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For the design of the Dutch free electron laser FELIX [P.W . van Amersfoort et al ., this issue] computer simulations are done with
two different codes, G3DH and TDA, to estimate three dimensional effects in the amplification process in the undulator . G3DH [E .
Jerby and A. Gover, Nucl . Instr . and Meth. A272 (1988) 3801 solves a 3D matrix gam dispersion equation, TDA [T.-M. Tran and J.S .
Wurtele, to be published] is a nonlinear 3D particle simulation code. Both codes take into account energy spread and enuttance of the
electron beam, Rayleigh length and waist position of the e.m . beam, and the planar undulator form . The finite length of the electron
beam microbunches is not considered . The two methods to calculate the evolution of the beam profiles along the undulator are
compared. Beam guiding and other effects are presented for various input conditions .

1 . Introduction

The Dutch Free Electron Laser for Infrared eXpert-
ments (FELIX) project involves the construction of a
rapidly tunable FEL. Calculations have been done [1]
based on a 1D analysis, mainly to define the required
beam parameters for the electron linac . In order to
optimize the design of the optical cavity it is necessary
to take into account 3D effects like beam guiding.
Results obtained with two different computer simula-
tion methods are described in the next sections . These
3D simulations do not (yet) take into account the finite
length of the electron micropulses . This is done in a 1D
simulation [121 .

2. Particle simulation

The Three-Dimensional Axisymmetric (TDA) model
of Tran and Wurtele [3] is based on the following
assumptions to simplify the equations of motion for the
beam electrons and the wave equations for the field
potentials .

Space charge effects are neglected . This eliminates
the scalar potential . The axial component of the vector
potential is chosen to be zero. The transverse compo-
nents of the dimensionless vector potential a = eA/mc
of the e.m . beam are cast in the eikonal form
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independent of the cylin-
drical coordinate (1), and with k, >> az In as , az In op, .
This form eliminates a,, az2 and a? terms m the left
hand side of the wave equation (5), which is shown
below.

The e.m . beam is supposed to have a fundamental
Gaussian form [4] with spot size s and wave front
curvature R before the electron beam enters :
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in terms of the waist position zo and the Rayleigh
length 1R = k,sô/2, so being the minimum spot size .
Eq. (1) satisfies eq . (5) with zero right hand side .
TDA can handle e.m. pump waves and magneto-

static wigglers, but here only the latter are considered .
A helical wiggler excites a circularly polarized wave .
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The potential of wiggler and wave reads

a x -la_,= -a,(x, y) e
-,kwz +a, e'P, e,k,cz-~i> .

	

(2)

A planar wiggler excites a linearly polarized wave . Then
e.g., ax= 0 and a,, equals the real part of the right
hand side of eq . (2) .

Electron motion is described by a set of six ordinary
differential equations for the Lorentz factor y, the
phase 0 = kwz + k,z - k,ct, the coordinates x and y,
and the dimensionless generalized momenta px= PY/mc
and p, = Py/mc . The independent variable is z, so
t = t(z) . It is assumed that y >> 1 and a, << aw .

The six equations are averaged over a wiggler period .
The averaged electron motion proves to depend on the
wiggler potential only through its modulus squared and
averaged over a wiggler period . Henceforth a w denotes
this rms value . For a helical wiggler aw depends on r
only .

In a planar wiggler electrons are periodically de-
tuned : the phase 0 has, in addition to its slow variation,
a term ~ cos 2kw z with ~ = a 2(0' 0)/2(a 2(0,0)+1)

[5] . This term results, upon averaging of the equations
of motion, in a decoupling factor fB = JO (0 - JlM
with Bessel functions JO and Jl . For a helical wiggler
fB=1 .

With these assumptions the equations of motion
reduce to the set (a prime denotes d/dz)

Y' = - k,a,,a sfB sin(B+

0'=p+k,aw a,fB cos(B+OS)/Yz ,

where

is the detuning parameter, and

x = Px/Y,
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3 . Matrix gain-dispersion solution
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y = Py/Y,

	

Py= -~y(aw)/2y .

TDA solves this set for each electron, together with
the complex partial differential equation for the field .
In the wave equation

r, q) and t are independent variables in addition to z,
but the (p and t dependences are averaged out, indi-
cated by angle brackets (cf . ref . [6]) . The current density
j(x, y, z, t) is derived from the total current I and the
x and y positions of the electrons, neglecting velocity
differences . IA = 17 kA is the Alfv6n current .

The G3DH computer code is based on a generalized,
linear, three-dimensional model of the FEL amplifier

[2,7,8,10] . This 3D model is represented by the matrix
gain-dispersion equation

E,(s) = f [I + RXz ] - K(s) - iKGXz } -' - [I + RXz]

'Exo(z =0 ) ,

	

(6 )
where s is the Laplace variable, defined by L(a(z)) =
d(s) = f;~oa(z) exp(-sz) dz . Each component of the
e.m. field vectors, Ex (s) and Êxo(z = 0), represents a
transverse spatial Fourier component of the radiation
wave at the exit of and at the entrance to the interaction
region, respectively . Using either periodic or vanishing
field boundary conditions in the transverse dimensions
(x = ±a, y = ±b) the free-space transverse modes and
the corresponding components of the vectors Ex (s)
and Êxo(z = 0) are characterized by mode indices
(n, m), and axial wavenumbers

kz,, = Vkz- k?

The unit matrix is denoted as I . K(s) is a diagonal
matrix that represents the e.m . wave propagation con-
stants for the various vacuum modes . Its diagonal terms
are (s z + k2 )/2s . The matrix G is the e-beam coupling
matrix . It consists of the transverse spatial Fourier
components of e-beam profile function,

h
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The space-charge reduction matrix is [7]
z
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The longitudinal susceptibility of the electron beam
inside the wiggler is given by
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where f(pz) is the e-beam distribution function and
pz = ymüz is the longitudinal momentum of the elec-
trons . The general kinetic definition of the susceptibility
function Xz permits to take into consideration all the
quality degradation factors of the e-beam. The normal-
ized distribution function that incorporates the effects
of the emittance, the transverse magnetic field gradient
and the energy spread on the axial velocity spread is [8]
fu(u) = U exp[U(U+ u)] erfc(U+ u) . The normalized
variable is defined as u - (ia - üoz)/(voz8 Y ) and the
factor U is given by U=XPSY/2Eb . The axial velocity
spread due to the energy spread contribution 8, =
Dy/yozyo, the emittance is Eb = mrb AO, and the period
of the betatron motion is Xß . The susceptibility integral
is [8]

z
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where the FEL constitutive parameters [9] are the
space-charge parameter Bp = wp/voz (w' is the longitu-
dinal relativistic plasma frequency on axis) and the
detuning spread parameter (due to energy spread) ehs
= (w/vo,)S, The complex error function is Z' (z) and
its argument in eq. (9) includes a complex variable,
given by ~(s) = (iwl5oz -s)/s8Y.

The coupling parameter is is defined as

x =
-y"22

xfa
2

8c2(Fz> '

4. Results

(10)

where Vwx is the amplitude of the wiggling motion
velocity . The gain matrix, KGX,, measures the strength
of the FEL interaction. Its diagonal terms describe the
coupling of each vacuum mode with itself and the
off-diagonal terms measure the coupling between the
different modes due to the FEL mode coupling mecha-
nism.

The order of the 3D matrix equation, i.e . the number
of angular spectrum components that are needed to
properly describe the FEL interaction, can be de-
termined by various practical considerations sum-
marized in ref. [2] . Typically, ten angular spectral com-
ponents are needed to properly describe each transverse
dimension. Hence, the matrix equation is of order 100
and can be easily solved by standard library subroutines
for complex matrices inversion.

Following the numerical steps, an inverse Laplace
transform is applied to solve the matrix gain-dispersion
equation (6) . This results in a vector that consists of
spatial Fourier components of the field at a given
distance z. The components can now be summed up as
an inverse discrete Fourier transform to yield the e.m .
field

	

complex
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producing the evolution of the fields in
space.

For the simulation of FELIX [1] the following
parameter values are used . For all figures these values
apply, unless stated otherwise . Wiggler: period 2m/kw
= 65 mm, length 38 periods = 2.47 m, parameter aw= 1
+ 'k 2 r2 . Electron beam at wiggler entrance : Gaussian
y distribution with average 50 and standard deviation
0.125, current I = 70 A, radius 0.38 mm, normalized
emittance 501T mm mrad . E.m . beam wavelength 21T/k,
= 26 l m, adjusted for maximum gain .

Figs . 1-5 show results of TDA runs . The wiggler is
assumed to be helical (fe = 1) . The Rayleigh length 1R
is 1.69 m, corresponding to so = 3.7 mm. The waist
position zo is 1.85 m except for fig . 3 . Results are
insensitive to the input power (1 W-100 kW) except for
figs. 2 and 3. The shape of the gain curve in fig . 1 agrees

C
6
0,

0m

r

P z (m)
Fig . 1 . Particle simulation (TDA). Gain and spotsize s112 as a
function of distance z along the wiggler. Without FEL interac-

tion 6112 would follow the Gauss curve (see section 4) .

0 .0
0 .0 1 .0 2 .0 3 .0 4.0

z (m)
Fig . 2. Particle simulation (TDA). Spotsize s,12 as a function
of distance along the wiggler at very high current . The e.m,

beam is guided by betatron oscillations (see section 4) .
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Fig. 3 . Particle simulation (TDA). Gain and spotsize 31/2 as a
function of distance along the wiggler . Gain saturation and

loss of guiding at high power (see section 4) .
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Fig. 4 . Particle simulation (TDA). Gain as a function of
electron beam radius, for two waist positions zo of the incident

e.m . beam (see section 4) .

roughly with 1D theory (cf. fig . 4 in ref. [11]). The
spotsize s i1z is the radius which contains half of the
e.m . power. For a Gaussian (1) si12 = 0.59s. The devia-
tion from the hyperbolic form of s(z) indicates beam
guiding. This is more evident in fig . 2 in which the
wiggler length is 3.7 m, the electron beam radius at
entrance is 1 mm and the current is 484 A. The e.m .
beam follows the betatron oscillations (due to mismatch)
of the electron beam . The oscillation period (2 .3 m) is
approximately determined by x"= - ''( awkw/y) ZX
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Fig. 5 . Particle simulation (TDA). Gam as a function of
electron beam current, for helical (fB =1) and planar (f5 =
0.86) wiggler . Asymptotic behaviour at high current (see sec-

tion 4) .

which follows from eq . (4) for constant y . The nonlin-
ear character of TDA is seen in fig . 3 which shows
saturation of an e.m . beam with 2.25 MW power at
wiggler entrance . The wiggler length is 3.7 m, the waist
position zo is 0 and the normalized emittance is lOir
mm mrad. Note that beam guiding disappears at satura-
tion . Fig. 4 plots the gain against the electron beam
radius at entrance, for two waist positions zo. Maxi-
mum gain is reached for 1 mm radius . Fig. 5 shows the

0
0

â
Em

5

Fig. 6. Dispersion equation (G3DH) . Amplitude and phase profile, at wiggler entrance (left) and exit (right) . Incident beam is focused
at entrance . Gain = 5.5 (see section 4) .



Fig. 7 . Dispersion equation (G3DH) . Amplitude and phase profile at wiggler entrance (left) and exit (right) . Radius of curvature of
incident e.m. beam is 0 .9 m . Gam = 7.2 (see section 4) .
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Fig . 8 . Dispersion equation (G3DH). Amplitude and phase profile, at wiggler entrance (left) and exit (right) . Radius of curvature of

incident e.m. beam is 0 .9 m. Dip at entrance has recovered at exit. Gam = 5.6 (see section 4) .

VI. NUMERICAL SIMULATIONS



216

asymptotic behaviour of the gain for increasing current,
an exponential function of Ii/3 as expected from theory
[9] . The three black dots show the reduced gain for
fB = 0.86, the correction factor for a planar wiggler with
a w = 1 (rms value) . For the standard value I= 70 A the
gain is 5.0 .

Figs . 6-8 show results of G3DH runs . The planar
wiggler form for FELIX is taken into account. Arbi-
trary units are used along the a axis . In fig . 6 the waist
of the e.m. beam is put at wiggler entrance hence the
flat phase profile . The spotsize so is 3 .7 mm. Beam
guiding is evident from the amplitude profile at wiggler
exit ; the gain is 5.5 . In fig . 7 the radius of curvature
R(0) is optimized keeping the spotsize s(0) constant at
3.7 mm. The maximum gain of 7.2 is reached for
R (0) = 0.9 m. In fig. 8 the same entrance conditions as
to fig . 7 are used except for one point: the e.m . wave
amplitude is set equal to 0 on axis . Such a dip can occur
when a mirror is used with a hole in the center for the
electron beam (to avoid bending magnets) . The ampli-
tude profile has recovered at wiggler exit, but the gain
drops to 5.6 .

5. Comparison
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G3DH and TDA are different in almost every re-
spect. G3DH solves the linearized Vlasov equation, 3D
to space and 1D in momentum, as a boundary value
problem using Laplace transform in z and Fourier
transform in x, y. TDA calculates 3D electron trajecto-
ries and solves a 2D wave equation in r, z. G3DH uses
analytical expressions for the betatron motion to find
the electron beam profile . A major issue is the convolu-
tion operation between the Fourier spectra of the elec-
tron beam and the e.m . beam . TDA calculates nonlinear
axial pendulum motion, so bunching and saturation
effects are included . G3DH treats betatron motion,
emittance and energy spread as independent random
causes of spread and skewness of the axial velocity
distribution . In this linear model only the onset of axial
bunching is included (which does not exclude high
gain). TDA ignores space charge, G3DH includes it .

In spite of their very different setup, the two codes

yield similar results to the regime in which FELIX is to
work. As mentioned in the previous section, the gain is
around 5 if the microbunches are long . According to 1D
theory [1,12] the gain would be 2.1 under the same
conditions . So it appears that the various assumptions
which underlie the 3D simulations are justified, and
that 3D effects are important.
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