mathrm{n}}\right)^{2}\right)^{2}+\left(2 \xi \omega_{p} / \omega_{\mathrm{n}}\right)^{2}}}\right) \\
\phi_{p} & =\arctan \left(\frac{2 \xi \omega_{p} / \omega_{\mathrm{n}}}{1-\left(\omega_{p} / \omega_{\mathrm{n}}\right)^{2}}\right)
\end{aligned}
$$

Resonances, for ω_{0} such that $\omega_{0}=\omega_{\mathrm{n}} / p$ (when $\xi=0$).

SDOF - General forced vibrations

Response to general excitation with homogeneous initial conditions.
Impulse load, Dirac delta defined by its action on continuous functions

$$
\int_{-\infty}^{\infty} F(t) \delta(t-\bar{t}) d t=F(\bar{t})
$$

Equivalent to initial velocity $=1 / m$. Impulse response

$$
g(t)=\frac{1}{m \omega_{\mathrm{d}}} e^{-\xi \omega_{\mathrm{n}} t} \sin \omega_{\mathrm{d}} t, \quad t>0
$$

Step load, Heaviside function

$$
H(t-\bar{t})=\int_{-\infty}^{t} \delta(\tau-\bar{t}) d \tau= \begin{cases}0, & t<\bar{t} \\ 1, & t>\bar{t}\end{cases}
$$

Step response

$$
u(t)=\int_{0}^{t} g(\tau) d \tau=\frac{1}{k}\left(1-e^{-\xi \omega_{\mathrm{n}} t}\left(\cos \omega_{\mathrm{d}} t+\frac{\xi \omega_{\mathrm{n}}}{\omega_{\mathrm{d}}} \sin \omega_{\mathrm{d}} t\right)\right) H(t)
$$

General response, convolution integrals

$$
x(t)=\int_{0}^{t} F(\tau) g(t-\tau) d \tau=\int_{0}^{t} F(t-\tau) g(\tau) d \tau=F(0) u(t)+\int_{0}^{t} \frac{d F(\tau)}{d \tau} u(t-\tau) d \tau
$$

Shock spectrum, dependence of $x_{\max } / x_{\mathrm{st}}$ on T_{0} / T for loading characterized by $T_{0}\left(T=2 \pi / \omega_{\mathrm{n}}\right)$.
Truncated ramp

$$
\frac{x_{\mathrm{max}}}{x_{\mathrm{st}}}=1+\frac{T}{T_{0} \pi}\left|\sin \left(\pi T_{0} / T\right)\right|
$$

Multiple degrees of freedom

Undamped system, $N \times N$ coupled ODE's

$$
\begin{aligned}
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{K x} & =\mathbf{F} \\
\mathbf{x}(0) & =\mathbf{x}_{0} \\
\dot{\mathbf{x}}(0) & =\mathbf{v}_{0}
\end{aligned}
$$

Modal analysis, generalized algebraic eigenvalue problem

$$
\mathbf{K u}=\omega^{2} \mathbf{M} \mathbf{u}
$$

Characteristic equation is polynomial of degree N

$$
\operatorname{det}\left(\mathbf{K}-\omega^{2} \mathbf{M}\right)=0
$$

Roots $0 \leq \omega_{1} \leq \omega_{2} \leq \ldots \leq \omega_{N}$ are natural frequencies.
Eigenvectors are modes of vibration

$$
\left[\mathbf{K}-\omega_{r}^{2} \mathbf{M}\right] \mathbf{u}^{(r)}=\mathbf{0}, \quad r=1, \ldots, N
$$

Modes are M-orthogonal, when $\omega_{r} \neq \omega_{s}, r, s=1, \ldots, N$

$$
\mathbf{u}^{(r)^{T}} \mathbf{M} \mathbf{u}^{(s)}=0, \quad \mathbf{u}^{(r)^{T}} \mathbf{K} \mathbf{u}^{(s)}=0
$$

Modes may be M-normalized

$$
\mathbf{u}^{(r)^{T}} \mathbf{M} \mathbf{u}^{(r)}=1, \quad \mathbf{u}^{(r)^{T}} \mathbf{K} \mathbf{u}^{(r)}=\omega_{r}^{2}
$$

Modal superposition

$$
\mathbf{x}(t)=\sum_{r=1}^{N} \eta_{r}(t) \mathbf{u}^{(r)}
$$

By orthonormality, system of ODE's decouples to scalar modal equations, modal force $N_{r}(t)=\mathbf{u}^{(r)^{T}} \mathbf{F}(t)$

$$
\ddot{\eta}_{r}+\omega_{r}^{2} \eta_{r}=N_{r}, \quad r=1, \ldots, N
$$

Initial conditions

$$
\begin{aligned}
\eta_{r}(0) & =\mathbf{u}^{(r)^{T}} \mathbf{M} \mathbf{x}_{0} \\
\dot{\eta}_{r}(0) & =\mathbf{u}^{(r)^{T}} \mathbf{M} \mathbf{v}_{0}
\end{aligned}
$$

SDOF solution, general response by superposition

$$
\eta_{r}=\mathbf{u}^{(r)^{T}} \mathbf{M} \mathbf{x}_{0} \cos \omega_{r} t+\frac{1}{\omega_{r}} \mathbf{u}^{(r)^{T}} \mathbf{M} \mathbf{v}_{0} \sin \omega_{r} t+\frac{1}{\omega_{r}} \int_{0}^{t} N_{r}(\tau) \sin \omega_{r}(t-\tau) d \tau
$$

Semi-definite system, rigid body motion is possible, potential energy $U=\frac{1}{2} \mathbf{x}^{T} \mathbf{K} \mathbf{x}=0$ for $\mathbf{x} \neq \mathbf{0}$.
At least one frequency is zero (orthogonality is unaffected). For $\omega_{1}=0$

$$
\eta_{1}=\mathbf{u}^{(1)^{T}} \mathbf{M} \mathbf{x}_{0}+\mathbf{u}^{(1)^{T}} \mathbf{M} \mathbf{v}_{0} t+\int_{0}^{t} N_{1}(\tau)(t-\tau) d \tau
$$

Repeated frequencies, corresponding modes are arbirtrary to degree of repetition, mutually orthogonalize.
Rayleigh quotient

$$
R(\mathbf{u})=\frac{\mathbf{u}^{T} \mathbf{K} \mathbf{u}}{\mathbf{u}^{T} \mathbf{M} \mathbf{u}}, \quad R\left(\mathbf{u}^{(r)}\right)=\omega_{r}^{2}, \quad r=1, \ldots, N
$$

Frequency bounds

$$
\min R(\mathbf{u})=R\left(\mathbf{u}^{(1)}\right)=\omega_{1}^{2} \leq R(\mathbf{u}) \leq \omega_{N}^{2}=R\left(\mathbf{u}^{(N)}\right)=\max R(\mathbf{u})
$$

Estimate of fundamental frequency, R of trial mode (static deflection under forces proportional to masses).
Rayleigh damping $\mathbf{C}=a \mathbf{M}+b \mathbf{K}$, modal equation with damping ratio $\xi_{r}=\frac{1}{2}\left(a / \omega_{r}+b \omega_{r}\right)$

$$
\ddot{\eta}_{r}+2 \xi_{r} \omega_{r} \dot{\eta}_{r}+\omega_{r}^{2} \eta_{r}=N_{r}, \quad r=1, \ldots, N
$$

Continuous systems

Axial vibrations of an elastic rod, $m=\rho A$

$$
\begin{aligned}
m \ddot{u}-\frac{\partial}{\partial x}\left(E A \frac{\partial u}{\partial x}\right) & =f, \quad 0<x<L, \quad t>0 \\
u(x, 0) & =u_{0}(x) \\
\dot{u}(x, 0) & =v_{0}(x)
\end{aligned}
$$

Boundary conditions: clamped $\left.u\right|_{0, L}=0$, free $-\left.E A \frac{\partial u}{\partial x}\right|_{0}=0,\left.E A \frac{\partial u}{\partial x}\right|_{L}=0$,

$$
\text { spring }-\left.E A \frac{\partial u}{\partial x}\right|_{0}=-\left.k u\right|_{0},\left.E A \frac{\partial u}{\partial x}\right|_{L}=-\left.k u\right|_{L}, \text { mass }-\left.E A \frac{\partial u}{\partial x}\right|_{0}=-\left.M \ddot{u}\right|_{0},\left.E A \frac{\partial u}{\partial x}\right|_{L}=-\left.M \ddot{u}\right|_{L}
$$

Free vibrations $(f=0)$, separation of variables, substitute and collect terms

$$
u(x, t)=X(x) T(t), \quad \frac{\ddot{T}}{T}=\frac{\left(E A X^{\prime}\right)^{\prime}}{m X}=-\omega^{2}
$$

Time-dependence same as SDOF

$$
\ddot{T}+\omega^{2} T=0, \quad T=C \cos (\omega t-\phi)
$$

Continuous eigenvalue problem in x

$$
\left(E A X^{\prime}\right)^{\prime}+\omega^{2} m X=0, \quad 0<x<L
$$

Const. properties, $\beta^{2}=\rho \omega^{2} / E$, form of mode

$$
X=A \sin \beta x+B \cos \beta x
$$

Natural frequencies ω_{r} (from characteristic equation), modes $X_{r}, r=1,2, \ldots$, depend on boundary conditions. Orthonormal modes

$$
\int_{0}^{L} m X_{r} X_{s} d x+\underbrace{M X_{r}(L) X_{s}(L)}_{\text {mass at } L}=\delta_{r s}, \quad \int_{0}^{L} E A X_{r}^{\prime} X_{s}^{\prime} d x+\underbrace{k X_{r}(L) X_{s}(L)}_{\text {spring at } L}=\omega_{r}^{2} \delta_{r s}
$$

Similar applications: transverse vibrations of a taut spring, torsional vibrations of a circular shaft.
Bending vibrations of a thin beam

$$
m \ddot{u}+\frac{\partial^{2}}{\partial x^{2}}\left(E I \frac{\partial^{2} u}{\partial x^{2}}\right)=f, \quad 0<x<L, \quad t>0
$$

Time-dependence as before.
Boundary conditions: free $\left.E I \frac{\partial^{2} u}{\partial x^{2}}\right|_{0, L}=0(M=0),-\left.\frac{\partial}{\partial x}\left(E I \frac{\partial^{2} u}{\partial x^{2}}\right)\right|_{0, L}=0(Q=0)$,

$$
\text { clamped }\left.u\right|_{0, L}=0,\left.\frac{\partial u}{\partial x}\right|_{0, L}=0, \quad \text { pinned }\left.u\right|_{0, L}=0,\left.E I \frac{\partial^{2} u}{\partial x^{2}}\right|_{0, L}=0
$$

spring $-\left.\frac{\partial}{\partial x}\left(E I \frac{\partial^{2} u}{\partial x^{2}}\right)\right|_{0}=\left.k u\right|_{0}$ and $\left.E I \frac{\partial^{2} u}{\partial x^{2}}\right|_{0}=0,\left.\frac{\partial}{\partial x}\left(E I \frac{\partial^{2} u}{\partial x^{2}}\right)\right|_{L}=\left.k u\right|_{L}$ and $\left.E I \frac{\partial^{2} u}{\partial x^{2}}\right|_{L}=0$.
mass $-\left.\frac{\partial}{\partial x}\left(E I \frac{\partial^{2} u}{\partial x^{2}}\right)\right|_{0}=\left.M \ddot{u}\right|_{0}$ and $\left.E I \frac{\partial^{2} u}{\partial x^{2}}\right|_{0}=0,\left.\frac{\partial}{\partial x}\left(E I \frac{\partial^{2} u}{\partial x^{2}}\right)\right|_{L}=\left.M \ddot{u}\right|_{L}$ and $\left.E I \frac{\partial^{2} u}{\partial x^{2}}\right|_{L}=0$.
Free vibrations $(f=0)$, separation of variables, continuous eigenvalue problem in x

$$
\left(E I X^{\prime \prime}\right)^{\prime \prime}-\omega^{2} m X=0, \quad 0<x<L
$$

Const. properties, $\beta^{4}=m \omega^{2} /(E I)$, form of mode

$$
X=A \sin \beta x+B \cos \beta x+C \sinh \beta x+D \cosh \beta x
$$

Orthonormal modes

$$
\int_{0}^{L} m X_{r} X_{s} d x+\underbrace{M X_{r}(L) X_{s}(L)}_{\text {mass at } L}=\delta_{r s}, \quad \int_{0}^{L} E I X_{r}^{\prime \prime} X_{s}^{\prime \prime} d x+\underbrace{k X_{r}(0) X_{s}(0)}_{\text {spring at } 0}=\omega_{r}^{2} \delta_{r s}
$$

Modal superpositon, modal equations, modal force $N_{r}(t)=\int_{0}^{L} X_{r}(x) f(x, t) d x$

$$
u(x, t)=\sum_{r=1}^{\infty} X_{r}(x) \eta_{r}(t), \quad \ddot{\eta}_{r}+\omega_{r}^{2} \eta_{r}=N_{r}, \quad r=1,2, \ldots
$$

Modal solution, $\eta_{r}(0)=\int_{0}^{L} m X_{r} u_{0} d x, \dot{\eta}_{r}(0)=\int_{0}^{L} m X_{r} v_{0} d x$

$$
\eta_{r}=\eta_{r}(0) \cos \omega_{r} t+\frac{\dot{\eta}_{r}(0)}{\omega_{r}} \sin \omega_{r} t+\frac{1}{\omega_{r}} \int_{0}^{t} N_{r}(\tau) \sin \omega_{r}(t-\tau) d \tau, \quad r=1,2, \ldots
$$

