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Preliminary
Euler formula
e' = cosa + isina

Integration by parts
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Huygens-Steiner parallel axis theorem, the moment of inertia of a rigid body of mass m about an axis z
Iz = Icm + md2

Iy, is the moment of inertia about the parallel axis through the center of mass with perpendicular distance d.

SDOF - Free vibrations (initial excitation)
Spring-mass-damper, IVP

mi+ct+kr = 0
z(0) = xo
£(0) = w
c

Equation of motion, w, = \/k/m is natural frequency, & = is damping ratio
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Solutions:
1. Underdamped 0 < £ < 1
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wq = /1 — &2 w, is damped frequency, X is amplitude, ¢ is phase angle.
Logarithmic decrement, displacements at two adjacent cycles give damping ratio
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2. Critically damped € =1

z(t) = (zo + (wnxo + vo)t ) e~ “n?

3. Overdamped & > 1
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SDOF - Periodic forced vibrations
Equation of motion, F'(t) is excitation force

mi + ct + kx = F(t)
Harmonic excitation, w is driving frequency
F(t) = Fycoswt = Fy Re ™!
Equation of motion, x5 = Fy/k is static deflection
T+ 28wt + wzx = wﬁmst coswt
Particular solution (harmonic, steady-state)
zp(t) = X'cos(wt—¢')

X'(w) = st
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Frequency response (X' = z4|G|)
X(w) 1
T o (= @fen)?) + 2ikw]n

Resonance (¢ < 1/v/2)
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Total undamped solution (transient + harmonic) at resonance

Xres = max X' = X'|
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Unbalanced mass m with eccentricity e, rotating with velocity w within larger mass M —m
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MZE + ci + kx = mew” sinwt

2 is position of big mass, with amplitude (phase unchanged)
m (/)
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Vibration isolation, transmissibility > 1 for 0 < w/w, < v/2, design isolation mount such that w, < w/v/2.
Harmonic motion of support, amplitude ratio as forces in vibration isolation.

Vibration measurement, relative motion as in unbalanced mass.

Periodic excitation F'(t) = F(t +T) with period T = 27 /wy.

Expansion of periodic excitation as (complex) Fourier series, w, = pwy.
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Particular solution is superposition of harmonics

X =

Complex Fourier coefficients
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Resonances, for wg such that wg = wy/p (when £ = 0).
SDOF - General forced vibrations

Response to general excitation with homogeneous initial conditions.
Impulse load, Dirac delta defined by its action on continuous functions

/oo F)s(t — ) dt = F()

Equivalent to initial velocity = 1/m. Impulse response

op = arctan(
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General response, convolution integrals
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Step load, Heaviside function

Step response
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Shock spectrum, dependence of Tmax/2s; on To /T for loading characterized by Ty (7' = 27 /wy).
Truncated ramp
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