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Abstract—We address the problem of constructing practical
coding schemes for Integer-Forcing (IF) equalization. Previously
proposed IF schemes suggested the use of nested lattice codes
or linear block codes over Zq. While such codes have good
properties from a theoretic point of view, their implementation
complexity may become significant when q is large. In this work
we show that at high transmission rates, linear codes suitable for
IF equalization may be constructed using binary codes, incurring
only moderate losses compared to optimal capacity achieving
nested lattice codes. The technique is based on Ungerboeck’s
method of mapping by set partitioning.

I. INTRODUCTION

Integer-Forcing (IF) was proposed by Nazer and Gap-

star [1] in the context of linear Gaussian networks, and

then extended to Gaussian MIMO channels and Gaussian

intersymbol-interference (ISI) channels in [2], [3], [4].

The main idea behind IF is that the linear nature of the

channel can be exploited if the codebook used for transmitting

messages over the channel is also linear. A linear channel

typically “mixes” several transmitted codewords in a linear

manner. The receiver is usually interested in reconstructing all

or some of these codewords. Traditional receivers attempt to

decode each one of these codewords separately treating the

other codewords as interferences caused by the channel. An

Integer-Forcing receiver, rather than trying to eliminate the

effect of these other codewords, tries to align them. This can

be done using the properties of a linear codebook over Zq: it is

closed under integral linear combinations (over Zq). Therefore,

if all codewords transmitted over the channel are taken from

the same codebook C (which is linear over Zq), an IF receiver

equalizes the channel coefficients to be integers, resulting in

a received signal which is an integral linear combination of

codewords (plus noise) and hence also a codeword. Then, if

this set of linear combinations is full-rank over Zq , the original

transmitted codewords can be reconstructed. This full-rank

condition is most easily satisfied if q is prime, in which case

the ring Zq is a field.

Binary linear codes have been intensively studied over the

past 60 years, and practical codes that approach the Shannon

theoretical limits such as LDPC codes are implemented in

many communication systems. While practical realizations

have been suggested for linear codes over Zq (q > 2) for

moderate values of q, currently known decoding algorithms

suffer from complexity which rapidly grows with the alphabet

size. Designing low-complexity coding schemes suitable for

IF receivers is thus of interest.

A recent work [7] addressed this problem using an algebraic

approach. In this work we present a very simple coding

and decoding scheme that constructs linear codes over Z2M

using a single binary code.1 The technique we use utilizes

Ungerboeck’s ideas for spectrally efficient transmission over

the additive white Gaussian noise (AWGN) channel.

The paper is organized as follows. Section II reviews some

applications of IF receivers. Section III describes our proposed

coding and decoding schemes. Section IV demonstrates the

performance of the proposed scheme via simulation results,

and Section V concludes the paper.

II. APPLICATIONS OF INTEGER-FORCING EQUALIZATION

We first briefly recall how IF may be used in linear

Gaussian networks, Gaussian MIMO channels and Gaussian

ISI channels. As we are only interested in conveying the main

ideas of the presented schemes, the descriptions in this section

are not worked out in full detail.

A. The linear Gaussian network

In [1], a linear Gaussian network was considered, consisting

of L distributed (non-cooperating) users, K distributed relays

and a centralized decoder. All relays are connected to the

centralized decoder through bit pipes, each with rate R0, see

Figure 1. Each relay observes a linear combination of the

transmitted codewords corrupted by Gaussian noise. Namely,

relay k observes

yk =
L
∑

l=1

hklxl + zk, (1)

where xl ∈ R
1×N is the codeword transmitted by user l,

hkl is the channel coefficient between user l and relay k

1The fact that q = 2M is not a prime does not pose any difficulties
in reconstructing the original transmitted codewords as demonstrated in the
sequel
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Fig. 1. A schematic description of the linear Gaussian network.

and zk ∈ R
1×N is Gaussian noise which is uncorrelated

in time and in space, i.e., all components of zk are i.i.d.,

and the additive noise vectors seen by different relays are

mutually independent. The centralized decoder is interested

in reproducing the transmitted codewords.

The IF approach as was presented and analyzed in [1]

suggests that each relay should try to decode an integral linear

combination of the transmitted codewords rather than trying

to decode a codeword transmitted by a certain user. If all the

codewords are taken from the same linear codebook C over

Zq , then from the linearity of the codebook it follows that

uk =

(

L
∑

l=1

aklxl

)

mod q ∈ C, (2)

where akl ∈ Z are integer coefficients. Relay k therefore

chooses a set of integer coefficients {akl}
L
l=1 and computes

ỹk = (αkyk) mod q

=

(

L
∑

l=1

aklxl +

L
∑

l=1

(αkhkl − akl)xl + αkzk

)

mod q

= (uk + z̃k) mod q, (3)

where

z̃k =

L
∑

l=1

(αkhkl − akl)xl + αkzk. (4)

The purpose of the scaling factor αk in (3) is to scale {hkl}
L
l=1

towards {akl}
L
l=1. It is evident from (4) that the noise term z̃k

consists of a Gaussian component and a component that corre-

sponds to the “distance” between {αkhkl}
L
l=1 and the integer

vector {akl}
L
l=1. Thus, if the channel coefficients {hkl}

L
l=1 are

“close” to being integers, the noise enhancement caused by the

scaling of yk would not be big. Each relay k therefore looks

for the set of integers which is the nearest to the direction

of its channel coefficients and tries to decode it. The decoded

codewords are passed to the centralized decoder through the bit

pipes. If the centralized decoder receives a full-rank set (over

Zq) of integral combinations of the transmitted codewords it

can separate them and recover the original codeword each user

transmitted.

B. The Gaussian MIMO channel

Consider the channel model

Y = HX + Z (5)

where H ∈ R
Nr×Nt is the channel’s fading matrix, X ∈

R
Nt×N is a matrix such that each one of its rows is a codeword

of length N , and Z ∈ R
Nr×N is a matrix of i.i.d. Gaussian

components. The receiver is interested in decoding all the

transmitted codewords, i.e. all of the rows in the matrix X.

The simplest approach would be to invert the channel H by

Y′ = H†Y = X + Z′ (6)

where H† =
(

HTH
)−1

HT , and Z′ = H†Z. If the matrix

H is near singular, the noise enhancement caused by this

approach can significantly degrade the performance of this

receiver compared to an optimal one. An IF receiver equalizes

the channel H to an integer channel matrix A ∈ Z
Nt×Nt ,

rather than the unit matrix INt×Nt
. The receiver therefore

computes

Ỹ =
(

AH†Y
)

mod q =
(

AX + Z̃
)

mod q (7)

where Z̃ = AH†Z. If again all the transmitted codewords (all

the rows of X) are taken from the same linear codebook C
over Zq , then from the linearity of C it follows that

U = (AX) mod q (8)

is a matrix of dimensions Nt × N such that each of its rows

is a codeword in C. The decoder can therefore first decode

the rows of U, and then use them in order to reconstruct the

original transmitted codewords, assuming A is full-rank over

Zq .

The Zero-Forcing (ZF) equalizer (6) always chooses A =
INt×Nt

, regardless of H, whereas the IF equalizer allows any

choice of A ∈ Z
Nt×Nt adding another degree of freedom that

can often significantly improve performances by reducing the

noise enhancement caused by the equalization step. For more

details see [3].

C. The Gaussian ISI channel

Consider the channel model

yn =

L
∑

l=0

hlxn−l + zn = xn + ISIn + zn (9)

where zn is white Gaussian noise, {hl}
L
l=0 are the channel

coefficients, and ISIn is intersymbol interference resulting

from other data symbols. Using D-transform notation we have

Y (D) = H (D)X (D) + Z (D) . (10)

The most straightforward approach the receiver could take

would be to cancel the ISI completely by applying the linear



filter AZF (D) = 1/H (D), which results in the equivalent

channel

Y ′ (D) = AZF (D) (H (D)X (D) + Z (D))

= X (D) + Z ′ (D) , (11)

where Z ′ (D) = Z (D) /H (D) is colored Gaussian noise. If

H (D) has zeros near the unit circle, the resulting noise z′n will

have a much larger variance than zn, resulting in poor perfor-

mances. An IF equalizer chooses AIF (D) = I (D) /H (D),
where I (D) is an integer-valued filter, giving rise to the

equivalent channel

Ỹ (D) = (AIF (D) (H (D)X (D) + Z (D))) mod q

=
(

I (D)X (D) + Z̃ (D)
)

mod q, (12)

where Z̃ (D) = Z (D) I(D)
H(D) . The linear convolution per-

formed by the channel can easily be transformed into a cyclic

one using standard techniques (as commonly used in OFDM).

Thus, (12) can be transformed into

ỹn = (i ⊗ x + z̃) mod q, (13)

where i is a vector holding the coefficients of I (D), and ⊗
denotes cyclic convolution.

Definition 1: A linear block code C of length N over Zq is

called cyclic, if for every codeword x ∈ C, all cyclic shifts of

x are also codewords in C.

The following is an immediate consequence of the definition.

Lemma 1: Let C be a cyclic code of length N over Zq .

Then for any vector i of length N with integer entries

C ⊗ i ⊆ C.

That is, C is closed under integer-valued cyclic convolution

over Zq .

It follows from Lemma 1 that if x is a codeword in the

linear cyclic codebook C, so is the cyclic convolution over

Zq between x and i. The receiver may thus decode x ⊗ i

and reconstruct the original transmitted codeword x from it.

The IF receiver is depicted in Figure 2. For more details see

[4]. If there exists an integer-valued filter I (D) such that the

frequency response of the filter AIF

(

ejω
)

= I
(

ejω
)

/H
(

ejω
)

is nearly flat, the noise enhancement incurred by AIF (D)
would be small, and the performance of the IF equalizer would

not have a significant loss compared to an optimal receiver.

III. COMBINING IF EQUALIZATION WITH NATURAL

LABELING

In the previous section we recalled how IF equalization

in some cases may outperform traditional equalization tech-

niques with minimal increase in complexity. However, the

IF equalization techniques described require the use of a

linear (perhaps cyclic) code over Zq .2 When working at a

high signal-to-noise ratio (SNR), high transmission rates are

2The coding scheme can be extended to allow for shaping by using a nested
lattices codebook.

desired. This implies that the cardinality of the codebook’s

alphabet must be larger than 2, and the use of binary codes

is precluded. While from a purely theoretic perspective the

requirement that the codes be linear over an alphabet with a

large cardinality incurs no performance loss, from a practical

point of view it is beneficial if coding and decoding may be

restricted to using binary codes.

We now show how one can incorporate binary codes to

yield higher-order (larger constellation) linear codes suitable

for IF equalization. The technique we use is mapping by set

partitioning (MSP), which is commonly used for the AWGN

channel.

We begin by reviewing the concept of MSP for AWGN

channels. In his celebrated paper [9] Ungerboeck observed

that since the error probability of a maximum-likelihood (ML)

decoder is determined by the Euclidean distance (ED) between

codewords rather than the Hamming distance, the performance

of a code heavily depends on the mapping between codewords

and constellation points. This mapping may be designed such

as to maximize the minimum ED between points in the

signal space corresponding to different codewords. The design

technique developed in [9] in order to meet this criterion

is called MSP. A simple example of a coded modulation

scheme following the guidelines of Ungerboeck’s MSP can be

obtained using a single encoded binary stream in conjunction

with natural labeling. Specifically, in this scheme a vector

of length N and rate R = r + (M − 1) bits/channel use is

generated by dividing the information bits into a group of Nr
(r < 1) bits to be encoded using a binary code of rate r, and

M−1 groups of N bits each - xu1
. . . ,xuM−1

to be transmitted

uncoded. The coded and uncoded bits are then mapped to a

2M − PAM constellation by3

x = xc +

M−1
∑

m=1

xum
2m. (14)

The result of this construction is a linear block code over Z2M .

From a nested lattices [10] point of view it can be viewed as

using Construction A (see [11]) with a binary linear code in

order to construct the fine lattice, where the coarse lattice is

Z2M .

The decoder observes

y = x + z (15)

where z is WGN. It first reduces the observations modulo 2
resulting in

ybin = (x + z) mod 2 = (xc + z) mod 2. (16)

The codeword xc can now be decoded from ybin. After

decoding xc, it can be subtracted from y and the decoder

3The transmitted signal, in effect, would be c (x− d) where d is a constant
chosen such that the average energy of the constellation points would be
minimized, and c is chosen such that the power constraint would be met. We
use the constellation {0, 1, . . . , 2M −1} throughout this paper for simplicity
of exposition.
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Fig. 2. A schematic description of a IF equalizer for the linear Gaussian channel.

remains only with the task of detecting the uncoded bits which

can easily be accomplished by a slicer. This simple coded

modulation scheme can achieve a high coding gain, since the

points of the constellation with the smallest ED are protected

by the code, and once the coded bits are known, the minimum

possible ED between constellation points is doubled.

We now show how the same transmission scheme can be

applied for each of the three applications of IF introduced in

the previous section.

A. Decoding in the linear Gaussian network

Lemma 2: Let the transmitted signal each user l transmits in

the linear Gaussian network model introduced in Section II-A

be constructed by natural labeling, i.e.,

xl = xcl
+

M−1
∑

m=1

xum
l
, (17)

where xcl
, l = 1, . . . , L are all codewords from the same

binary linear codebook C. Substituting q = 2 in (3) results in

ỹkbin
=

((

L
∑

l=1

aklxcl

)

mod 2 + z̃k

)

mod 2, (18)

Proof:

ỹkbin
=

(

L
∑

l=1

aklxl + z̃k

)

mod 2

=

(

L
∑

l=1

akl

(

xcl
+

M−1
∑

m=1

xum
l
2m

)

+ z̃k

)

mod 2

=

(

L
∑

l=1

aklxcl
+

M−1
∑

m=1

2m

L
∑

l=1

aklxum
l
+ z̃k

)

mod 2

=

((

L
∑

l=1

aklxcl

)

mod 2 + z̃k

)

mod 2, (19)

where the last equality follows since
∑L

l=1 aklxum
l
∈ Z

1×N ,

and thus the reduction modulo 2 completely eliminates the

effect of the uncoded bits from ỹkbin
.

A direct consequence of Lemma 2 is that the decoding at

each relay can be performed via a two-stage process. At the

first stage relay k scales its observation by αk and reduces it

modulo 2. From the linearity of the codebook it follows that

ũkbin
=
(

∑L

l=1 aklxcl

)

mod 2 ∈ C, and can be decoded. In

the second decoding stage the decoder uses the information

from the previous step in order to decide whether each entry

of

ũk =
L
∑

l=1

aklxl

=
L
∑

l=1

aklxcl
+

M−1
∑

m=1

2m

L
∑

l=1

aklxum
l

(20)

is even or odd. Once the decoder knows which of the entries

of ũk are even and which are odd, slicers with double step

size can be applied in order to detect it.

Each relay k then passes the integral linear combination it

decoded along with the coefficients {akl}
L
l=1 to the centralized

decoder through the bit pipes, and the centralized decoder can

now reconstruct the original transmitted codewords assuming

the set of linear integral equations is full-rank over the reals.4

B. Decoding in the Gaussian MIMO channel

Lemma 3: Let the matrix X in the Gaussian MIMO channel

model introduced in Section II-B be constructed by natural

labeling, i.e.,

X = Xc +

M−1
∑

m=1

Xum
2m, (21)

where the rows of Xc are codewords from the same binary

linear codebook C and the matrices Xum
m = 1, . . . , M − 1

are matrices of uncoded bits, then substituting q = 2 in (7)

gives

Ỹbin =
(

(AXc) mod 2 + Z̃
)

mod 2 (22)

Proof: The proof follows along the same lines that of

Lemma 2 and is omitted here.

From the linearity of C it follows that each row of Ũbin =
(AXc) mod 2 is a codeword in C. Thus, as in the linear

Gaussian network, the decoder first decodes Ũbin which is

possible due to Lemma 3. Once Ũbin is decoded, the decoder

knows which of the entries of Ũ = AX are even and which

are odd, and can then apply slicers of double step size in order

to detect them. After successfully decoding Ũ, the decoder can

reconstruct X assuming A is full rank over the reals.

4The rate of the bit pipes R0 may be too small in order to pass the
decoded codewords over the reals. In this case the relays can reduce the
decoded codewords modulo q′ before transmitting them, where q′ is the
smallest integer greater than 2M such that the set of linear equations the
relays decoded is full-rank over q′.



C. Decoding in the Gaussian ISI channel

Lemma 4: Let the transmitted signal in the Gaussian ISI

channel introduced in Section II-C be constructed by natural

labeling as in (14), where xc is a codeword in a linear cyclic

binary codebook C. Substituting q = 2 into (13) gives

ỹbin = ((i ⊗ xc) mod 2 + z̃) mod 2. (23)

Proof: This proof is similar to the proof of Lemma 2 and

is omitted.

It follows from Lemma 1 that ũbin = (i ⊗ x) mod 2 is a

codeword from C and can thus be decoded. Once the decoder

has complete knowledge of ũbin, it knows which samples of

ũ = i⊗x are even and which are odd, and can apply a slicer

with double step size in order to decode it. After ũ is decoded

x can easily be reconstructed from it.

Remark - Unfortunately the proposed natural labeling

scheme can not be extended to multilevel coding with multiple

coded layeres, i.e., it is not possible to transmit more than one

coded layer while maintaining the simple decoding scheme we

described. The reason for this is that in the first decoding step

we only decode a linear integral combination of the coded

bits reduced modulo 2. This enables us to divide the signal

space into cosets of even points and odd points, but we cannot

distinguish one point of a coset from another. If all the layers

but the first are uncoded we don’t need to distinguish between

the points in the coset since all of them could have equally

been transmitted. However if there are more coded layers we

cannot distinguish which of the points are legal codewords and

which are not.

IV. SIMULATION RESULTS

In order to demonstrate the proposed scheme we consider

the Gaussian MIMO channel with the channel matrix H =
[1 − 2; 1 − 3]. We use a natural labeling scheme with rate

R = 3.83bits/channel use for each transmit antenna. The

coded bits are encoded using a linear LDPC code with rate

5/6 and a blocklength of 64, 800bits. We evaluate the bit error

rate (BER) of the IF equalizer and the ZF equalizer vs. the

SNR per transmit antenna in Figure 3. The performance of the

same encoding scheme with optimal decoding over an AWGN

is also plotted for reference.

The results demonstrate a gap-to-capacity of 4dB at BER =
10−6, which is not much different than the gap-to-capacity one

would attain using the same transmission scheme with optimal

decoding over the AWGN channel. The threshold phenomena

in the IF curve of Figure 3 is caused by the transition from the

SNR regime where the BER is dictated by the performances

of the coded layer, to the SNR regime where the coded bits

are decoded successfully, and the uncoded bits constitute the

bottleneck.

V. CONCLUSION

We have reviewed three scenarios where IF equalization

schemes are beneficial and designed a practical coding scheme
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Fig. 3. Bit error rate vs. SNR per transmit antenna curve for IF and ZF
equalizers evaluated over the Gaussian MIMO channel H = [1 − 2; 1 − 3].
Natural labeling transmission with R = 3.83bits/channel use was used. The
performance of the same encoding scheme with optimal decoding is also
evaluated over an AWGN channel for reference.

suitable for IF equalization based on natural labeling. Simula-

tion results confirm that the losses incurred by the suboptimal

encoding and decoding scheme we have proposed are similar

to those of standard coded modulation techniques for the

AWGN channel.
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