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Preliminary
Hyperbolic functions sinh′ α = coshα, cosh′ α = sinhα, cosh2 α− sinh2 α = 1
Euler formula eiα = cosα+ i sinα
Integration by parts∫ T

0

φ̇ψ dt = −
∫ T

0

φψ̇ dt+ (φψ)|T0 ,
∫ L

0

φ′ψ dx = −
∫ L

0

φψ′ dx+ (φψ)|L0

Huygens-Steiner parallel axis theorem, the moment of inertia of a rigid body of mass m about an axis z

Iz = Icm +md2

Icm is the moment of inertia about the parallel axis through the center of mass with perpendicular distance d.

SDOF - Free vibrations
Spring-mass-damper, IVP

mẍ+ cẋ+ kx = 0
x(0) = x0

ẋ(0) = v0

Equation of motion, ωn =
√
k/m is natural frequency, ξ =

c

2
√
km

is damping ratio

ẍ+ 2ξωnẋ+ ω2
nx = 0

Solutions:
1. Underdamped 0 < ξ < 1

x = e−ξωntX cos(ωdt− φ)

X =

√
x2

0 +
(
ξωnx0 + v0

ωd

)2

φ = arctan
(
ξωnx0 + v0

x0ωd

)
ωd =

√
1− ξ2 ωn is damped frequency, X is amplitude, φ is phase angle.

Logarithmic decrement, displacements at two adjacent cycles give damping ratio

δ = ln
x(t)

x(t+ 2π/ωd)
= const., ξ =

δ√
4π2 + δ2

2. Critically damped ξ = 1
x(t) = (x0 + (ωnx0 + v0)t ) e−ωnt

3. Overdamped ξ > 1

x = e−ξωnt

(
ξωnx0 + v0√
ξ2 − 1ωn

sinh(
√
ξ2 − 1ωnt) + x0 cosh(

√
ξ2 − 1ωnt)

)
SDOF - Periodic forced vibrations
Equation of motion, F (t) is excitation force

mẍ+ cẋ+ kx = F (t)

Harmonic excitation, ω is driving frequency

F (t) = F0 cosωt = F0 Re eiωt

Equation of motion, xst = F0/k is static deflection

ẍ+ 2ξωnẋ+ ω2
nx = ω2

nxst cosωt

Particular solution (harmonic, steady-state)

xp(t) = X ′ cos(ωt− φ′)

X ′(ω) =
xst√

(1− (ω/ωn)2)2 + (2ξω/ωn)2

φ′(ω) = arctan
(

2ξω/ωn

1− (ω/ωn)2

)
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Frequency response (X ′ = xst|G|)

G(ω) =
X(ω)
xst

=
1

(1− (ω/ωn)2) + 2iξω/ωn

Resonance (ξ < 1/
√

2)
Xres = max

ω
X ′ = X ′|

ω=
√

1−2ξ2ωn
=

xst

2ξ
√

1− ξ2

Total undamped solution (transient + harmonic) at resonance

x =
xst

2
ωnt sinωnt

Unbalanced mass m with eccentricity e, rotating with velocity ω within larger mass M −m

Mẍ+ cẋ+ kx = meω2 sinωt

x is position of big mass, with amplitude (phase unchanged)

|X| = e
m

M

(ω/ωn)2√
(1− (ω/ωn)2)2 + (2ξω/ωn)2

Vibration isolation, transmissibility > 1 for 0 < ω/ωn <
√

2, design isolation mount such that ωn < ω/
√

2.
Harmonic motion of support, amplitude ratio as forces in vibration isolation.
Vibration measurement, relative motion as in unbalanced mass.
Periodic excitation F (t) = F (t+ T ) with period T = 2π/ω0.
Expansion of periodic excitation as (complex) Fourier series, ωp = pω0.

F (t) =
1
2
A0 + Re

( ∞∑
p=1

Ape
iωpt

)
Complex Fourier coefficients

Ap =
2
T

∫ T/2

−T/2
F (t)e−iωpt dt, p = 0, 1, . . .

Particular solution is superposition of harmonics

x =
A0

2k
+ Re

( ∞∑
p=1

Ap
k

ei(ωpt−φp)√
(1− (ωp/ωn)2)2 + (2ξωp/ωn)2

)

φp = arctan
(

2ξωp/ωn

1− (ωp/ωn)2

)
Resonances, for ω0 such that ω0 = ωn/p (when ξ = 0).
SDOF - General forced vibrations
Response to general excitation with homogeneous initial conditions.
Impulse load, Dirac delta defined by its action on continuous functions∫ ∞

−∞
F (t)δ(t− t) dt = F (t)

Equivalent to initial velocity = 1/m. Impulse response

g(t) =
1

mωd
e−ξωnt sinωdt, t > 0

Step load, Heaviside function

H(t− t) =
∫ t

−∞
δ(τ − t) dτ =

{
0, t < t
1, t > t

Step response

u(t) =
∫ t

0

g(τ) dτ =
1
k

(
1− e−ξωnt

(
cosωdt+

ξωn

ωd
sinωdt

))
H(t)

General response, convolution integrals

x(t) =
∫ t

0

F (τ)g(t− τ) dτ =
∫ t

0

F (t− τ)g(τ) dτ = F (0)u(t) +
∫ t

0

dF (τ)
dτ

u(t− τ) dτ

Shock spectrum, dependence of xmax/xst on T0/T for loading characterized by T0 (T = 2π/ωn).
Truncated ramp

xmax

xst
= 1 +

T

T0π
| sin(πT0/T )|
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Multiple degrees of freedom
Undamped system, N ×N coupled ODE’s

Mẍ + Kx = F

x(0) = x0

ẋ(0) = v0

Modal analysis, generalized algebraic eigenvalue problem

Ku = ω2Mu

Characteristic equation is polynomial of degree N

det(K− ω2M) = 0

Roots 0 ≤ ω1 ≤ ω2 ≤ . . . ≤ ωN are natural frequencies.
Eigenvectors are modes of vibration [

K− ω2
rM
]
u(r) = 0, r = 1, . . . , N

Modes are M -orthogonal, when ωr 6= ωs, r, s = 1, . . . , N

u(r)TMu(s) = 0, u(r)TKu(s) = 0

Modes may be M -normalized
u(r)TMu(r) = 1, u(r)TKu(r) = ω2

r

Modal superposition

x(t) =
N∑
r=1

ηr(t)u(r)

By orthonormality, system of ODE’s decouples to scalar modal equations, modal force Nr(t) = u(r)TF(t)

η̈r + ω2
rηr = Nr, r = 1, . . . , N

Initial conditions

ηr(0) = u(r)TMx0

η̇r(0) = u(r)TMv0

SDOF solution, general response by superposition

ηr = u(r)TMx0 cosωrt+
1
ωr

u(r)TMv0 sinωrt+
1
ωr

∫ t

0

Nr(τ) sinωr(t− τ) dτ

Semi-definite system, rigid body motion is possible, potential energy U =
1
2
xTKx = 0 for x 6= 0.

At least one frequency is zero (orthogonality is unaffected). For ω1 = 0

η1 = u(1)TMx0 + u(1)TMv0t+
∫ t

0

N1(τ)(t− τ) dτ

Repeated frequencies, corresponding modes are arbirtrary to degree of repetition, mutually orthogonalize.
Rayleigh quotient

R(u) =
uTKu
uTMu

, R(u(r)) = ω2
r , r = 1, . . . , N

Frequency bounds
minR(u) = R(u(1)) = ω2

1 ≤ R(u) ≤ ω2
N = R(u(N)) = maxR(u)

Estimate of fundamental frequency, R of trial mode (static deflection under forces proportional to masses).
Rayleigh damping C = aM + bK, modal equation with damping ratio ξr = 1

2 (a/ωr + bωr)

η̈r + 2ξrωrη̇r + ω2
rηr = Nr, r = 1, . . . , N
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Continuous systems
Axial vibrations of an elastic rod, m = ρA

mü− ∂

∂x

(
EA

∂u

∂x

)
= f, 0 < x < L, t > 0

u(x, 0) = u0(x)
u̇(x, 0) = v0(x)

Boundary conditions: clamped u|0,L = 0, free −EA∂u
∂x
|0 = 0, EA

∂u

∂x
|L = 0,

spring −EA∂u
∂x
|0 = −ku|0, EA

∂u

∂x
|L = −ku|L, mass −EA∂u

∂x
|0 = −Mü|0, EA

∂u

∂x
|L = −Mü|L.

Free vibrations (f = 0), separation of variables, substitute and collect terms

u(x, t) = X(x)T (t),
T̈

T
=

(EAX ′)′

mX
= −ω2

Time-dependence same as SDOF

T̈ + ω2T = 0, T = C cos(ωt− φ)

Continuous eigenvalue problem in x

(EAX ′)′ + ω2mX = 0, 0 < x < L

Const. properties, β2 = ρω2/E, form of mode

X = A sinβx+B cosβx

Natural frequencies ωr (from characteristic equation), modes Xr, r = 1, 2, . . ., depend on boundary conditions.
Orthonormal modes∫ L

0

mXrXs dx+MXr(L)Xs(L)︸ ︷︷ ︸
mass at L

= δrs,

∫ L

0

EAX ′rX
′
s dx+ kXr(L)Xs(L)︸ ︷︷ ︸

spring at L

= ω2
rδrs

Similar applications: transverse vibrations of a taut spring, torsional vibrations of a circular shaft.
Bending vibrations of a thin beam

mü+
∂2

∂x2

(
EI

∂2u

∂x2

)
= f, 0 < x < L, t > 0

Time-dependence as before.
Boundary conditions: free EI ∂

2u
∂x2 |0,L = 0 (M = 0), − ∂

∂x

(
EI ∂

2u
∂x2

)
|0,L = 0 (Q = 0),

clamped u|0,L = 0, ∂u∂x |0,L = 0, pinned u|0,L = 0, EI ∂
2u
∂x2 |0,L = 0,

spring − ∂
∂x

(
EI ∂

2u
∂x2

)
|0 = ku|0 and EI ∂

2u
∂x2 |0 = 0, ∂

∂x

(
EI ∂

2u
∂x2

)
|L = ku|L and EI ∂

2u
∂x2 |L = 0.

mass − ∂
∂x

(
EI ∂

2u
∂x2

)
|0 = Mü|0 and EI ∂

2u
∂x2 |0 = 0, ∂

∂x

(
EI ∂

2u
∂x2

)
|L = Mü|L and EI ∂

2u
∂x2 |L = 0.

Free vibrations (f = 0), separation of variables, continuous eigenvalue problem in x

(EIX ′′)′′ − ω2mX = 0, 0 < x < L

Const. properties, β4 = mω2/(EI), form of mode

X = A sinβx+B cosβx+ C sinhβx+D coshβx

Orthonormal modes∫ L

0

mXrXs dx+MXr(L)Xs(L)︸ ︷︷ ︸
mass at L

= δrs,

∫ L

0

EIX ′′rX
′′
s dx+ kXr(0)Xs(0)︸ ︷︷ ︸

spring at 0

= ω2
rδrs

Modal superpositon, modal equations, modal force Nr(t) =
∫ L
0
Xr(x)f(x, t) dx

u(x, t) =
∞∑
r=1

Xr(x)ηr(t), η̈r + ω2
rηr = Nr, r = 1, 2, . . .

Modal solution, ηr(0) =
∫ L
0
mXru0 dx, η̇r(0) =

∫ L
0
mXrv0 dx

ηr = ηr(0) cosωrt+
η̇r(0)
ωr

sinωrt+
1
ωr

∫ t

0

Nr(τ) sinωr(t− τ) dτ, r = 1, 2, . . .


