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Investigation of the  Gain  Regimes  and  Gain  Parameters 
of the Free Electron  Laser  Dispersion  Equation 

Abstract-We compute the small signal gain curve and various gain 
parameters by solving numerically the generalized gain-dispersion 
equation of free electron lasers (FEL), which characterizes the conven- 
tional magnetic bremsstrahlung FEL,  as well as a large number of other 
FEL devices. The model includes high gain, collective, and axial 
velocity spread  effects,  and some waveguide effects.  The FEL gain re- 
gimes  are investigated and presented in  terms of only three universal 
FEL characteristic parameters. The approximative analytic gain 
expressions are compared to the numerical computation results, and 
the approximation error  is computed and displayed. In the intermedi- 
ate regimes (high-low gain, tenuous-collective beam, cold-warm beam), 
the  gain  parameters  are given in terms  of useful curves,  and a heuristic 
approximative formula is suggested for estimating the axial velocity 
spread gain reduction factor in all gain regimes. We also define and 
compute gain bandwidth and beam quality acceptance parameters in 
all  gain  regimes. 

F 
I. INTRODUCTION 

REE  electron  laser  (FEL)  schemes of various kinds 
have  been demonstrated  experimentally [1]-[7], and 

their  small  signal  gain  theory is well developed [SI-[20]. 
In  all  cases it can be  shown that, to a  good  approximation, 
the  same  gain  dispersion relation applies to all of them. 
This  includes  magnetic  [lo]-[ 131 and electrostatic [ 151, 
[ 161 bremsstrahlung  FEL’s,  stimulated Compton  scatter- 
ing (electromagnetic pump)  [SI,  transition  radiation,  Cer- 
enkov and Smith-Purcell FEL’s [17]-[21], and traveling 
wave amplifiers  [22].  Furthermore,  various  plasma  insta- 
bilities which involve interaction  between  space  charge 
waves and  electromagnetic waves are  described by the 
same  dispersion  relation.  This  includes  instabilities in a 
two-stream electrorbeam [23], [24] and in a rippled en- 
velope  electron  beam [25], which  were  also  considered as 
possible FEL  mechanisms. 

The basic model  used to describe  the  FEL devices of 
various  kinds consists of a  transversely  uniform  e-beam 
and  a  waveguide structure with  a  uniform or axially pe- 
riodic (in  the  case of Smith-Purcell FEL and TW ampli- 
fiers) cross  section.  The model also applies to  free  space 
electromagnetic  modes which propagate along  the  e-beam 
axis  without  any  waveguide structure,  as long as  the in- 
teraction length is  short relative to  a Rayleigh diffraction 
length, so that  the  electromagnetic  beam  cross  section  can 
be  considered  uniform.  In  all  cases,  the derivation of the 
small signal gain-dispersion relation is based  on the  as- 
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sumption  that the basic interaction involves a single elec- 
tromagnetic  mode which is phase  matched  or  synchro- 
nized  with  excitations  in  the  copropagating  electron  beam 
medium. 

In  some  regimes (single electron  interaction),  the elec- 
trons in the  beam  interact individually with  the  electro- 
magnetic  modes. In  other  regimes (collective interaction 
regimes),  the longitudinal. space  charge (plasma) waves 
participate in the  interaction.  What  distinguishes  the dif- 
ferent  FEL’s  from  each  other is only the  means by which 
the  electromagnetic wave is coupled  and  phase  matched 
(synchronized)  with  the  electron  beam. 

The basic FEL  gain  dispersion relation was investigated 
specifically for different kinds of FEL’s by various  authors 
(e.g., [ lo],   [ l l] ,  [18]-[22], [33]-[35]).  It was investigated 
in  a unified way for all  FEL’s in [9].  In  various  parameter 
domains, analytical approximations of the  gain  dispersion 
relation were  found which led to explicit gain expressions 
for the  FEL.  These  parameter  domains, called gain re- 
gimes,  are not only useful for computation of FEL gain 
and other  parameters, but also  correspond  to different 
physical mechanisms in the  FEL  interaction  process.  Since 
the  gain  dispersion relation is similar for all  FEL’s,  the 
gain  regimes  are  also  common. 

In this paper, we identify distinctly  the  parameter  do- 
mains of the different gain  regimes.  Using  two  computer 
programs, COLD and WARM (which  were previously devel- 
oped by Livni  and  Gover  [25]), we solve numerically  the 
gain-dispersion relation in the cold and  warm  beam  limits 
and  the  intermediate  regimes. We thus  are able to  check 
the validity of the  analytical  gain expressions and define 
accurately  their validity domains. We present graphically 
the numerically  calculated  gain  curves in the  intermediate 
gain  regimes. 

The  use of a small number of normalized  operating  pa- 
rameters  in  our  formulation  (three constitutive parameters 
and  a  detuning  parameter) enables us to discuss  the  tran- 
sition between the different gain  regimes  and, particularly, 
the  warm and cold gain-regimes in a unified way. This 
permits  us, for example,  to  account for the  main  conse- 
quences of beam velocity spread  and  space  charge effects 
in  a  general  and  simple way. 

Finally, we  present  a  number of curves for FEL  param- 
eters useful in  FEL  design.  These  parameters were  cal- 
culated in the  intermediate  gain  regimes by the  same  com- 
puter  programs,  and  are  useful for various  FEL design 
applications. 
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11. THE FEL GAIN-DISPERSION RELATION 
Under  the  assumption of the  model  described in the pre- 

vious  section, we  may describe  the field of the electro- 
magnetic  mode which participates  in  the  interaction as 

~ ( x ,  y ,  z )  = a(o) €(x, y)eikzoz. (1) 
An exception is the  Smith-Purcell FEL and TW amplifier, 
for which  (1) describes  only  one of the components  (space 
harmonics)  which  constitute  the  Floquet  modes of a  peri- 
odic waveguide. 

When the  electromagnetic  mode  interacts  with  the elec- 
tron beam  and they exchange  power,  the  amplitude  and 
phase of the  electromagnetic  mode  vary  along  the  inter- 
action length (z-axis),  and neglecting excitation of other 
electromagnetic  modes, we assume 

E ( x ,  y ,  z )  = a(z) (x, y ) .  (2) 
Substitution in the Maxwell equations produces the exci- 
tation equation for the  mode  amplitude &): 

d 

where 6 is the 
power  and J is 
tron  beam. 

cc 

total electromagnetic  mode  normalization 
the exciting alternate  current in the elec- 

--m 

To obtain the FEL  gain-dispersion  relation,  one  needs 
to  solve, in addition  to (3) ,  the  electron force equations 
(plasma equations) in  order to find the  ac  current which  is 
excited in the electron beam.  This  calculation differs for 
different FEL  structures  and different models for the 
plasma  equations. However, in all  cases when  only the 
basic FEL  interaction  process is considered (neglecting 
additional effects due to diffraction,  axial  magnetic field, 
and  other  elaborations),  does  the  same  gain dispersion re- 
lation  results in [9] 

which are implied in these expressions are explained in 
Appendix A.  

The longitudinal plasma susceptibility function xp (w, 
s) can  be  calculated  from  any  appropriate  model of plasma 
equations. We presently  assume that the electron “gas” is 
described by the Vlasov  equation, which is applicable in 
the general  case of a  warm electron beam. In such  a  model, 
the longitudinal plasma susceptibility is 

m 

--m 

(Px,  P,, PJaP ,  
dP, dP, dP, (6)  

s - i d u ,  

where g(O) (Px,  P,, P,) is the  momentum  distribution  func- 
tion of the  electron  beam.  Integration  over Pxt Py allows 
us to  present xp in the  normalized  form: 

where 

- g(x) is the normalized longitudinal momentum distribution 
function defined by 

W 

where 

5(s) = 
1 + X,(U, s + ik,)/E 

(s - ik,o) [l + &(a,  s + ik,)]/E - iKXp(U, s + ik,J/E * 4 0 )  

where Z(s) is  the  Laplace  transform of the  electromagnetic 
mode  amplitude a(z): kD is the  Debye  wavenumber, defined by 

k,  = 2a/h, is  the wavenumber of the  periodic  structure  where u; is the longitudinal frequency, 
of period A, which is employed in  the  FEL.  In  the  case 
where  no  periodic  waveguide or force is  employed (as in 1 e2no 
the  case  in  the  Cerenkov  FEL), we use k,  = 0. 

r2 = -- 
YOYO, 

sures  the  strength of coupling  between  the  electromag- which was defined here in terms of the  lab  frame  electron 
netic wave and  the  electron  beam. It is the  only  parameter density 120 = zo/(euoz A,) (10 is  the  instantaneous  beam Cur- 
in (4) which is  characteristic of the  different  FEL’s.  It is rent and  is  the  e-beam  cross-section  area). 
tabulated  in Table I11 for various kinds of FEL’s.  The var- 
ious expressions for K are given or deduced  from [9], [ 111, 
[ 151, [18]. The  assumptions  and  the  parameter definitions ror?km 

UP - 2 (12) 
The  parameter K is the  coupling  coefficient which mea- 

- pzth 
Uzth = (13) 
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Yo = (1 - Po) 
2 -112 

’yoz = (1 - (15) 

Uzth and P z t h  are  the longitudinal velocity and  momentum 
spread of the  electron  beam.  This  spread  can  be  the result 
of different causes, which are  listed in Appendix B. 

Often  the  electron  distribution is approximated by a 
shifted Maxwellian  distribution.  In  this  case 

1 ~ ( x )  = - e-x2 
& (16) 

and 

is the so-called plasma  dispersion  function  which  is tabu- 
lated in [ 2 8 ] .  Maxwellian  distribution (16) will be as- 
sumed  in this paper  whenever  a  warm  beam (finite veloc- 
ity spread)  is  considered. 

In order  to  calculate  the single path gain of the FEL, 
the inverse Laplace  transform of (4) should be  carried  out: 

44 = g riiw Z(s) esz ds. (1 8) 
y- im 

The  electromagnetic power  gain after length z = L is then 
given by 

If the gain dispersion relation (4) has  a finite number of 
poles sj,  then  the  inverse  Laplace  transform of (4) is given, 
in general, by 

emittance, its energy  spread  and  angular  spread,  and  the 
transverse  gradient of the  wiggler  magnetic field. The 
contributions of the  various  causes to the thermal  spread 
parameter Oth are derived  and  tabulated in Appendix B. 

111. THE  FEL  GAIN  REGIMES 
The  FEL  gain  calculation, based on the  previous  sec- 

tion formulation, is an  elaborate  process, involving an  in- 
verse  Laplace  transform  computation.  For  many practical 
needs,  one may derive analytic expressions for the  gain 
using various  approximations. We briefly describe  the var- 
ious gaip  regimes  and  derive  the  analytical gain expres- 
sions which are valid in each of them. 

A .  Cold Beam  Limit 
A FEL  electron beam is  assumed to be cold for low 

enough  detuning  spread  parameter values (8th - 0) so that 
the condition >> 1 is satisfied,  This  condition, using 
(22), can be  written  as 

[(e - ~ k , ) ~  + (6ki)211/2 >> eth, (25) 

and the  function G(C) (8) can  be  replaced by its asymptotic 
expansion: 

lim G(r) = -l/{. (26) 
r-  w 

We substitute definitions (lo), ( l l ) ,  (23), and  the defini- 
tion of the space  charge  parameer, which  is 

I 

,g =2k 
P (27) uoz 

into (4) and get the  “cold-beam’’  gain  dispersion relation: 

where Aj are  the residues of (4) at the poles. In practice,  This “transfer function,, can be analytically inverted, 
the  interaction of the  electromagnetic wave with the elec- since the poles are the nodes of the third-order dispersion 
tron  beam  is not strong  enough to change  the  electromag- equation 
netic wave number substantially. We  may thus write 

(s - ikzo) [(s - ikzo - ie)2 + e;] - i~ e; = o (29) 
s = ikfi  + i6k (2 1) .. - . .  

where )6kl << kzo. Substituting (21) in  the expression for to calculate the gain. 
{ (lo), we can  write 

which  can  be explicitly solved and used in (19) and  (20) 

In  order  to find the roots of (281, it is  often useful to 
0 - 6k substitute (21) into  it.  This  results  in  a  third-order  alge- 

{ (s + ik,) = 5; + irj = ___ 
eth (22) braic  equation  with  real coefficients: 

where 6k (6k - e - ep) (6k - 0 + e,) + Q = o (30) 

6 dua - k a  - k ,  (23) where 

is  the  synchronism  detuning  parameter,  and Q E K $  (3 1) 
is  the  gain  parameter. 

th - (24) This  equation always has  three real roots  or  one real 
root  and  two  complex  conjugate  roots.  In  the  second  case, 

is the  detuning  spread  parameter.  This  spread  can  be if the  root  with  negative  imaginary  part satisfies -6kj >> 
caused by a  number of different reasons: the electron beam 1, the  FEL  operates  in  the high  gain regime.  The  expo- 

id Uzth 6 = _ . -  
UZO uzo 
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nential term which corresponds  to this root in (20) dom- 
inates over  the other two terms, which are  neglected,  and 
the  gain is substantially exponential: 

In the  opposite  limit  or when all  three roots are  real,  the 
gain  cannot  grow substantially, and  this  corresponds to the 
low gain  regime for which 

(33) 

For large  enough values of the  detuning  parameter 8, (33) 
is always satisfied.  The  FEL will be said to operate sub- 
stantially  at  a low gain  regime if (33) is satisfied for any 
0,  and particularly in the  maximum  gain point 8 = Om,,. 

In  order  to develop  the  gain relations of the various gain 
regimes, it is useful to translate  (28) from  the  s-plane into 
the 6k plane,  as follows: 

a(i6k) = 
(6k - 6’ + 0,) (6k - 0 - 0,) 

i6k(6k - 8 + 0,) (6k - e - 0,) + iQ’ (34) 

It  also proves useful to define at this point for later refer- 
ence  the  FEL  normalized  operating  parameters: 

Q = QL3 (354 
- 

- 

eth = eth (35b) 
- e, = 8,L 
- e = OL. (35d) 

In our  present  model,  the  FEL gain expression can  be fully 
described by only  these four parameters: - -  the  three nor- 
malized constitutive parameters Q,  e t h ,  8, and  the nor- 
malized  detuning  parameters 8. 
B. High-Gain-Strong  Coupling  Regime 

In the  strong  coupling  high-gain  regime, we assume that 
the complex  wavenumber modification due to coupling (6k) 
is much greater  than  the wavenumber  detuning pa- 
rameter \ 0 l ,  at which the  FEL  operates, so that  the cold 
beam condition (25) is  dominated by (6k).  In addition, we 
also  assume  that 16kl is much larger  than  the  space  charge 
parameter e,: 16kl >> 1 1 9 1 ,  e,, 0 t h .  Relation (34) may then 
be simplified into  the  form 

- a (56k) = 

or in a  partial  fraction  form 

r 
1 

1 1 + 
i6k - 

L 

In the  s-plane,  the real part of the  dominant pole of (37) 
is (&/2) Q’’3 and  the  amplitude gain becomes 

lgl = exp ($ Q”3 I). 

The power gain in this  case is 

(39) 

where  the  normalized  gain  parameter a is defined in 
(35a).  The  original  conditions 16k( >> e,, Oth,  ( 1 9  and 
-6kiL >> I may  now be expressed in terms of the nor- 
malized FEL  parameters: 

-1  13 Q >> a t h ,  e,, 181, 1. (40) 
This is the condition for the  parameters’ domain of the 
“high-gain-strong  coupling regime.” 

C.  High-Gain-Collective  Regime 
The  FEL  is  said to operate in the high-gain collective 

regime when the  space  charge  parameter 8, is much 
greater than  the  wavenumber modification 16kl: 

- 

0, >> 16kJ. (41) 

The maximum amplification, in this  case, is expected to 
take place at the  incidence of synchronism  between  the 
electromagnetic wave and  the slow space  charge wave 
(e  = -8,) [9]. We substitute  these  conditions (13, >> / 6 k (  
and 6 = -0,) into  (34)  and get 

- a  (i6k) = 
- i6k 

6P + Q/(20,) 
a(0) .  (42) 

In the  s-plane, the dominant pole of (42) is s ,  = ikZo + 
so the  amplitude gain in  the  high gain limit is 

The power gain is 

(43) 

(44) 

The combination of the original assumptions - 6kiL >> 
1 and 0, >> 16kl with the expression for the dominant 
pole 6k = - i a  and the cold,beam condition 6k >> 
0 t h  determines  the  parameters domain of the  “high-gain 
space-charge  dominated  regime”: 

D. Low-Gain  Regimes 
The derivation of the FEL low-gain  regimes  from  the 

gain dispersion expressions (34)  is  described in detail in 
[9], [26] .The power  output was expanded to  the  first  order 
in Q for Q << a, resulting in 
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F(8, = 
1 __ 

23, 

(47) 

The  integral in (54)  then simplifies into  Im G’({) = T 
g‘(S;), and  the  gain  (53) is 

In  the  “space  charge  dominated  regime”  where !, >> T, 
the  function  attains its maximum for any 8, at I3 = -a,, 
and  the  maximum  gain  expression in this case is 

For  a  Gaussian  electron  momentum  distribution (16), (54) 
attains its maximum  when 3; = - 1/42  so that Im G’ 
( - 1 / h )  = 1.5. The warm  beam  regime  maximum  gain 
expression  is  then  given in terms of the  normalized  oper- 
ating  parameters (35) by G,,, = - - (48) 

G,,, = - p(L) = exp (3?j/@h) 
For  a  tenuous  beam, we neglect the  space  charge effect P(0) (57) 
(e, + 0) and  the  function F(8, 8, -+ 0) reduces to and in the low gain  limit, by 

_ _  d sin(8/2) ~ ( e ,  e, + 0) = --= - 
dB [ 0/2 ] (49) G,,, = = 1 + 3e/$:h (58) 

P(0) 
which  attains its maximum at e = -2.6. Thus,  the max- 
imum gain expression for the  “tenuous beam-low-gain 
regime”  becomes 

E. The Warm Beam  Limit 
The warm  beam  limit  corresponds to the case  when  the 

longitudinal kinetic energy-spread of the electron beam is 
high  enough so that inequality (25) is reversed. In the 
warm  beam limit, we assume that the  dominant pole of (4) 
is so = ikZo, which means  that we neglect the  change in 
the  wavenumber  caused by the  space  charge effects. 
Equatian (4) can  be  written  in the form 

When 0th  >> e,, which can also be  written in the  form 
k,, -I- k,  >> kD, where kD [see (ll)] is the Debye  wave- 
number, we  may approximate (51) by 

Z(s) = [s - ik, - i K  (f3p/8th)2 G’({)]-‘ a(0). (52) 

If  we neglect the  contribution of any poles which  may be 
contributed by G‘({), then  the inversion of (52) is straight- 
forward,  resulting  in [ 171, [9] 

(53 )  

where [using (8)] 
r m  5- 

Since inequality (25) is  reversed, it follows from (22) that 
I 3 ; l  << 1, and we  may also  substitute s = ikZo in the  def- 
inition of { (10) : 

. .  

where we assume e << f 8;h. 
When 0, is of the  same  order of magnitude  as e t h ,  we 

may not neglect it as  before,  and  the  dispersion  equation 
in this  case is the  denominator of (51): 

s - ikzo + iK (2) G’(0 = 0. (59) 
1 
- ($)2 G’(33 

1 - (2T z’(ri 

If we assume  again  that (51) has  only  a single dominant 
pole and  express it in terms of 6k (21),  then for Gaussian 
distribution, 

6 k = - -  Q 2’ ( 5;) 
(60) 

The power  gain in this  case is obtained  from  the  general 
relation 

P(L) 
P(0) 
- -  - exp [ -2 6kiL]. (61) 

The real and  imaginary  parts of the function Z’(3;) are 
tabulated in [28]  and plotted in [17] for a real argument 
5;. However, there is little  advantage in calculating  the 
gain in the “collective-warm’’ gain  regime using the 
expressions (60)  and (61), and in most  cases for the  inter- 
mediate  cold-warm regimes, we will prefer to calculate 
the  gain  numerically or  to use  a  general  heuristic analytic 
approximation (71) (which is presented in the next chap- 
ter). 

The  formulas  and  the  conditions of the maximum gain 
relations of the  various  gain  regimes  are  summarized in 
Table I. One notices that  when  the  detuning parameter 8 
is chosen to maximize  the  gain,  the  gain  expressions  and 
the  boundaries of the  gain  regimes  can all be  expressed in 
terms of merely three  normalized  operating  parameters 
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‘“1 

TABLE I 
THE  GAIN  DOMAINS A N D  MAXIMUM  GAIN  EXPRESSIONS 

Parameter  Max. gain 
Gain  regime 

Max.  gain 
domain  condition  expression 

I Cold tenuous  beam jj, j,,, e,, < T - 
On,,, = -2.6 P(L) 

P(0)  low-gain = 1 f 0.27 6 
- - 

I1 Space-charge- - Q - 
- 

Om,, = - e, 
dominated low: 2 
gain 

> -, _ _  

Fig. 1. The  transition  between  the  gain  regimes  as a function of e. The 
solid lines  correspond  to  the  analytic  approximations  for  the  maximum 
gain (Table I). The  beam  parameters  are: 3-a cold beam (e,, =-e,, = 0): 
- 0-a collective beam (O,, = 0, 0, = 10); n-a warm  beam (elh = 20, 
0, = 0). The broken lines show for  comparison  the numerically computed 
curves for each  case. 

_ _  
Q, e,, 8 t h .  Hence,  the different gain  regimes  constitute  dif- 
ferent  spatial regions in a  three-dimensional  space defined 
by these  parameters.  In  order  to  illustrate  the different 
boundaries of the  gain  regimes, we display in Fig. 1 the 
gain G versus  the gain parameters 0 for three different 
choices of the  FEL  parameters 8,’ 8,. The  computer-cal- 
culated exact gain  curves  (broken lines) approach  asymp- 
totically to the  approximate  curves (solid lines) when the 
inequalities  which define the various gain  regimes  are well 
satisfied. 

An alternative figurative display of the different gain  re- 
gimes is possible by drawing  “cross-sectional  cuts” in the 
Q, e,, 8 t h  parameter  space. Fig. 2 maps  the e - 8, plane 
for the  case 8 t h  = 0. It describes  the various cold beam 
gain regimes of << a. Fig. 3 displays another  cut for 
an  arbitrary >> a. In this case,  the  “tenuous cold 

- _  

T 
SPACE - CHARGE  -0OMINATED 

LOW - GAIN 

BEAM  STRONG - COUPLING 
OW-GAIN I 

HIGH - G A I N  

Fig. 2. The 6 --8, plane map of the  gain  regimes for the  case of a cold 
beam Bth << n (see Table I for  the  gain  expressions). 

SPACE - CHARGE-DOMINATED 
LOW-  GAIN 

IT nlGn - GAIN 
COLLECTIVE 

8 t h  

WARM BEAM 

Fig. 3. The 6 - 3, plane  map of gain  regimes for a warm  beam >> T 

(see Table I for the gain expressions). 

- eth or Q > @h, are  similar to the  corresponding  regimes 
in the Bth = 0 cut of Fig. 2, but extend  over a smaller 
domain  in the - 9, plane. 

IV. THE TRANSITION BETWEEN GAIN REGIMES 
beam low-gain’’ regime is replaced by the “warm beam The discussion on  the various gain regimes  and the an- 
gain  regime.”  The cold beam  gain  regimes,  where 8, > alytic approximations for the gain in these  regimes  should 

. .. 
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Fig. 4. The cold beam low-gain curves F ( 8 ,  e,, = 0, 8) for various  values Fig. 5. The tenuous  beam  low-gain  curves F ( J p  = 0, e,,, 8)  for various 
of the  normalized  space  charge  parameter 0,. values of the  normalized  thermal  spread  parameter et,. 

be followed by an evaluation of the  accuracy of the  given 
gain  expressions.  An  errer  estimation has  been  done  with 
the  aid of graphic  computer  programs based on “COLD” 
and “WARM” subroutines [26]. The COLD subroutine  cal- 
culates  the  inverse  Laplace  transform of the cold beam 
(0th = 0) gain  relation (28) by means of the residue 
method.  It  uses  a  standard  formula for evaluating the roots 
of the  third-degree  algebraic  equation (29) [27].  This  is 
used to  calculate  the  three residues A, of (28) and  the  am- 
plitude gain a(z)la(O) (20). Fig. 4  shows, for example, the 
normalized low gain  curves ~ ( 8 ,  &, = 0,  8,) (46) plotted 
by “COLD” for various values of 8,. 

The “WARM” subroutine  has a more  general validity but 
is slower. It  has  the ability to calculate  the  gain of a  warm 
beam FEL for any  value of the  parameters Gth, g,,, Q, 0.  
The  subroutine  performs  an inverse Laplace  transform of 
the  gain-relation Z(s)lu(O) [see  (4)] by a  direct numerical 
calculation of the Bromwich integral: 

_ _  

The  electron  distribution is assumed  to  be  Gaussian  (i.e., 
Z(x) = (I/&) e-X2) so that G({), which appeared in (7), 
is the  well-known  plasma  dispersion function Z ( { )  (17), 
and  can  be  written in the form [28] 

i t  

2({) = 2iePF s e-‘’ dz,  Im ({) > 0. (63) 

The plasma  dispersion  function derivative Z’({) is calcu- 
lated by a  subroutine, which was developed  earlier by Bur- 
re1  1291. It  approximates Z’( {) using  two  continued  frac- 
tion formulas,  one for small values of { and  one for large 
values of {. This  technique  greatly  speeds up the  subrou- 
tine, while  keeping  a relative error in the  calculation to 
less than 6.0 X lop6. The numerical  integration is per- 
formed by the  method of Gaussian  quadrature  based  on 
the orthogonal  polynomials of Salzer [31]. The  zeros of 
the polynomials and  their  corresponding  weights  are  pro- 
vided by Salzer  [30] to 16 points,  and by Stroud  and  Se- 
crest to 24 points [ 3 2 ] .  In  all  cases  that we examined, 

-m 
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Fig. 6. The cold tenuous  beam  gain  curves G(8,, = 0, e,,, TO, G, 8) for 
various values of the  normalized  gain  parameter Q. 

there was good  agreement  between  the results of program 
COLD and  program WARM in their  region of overlap 0 t h  -+ 

0. 
Fig. 5 shows the low gain  curves F(8, = 0,  i&,, 3) = 

[G(g,, g th ,  8) - l ] / e ,  which were  calculated using pro- 
gram WARM for << 1 for various values of gch. Increas- 
ing i&, causes  the  S-shaped gain curve to be widened  and 
lowered. The  curve &, = 0 is identical to the  one  describ- 
ing the analytical cold beam  low-gain  expression (49),  and 
the  curve = 6  already follows the analytic expression 
of the  warm  beam  low-gain  regime (56), (16). 

As  we increase  the  gain  parameters e beyond unity, we 
start approaching  the  high-gain  regime.  The  S-shaped gain 
curve  begins  to lose its  symmetry  and we get  amplification 
even for full  synchronism (8 = 0), as shown in Fig. 6 for 
a  few values of e and = 0, = 0. The a = 2  curve  is 
similar to the low-gain curve  (49) (8th = 0 in Fig. 5 and 
0, = 0 in Fig. 4). 

Evidently, beam velocity spread  leads to reduction in 
the  FEL  gain.  Hence,  the cold beam  gain  regimes 3, = 
0 are of principal  interest.  The  maximum  gain (over all 
values of the  detuning  parameter 3) is determined in these 
regimes by only  two parameters, and a [see  (34)].  The 

- 

- 

- 
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Fig. 7. Contour  map of the cold beam FEL maximum  gain G,,,, in  the 
Q - 8, parameter  plane. 
- 
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Fig. 8. The maximum  gain G,,, versus a for a cold tenous  beam (8, = 
Oth = 0). The broken line  is  the  analytic  approximation in the  cold-beam, 
low-gain regime.  The  dashed-dotted  line  is  the  analytic  approximation in  
the  high-gain  regime. 

exact  dependence of G,,, on the  parameters e,, Q was 
calculated using subroutine COLD, and  is displayed in Fig. 
7 in terms of constant  gain  contours in the e - ep plane. 
The right-bending of the  equigain  curves in the map in- 
dicates  the  existence of space  charge  gain  depression in 
both low- and  high-gain  regimes.  Note, however, that  the 
parameter a is not independent of ep @ = ~8$). Hence, 
the  monotonous  reduction in gain,  as 6, grows  and e stays 
constant,  happens  only if the  interaction  parameter KL is 
decreased  in  inverse  ratio  to 8; in order to keep e con- 
stant.  When KL is kept constant,  the  gain always increases 
with e,. 

In many practical cases,  the beam current density, the 
velocity spread,  and  the  interaction length are small 
enough  to  permit  the  assumptions 8, = 0, = 0. The 
maximum  gain G,,, is then a function of only one single 
parameter e. This  dependence  is  plotted  in  Fig. 8 as a 
function of the  gain  parameter e in  the  regime 0 < g < 
15. The analytic  expression for the  maximum  gain in the 
low gain  regime  [see (50)] is  illustrated for comparison  in 
Fig. 8 by a broken  line. It fits the  exact  gain curve along 
its  tangent  at  the  origin in the  regime a < 2. For  high 

"f 

Fig. 9. A contour map of the relative approximation  error  [see (64)] of the 
analytic  gain  expressions  with respect to  the exact calculation of a cold 
beam FEL gain in the  various  gain  regimes.  The broken lines are the 
borders  between  the  gain  regimes  (compare Fig. 2). 

- 
Q values,  the FEL starts  getting  into  the  high-gain  regime 
where  the  gain  is  exponential, but for e < 15 it still  de- 
viates by more  than 20 percent  from  the  high-gain  regime 
analytic  expression (39), which is  shown  in  Fig. 8 by the 
dashed-dotted  line. 

We note that  this  deviation  does not converge to zero 
even for higher  values of e. The reason for this  failure of 
the  analytic  expression  can probably be  traced  to  the  as- 
sumption e = 0, which  was made  during its derivation [in 
(36)]. As we show later in Fig. 15, the  numerical  calcu- 
lation  indicates that the  maximum  gain point in the  high- 
gain  regime  tends  to a value e,,,, = - 1.5, and for a large 
range of e values, we  find that the  gain  at this point is 
larger  than its value  at e = 0 by at least 5 percent. 

Using the exact gain  calculation with programs COLD 
and WARM, we  have evaluated  the error involved  in using 
the  analytic  gain  expressions (Table I) corresponding  to all 
gain  regimes.  The  equi-error  contours in all cold gain re- 
gimes  occurring for beam  spread  parameter value eth = 0 
are plotted in Fig. 9 in the e - e, plane. The relative er- 
ror in the  maximum  incremental  gain is defined by 

where G,,, (e, 8,) is  the  exact numerically computed 
value of the  maximum  gain  at  the  point (Q, eP) and G;,, 
is  the  approximate  value of the  gain  at  this  same  point. 
resulting  from  the  analytic  expression. 

Inspection of Fig. 9 shows  that when the  parameter  con- 
ditions  listed  in Table I are satisfied,  the error involved 
with  the  approximate  gain  calculation  is  less  than k20 
percent for all  the cold beam  FEL  gain  regimes.  The ap- 
proximation error in the  transition  region  between  any  two 
gain  regimes (excluding the  transition  between  the low- 
gain  tenuous  beam  regime  and  the  space  charge  domi- 
nated  gain  regimes) is greater than 20 percent (typically 
30-40 percent). 

The  borders between the  gain  regimes in Fig. 9 are 
roughly  the same  as  in  Fig. 2. However, in  order  to  min- 
imize  the  errors  in using the  analytical  expressions, we 

_ -  
_ -  
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Fig. 10. Maximum  gain  contour  maps in the e - 8,, parameter plane in the 
warm-beam regimes. (a) OIh = 10. (b) Oth = 20. The broken lines  show 
the relative error of the  analytic  expression (57) with respect to  the exact 
calculation. 

slightly modified the  borders of the  tenuous  beam  low- 
gain  regime  to  be a = 2a ,  8, = 2.6. 

At values of the  thermal  spread  parameter 8 t h  >> a, 
the  FEL may operate  at cold or warm gain regimes,  de- 
pending  on  the values of the  other  operating  parameters 
e,, e. In Fig. 10(a) and  (b), we show  the  numerically  cal- 
culated  gain  contour  maps for 8 t h  = 10 and 8 t h  = 20, re- 
spectively. The broken  lines  indicate the relative error 
contours,  calculated by (64).  It is seen  that in the  “warm 
beam-low-gain’’ regime ( 8 t h  >> e,, Q << 8:h), the rel- 
ative  error  is  moderate ( -  20 percent), but in the  inter- 
mediate  regimes it becomes  substantially  greater.  This 
may limit  the  usefulness of the  warm  beam analytic 
expression (G = exp ( 3 e / e h ) )  to the  “low-gain-warm 
beam”  regime only. 

In many  practical  situations, especially when consider- 
ing RF linacs  with  tenuous  beams,  the limit g, << 1  is 
applicable. k r  this  reason, we draw in Fig. 11 the  contour 
map of the maximum  gain  numerically  calculated  in the 
parameter  space plane Q - 8 t h ,  8, = 0. This  map is useful 
to  estimate  the reduction in  gain  due  to  axial velocity 
spread, which  takes place when  the  electron  beam quality 
is not high enough,  and when one  tries to operate an FEL 
at  shorter  and  shorter wavelengths (VUV, X-ray FEL’s) 
[41]. The  parameter  domain of the  map (8 th  < 10, < 

- 

Fig. 11. Maximum  gain contour map in the e - e,, parameter  plane  for a 
tenuous  beam (0, + 0) FEL. These contours also describe  the  detuning 
spread  acceptance  parameter 0:: according  to definition (67). 

100) covers  the intermediate cold-warm  tenuous  beam re- 
gime  at which 8 t h  is not high  enough to make  the  warm 
beam  gain  formula  G = exp (3Q/83 (row 5 of  Table I) 
applicable. We found  that  even for 8 t h  = 10, the analytic 
formula  deviates by more  than 25 percent  from  the exact 
gain  given by the  numerically  computed contours, and 
therefore,  the  contours  should  be  used  to  calculate  the gain 
reliably in  this  regime. 
A.  Acceptance  Criteria for i& 

The gain reduction due to axial velocity spread  is, of 
course,  an undesirable effect. Often it cannot  be  avoided 
because of the insufficient quality of the  electron  beam, 
which results  because of various  reasons  (Appendix B). It 
is useful to define acceptance‘criteria for 8 t h  which will 
give an  estimate of  how small the  parameter &, should  be 
kept so that the  actual gain will not be  substantially  lower 
than  the cold beam gain.  The maximum value of &, to 
satisfy this requirement  would  be  termed  the  “detuning 
spread  acceptance  parameter,” -8:; [41]. 

Three different definitions for @; are useful for various 
applications. According to the first definition,  the  incre- 
mental  gain at 8 t h  = 8:; falls to half its value in a cold 
beam (8th = 0): 

- 

- 

- In  the  second  definition,  the logarithmic gain  at 8 t h  = 
8:: falls  to half its  value in a cold beam: 

In  G(@) 1 

In Gcold 2‘ 
- _  - 

The  detuning  parameter  acceptance @ i  according to both 
definitions is shown in Fig. 12. The  curves  are drawn  on 
log-log scale for a  large  range of values in the  limit 
8, -+ 0. Note  that for a << R ,  In G 2: G - 1 and  both 
definitions coincide,  as is also  seen in the  drawing. 
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Fig. 12. The detuning  spread  acceptance  parameter 8;; for two different 
definitions, (65) and (66) in the limit H,, + 0. Only the  second definition 
tends  to  the  asymptotic limit [see  (70)]. 

A third possible definition for $; requires reduction of 
the  FEL gain from its cold beam value to a set constant 
gain value: 

G (@;) = const. (67) 

Such  a definition is especially useful in FEL  oscillator  de- 
signs,  where  the  constant in (67) would  be 1/R where R 
- is the  round-trip power reflection coefficient of the cavity. 
0: according  to this definition is the highest detuning 
spread for which  oscillation  (lasing) is still possible. Fig, 
11 shows  curves of @t according  to  the  last definition for 
various  constants in the  limit 8,, + 0. 

It  is  natural to assume that the  borders  between  the 
warm  beam  gain  regimes  and  the cold beam gain regimes 
should define the  acceptance  criteria [lo]. From Table I 
we get  the  borders  between  the cold and  warm  low-gain 
regimes: 

- 
0;; = a (68) 

and for the  high-gain  regimes: 

These  common  approximations for the  acceptance  param- 
eter can now be checked  against  the  numerically  com- 
puted  curves  for et according  to  the different definitions 
(Fig. 12). Clearly, in the  limit Q << a, both definitions 
(65),  (66) shown in Fig. 12 are identical and  tend to the 
asymptotic  value 8; 2: a in accordance  with  (68). It is 
evident that  the  high-gain  regime  approximate  expression 
for the  detuning  spread  acceptance @; = (69) does 
not correspond at all to the common definition of accept- 
ance  given by (65). However, for Q > 30, it seems  that 
the  top  curve (66) is at least proportional to indicat- 
ing that in this regime,  the  predominant effect of the ther- 
mal  spread is to reduce the exponential factor 6kiL. The 
best asymptotic fit to  the  numerically  calculated  curve is 

Fig. 13. The  gain  reduction  factor  due  to  axial velocity spread  for (a) low- 
gain  examples (Q = 2) and (b) high-gain examples ( Q  = 100). In each 
case we show a tenuous  beam (e,, = 0) and a space  charge  dominated 
beam (gP = 10) example. The solid lines display the results of the nu- 
merical computation.  The broken lines display the  heuristic formula (71). 
The  dashed  dotted  line in (t) shows for comparison  the  watm beam limit 
gain reduction factor l l . l /O~h derived from (50) and (57). The  dashed 
dotted  line in (b)  shows for comparison  the  prediction of [39] [see  (72)]. 

which  can  be  used  instead of (66) for estimating  the ex- 
ponential gain  detuning  spread  acceptance  in  the  regime 
Q > 30. 

B.  The  Transition Between the Cold and the Warm 
Gain Regimes 

As was previously shown,  the  analytic  gain expressions 
are  limited  in  their  aptitude for estimating the gain in the 
intermediate region  between  the cold and  warm gain re- 
gimes,  and  the  gain in these regions should be  calculated 
numerically using program WARM. Fig. 13(a) and  (b)  shows 
the  numerically  computed reduction factor of the maxi- 

- 
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TABLE I1 

INTERMEDIATE  COLD-WARM  TENUOUS  BEAM  GAIN  REGIMES 
THE WORKING FORMULAS FOR ESTIMATING THE FEL GAIN IN THE 

Intermediate  Parameter - 

regime 
Max. gain 

conditions 0;; expression 

_ -  
I Cold-warm  tenuous Q ,  0, < ?r 7r P ( L ) = 1 + -  0.27 e 

beam low-gain P(0) 1 + 8:h/7r2 

mum FEL  gain  as  a  function of the  axial velocity spread 
for various values of a and 8,. These  curves  indicate that 
the gain reduction factor variation as  a  function of 8 t h  de- 
pends on the  parameters 8,. This  conclusion is in agree- 
ment  with [42] and in disagreement  with [39]. We also 
note  that  all  the  curves  must  converge in the  asymptotic 
limit g t h  >> x to the  warm  beam  gain expression In 

We propose  here  a practical heuristic formula for the’ 
estimate of the  gain  in  the  intermediate  warm gain re- 
gime: 

G(eth) = 3e/@h  (57). 

In G(8th) - - 1 
In Gcold 1 + (8th/@;)’ 

where @; is defined for each  case by (66). The  curves  cor- 
responding to  this  expression are drawn in a broken  line 
in Fig. 13(a) and  (b), and are  compared to the numerically 
calculated  gain  curves. By definition,  the  curve of (71) is 
identical with the numerically  computed  curve  around  the 
points 8 t h  = o and = e;. Equation (71) also  converges 
close to the  warm  beam  expression In  G(Bth) = 3a/8:h 
- [dashed-dotted  curve in Fig. 13(a)] in the  asymptotic  limit 
6th >> e;. This can  be  shown, for example, in the  low- 
gain  regime  using (50) and (68) for In Gcold and @{, re- 
spectively, and in the  high-gain  regime using (39) and (70) 
(see Table  11). 

Inspection of Fig. 13(a) and  (b)  indicates  that  the  curve 
based  on (71) indeed  fits  the  numerically  computed  curve 
for 8, --+ 0 very well, and it deviates  from  the  numerically 
computed  curve by less than 5 percent  at  larger values of 
the  parameter 8, that we checked (8, < 10). This  makes 
(71) a useful formula to predict the gain reduction due to 
axial velocity spread  without  numerical  computation.  For 
arbitrary  FEL  parameters,  one only  needs to calculate  the 
value of Gcold (Q, e,), which can be accomplished using 
Table I  or  Fig. 7, and  then find the value of (Q, 0,) of 
(66) using the numerically  computed  curves of Fig. 14. 
These  parameters result straightforwardly in the  general 
gain G,,, ( Q ,  e,, 8 t h )  when  plugged in (71). It  should  be 
noted,  though,  that  since of Fig. 14 was computed  spe- 
cifically for a  shifted Maxwellian electron velocity distri- 
bution,  this  procedure for calculating the gain in the  in- 
termediate  warm  regime is valid only  when  the actual e- 
beam velocity spread  can  be  represented by such  a distri- 
bution function. 

An alternative  approximate  formula for the  axial veloc- 

(71) 

_ _  
_ -  

_ _  
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Fig. 14. The detuning  acceptalce  parameter 8:; according  to  the definition 
of (66) for  various  values  of 8,. For Q >> 7r, all  curves  approach  asymp- 
totically to the analytical expression (70) (in broken  line). 

ity spread gain reduction factor was proposed in [39] for 
a  Lorentzian velocity distribution  function.  Written  in 
terms of the present paper terminology, this formula  reads: 

This reduction factor is also displayed in Fig. 13(b), in 
dashed-dotted  lines, for the  purpose of comparison  with 
our numerically  computed curves. We see  that (72) pre- 
dicts  a  much  stronger reduction in gain than  predicted by 
our numerically  computed  curves.  (Perhaps the reason is 
the  high  content of electrons in the  distribution tails when 
a  Lorentzian  distribution is assumed.) Also, the reduction 
rate of (72) is independent of 8,’ in contrast to our nu- 
merically computed  curves. 

Working formulas for estimating  the  cold-warm  inter- 
mediate  regime  gain,  according to our  heuristic  approxi- 
mation (71), are given explicitly in Table 11, which is valid 
specifically for a  tenuous  beam  and  occurrence of  low (I) 
or high (11) gain  conditions. 

V. THE  GAIN  DETUNING AND BANDWIDTH  PARAMETERS 
The  formulation  used in the  present particle fully de- 

scribes  the FEL gain as a  function of the  detuning  param- 
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eter 8 = [w/u,o - kzdw)-- k,] L (23j, (35d)  for  any given 
FEL  parameters a, e,, 0 t h .  The gain  function  [Fig. 17(a)] 
attains a maximum value G,,, at 8 = e,,, < 0 near the 
synchronism point 8 = 0. The gain  function, drawn as a 
function of the detuning  parameter 8, usually has a narrow 
width. Consequently, the  dependence of the gain on both 
the frequency  and the velocity (energy) is  determined  pre- 
dominantly by its  dependence on 8 = g ( w ,  uZ) .  Although 
the other  parameters may also depend on frequency  and 
velocity, their values vary only slightly for frequencies or 
velocities corresponding to  the detuning  parameter  band- 
width A8. 

The explicit dependence of 8 on w is found when k, (w)  
is  substituted in (23 j .  In a waveguide structure 

- -  

k z ( w )  = (w2 - u&) ' /~ /c  (73) 

whereas  in free  space kZ = w / c .  In the  latter  case,  the 
dependence of 8 on w is linear  and  the gain curve depen- 
dence on is similar to  its  dependence on w .  This  is also 
the  case  in a waveguide, when the two solutions to  the 
equation 8 ( w )  = 0 are well spaced.  (The opposite  limit  is 
discussed later  in Section V-B.) The dependence of 8 on 
velocity (energy) is given in  terms of uZ = [v 2 - 
(eA,v/ymc)2]"2 where y = E/mc2 = (1 - P2) - I /* .  This  de- 
pendence  can  also  be  considered  linear within the narrow 
velocity (energy) range  corresponding to A$. Thus,  the 
gain curve  as a function of closely resembles its  depen- 
dence  on u (y). 

A .  Detuning Bandwidth Parameters 

Assuming the linear  approximations are valid, the  com- 
putation of the detuning  parameter  bandwidth A8 can be 
used  to calculate two useful parameters  [9].  The band- 
width gain  frequency  bandwidth  is 

(74) 

where 

is  the  group velocity  of the electromagnetic wave  in the 
waveguide. In  the limit of free  space propagation, ugo = 
c and (74) reduces to the simple relation 

Aw 1 A8 
w 2Nw x 

- 

where N ,  = Llh," is  the number of wiggles in the wiggler. 
The second  useful  parameter that can be calculated  from 
the  parameter A8 is  the energy (or velocity) detuning 
bandwidth: 

In the limit of free  space propagation, X = h,(Pzi' - 1) 
and 

The second  part of the  last equality applies in  the highly 
relativistic limit yzo >> 1. 

The frequency  bandwidth  parameter (75)  is useful for 
estimating the  FEL amplifier bandwidth.  In an  oscillator, 
it helps to  calculate  the effective spontaneous emission 
power useful  to build up the oscillation [40]. 

The energy  detuning  bandwidth  parameter  is useful as 
an electron  beam  energy stability acceptance  parameter 
(to  be  distinguished  from the energy  spread  acceptance 
parameter).  This  parameter indicates to what extent the 
beam  energy may deviate from the energy  corresponding 
to e,,, and  still  povide  appreciable  gain  at  frequency w 
(the  beam itself may be  nonenergetic). Such an  energy  sta- 
bility acceptance  parameter may be  useful, for  instance, 
for RF  linac FEL oscillator  design. Due  to amplitude  and 
phase instability of the klystrons, which drive  the  accel- 
erator  cavities,  the different microbunches of  which the 
accelerated  beam  macropulse consists may be  accelerated 
to different velocities. In extreme  cases,  some micro- 
bunches may attenuate radiation which  was generated by 
previous microbunches and was stored  in the cavity. To 
assure continuous buildup of the power in the cavity, the 
variance in microbunches energy should be  limited by 

As  in  the definition of e;, we  offer here two alternative 
definitions to A$. One  corresponds  to the detuning width 
at half the maximum  incremental  gain point: 

(77). 

- 

Gac(81.2) - 1 = J(Gmax - 1). (78) 
The  other definition relates to the logarithmic gain: 

la G,c(e,,2j = J In  G,,, (79) 

where 
AG 182 - $ 1 1 .  (80) 

Both definitions  coincide in the low gain  regime G,,, - 

1 << 1. The definitions of e, ,  g2, and A0 are depicted in 
Fig. 17(a). 

Assuming 8,, + 0, the  parameter A8 is  dependent only 
on the  parameters jj and 8 t h .  For the practical  limit of a 
cold beam 8 t h  + 0, the  dependence of A3 on  the  parame- 
ter e was computed  and displayed in  Fig. 15 for both def- 
initions (78) and  (79).  In  the low gain limit, both curves 
converge to the limit A8 = x ( 2 :  e;;), and (75) and (77) 
reduce to the conventional expressions for the frequency 
and  energy  detuning  bandwidths [9]-[ll] Aw/w = A E /  
E = (2NJ-I. In the high gain  regime (' >> x), both 
curves behave in irregular ways,  which are substantially 
different from the corresponding  detuning  spread  param- 
eter  curves (Fig.  12). Only the  parameter AG defined by 
(79) tends,  on  the average, to grow proportionally to 
Q 1 l 3  with some  similarity to (70): 

= 3a1I3. (81) 
In  addition  to Ae, we illustrate in Fig. 15 one  more pa- 

rameter which characterizes  the gain curve [see Fig. 
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Fig. 15. The detuning  bandwidth parameterag, according  to  definitions 
(78) and  (79),  versus  the  gain  parameter Q. Only the  curve correspo_nd- 
ing to  (79)  tends on the  average  to a proportional  dependence  on Q ” 3  
(broken line). The lower curve displays the  detuning  parameter Om,, for 
which maximum  gain  is  obtained  [see  Fig. 17(a)]. 

17(a)]-the maximum  gain  detuning point This pa- 
- rameter  is drawn for the  parameters’  regime /&, -+ 0, 
Oth -+ 0. We note  that  in  the low gain regime Omax = 
-2.6 (as is well known). In the  high gain regime amax does 
not vanish, which explains the  failure of the analytic ap- 
proximation - G = $ exp (& e (which  was  derived for 
0 = 0) to be close to  the exactly calculated  gain,  as  men- 
tioned before (Fig. 8). 

When  a FEL oscillator is being  considered,  a significant 
modification  should be  introduced to the  estimate of Ag. 
Considering  an  oscillator (or a  regenerative amplifier), 
which builds up  its  power  from  a  short  injected  pulse of 
seed  radiation,  the effective gain after N round  trips in the 
cavity is [G,,(@’JN. For  large N ,  this  is, of course,  a much 
narrower  curve  than G(8),  and it tends  to a Lorentzian 
shape of width 

as was  shown  in 1401. When  the  injected  radiation is con- 
tinuous (or when the  oscillation  buildup input power re- 
sults  ftom  spontaneous  emission),  the  stored  power in the 
cavity accumulates  from  added  contributions of new and 
recycied power  in  each  round  trip,  and  consequently  grows 
as  a  geometrical  series of single-path gain functions. Also, 
the N round-trip gain function, which  results  from  the 
summation of the  series, has  a  detuning  function  width 
similar  to (82). 

The  parameter AsN is useful for estimating  the effective 
input power,  which builds up  the  oscillation.  This is a 
quantity which is needed for estimating  the oscillation 
buildup  time in  finite  macropulse  accelerators 1401. We 

2 4 6 8 IO 12 - 14 
0 

Fig.  16. The  second  dcrivatke of the  gain  detuning function at  the maxi- 
mum gain point G”(O,,,, Q) for a cold tenuous  beam FEL. This  param- 
eter is used in (82) to  calculate  the  N-transversal  FEL  gain  bandwidth. 

illustrate in Fig. 16 the  computed values of G ” (e,,,) as  a 
function of for the  limits -+ 0, e,, -+ 0. The  param- 
eters read  from Fig. 8, together  with Fig. 16, can  be  used 
in  (82)  to  calculate AB, in  the  high, low, or  intermediate 
gain regimes. 

In the low-gain  limit e << T, the  curve of G ”(6,,.J 
tends to an  asymptotic value G ” (Bmax) = 0.08845 Q 
(which  can  be  calculated analytically from  the  low-gain 
regime  detuning  function);  Substituted in (82),  this re- 
sults in an analytic expression for the N transversals  gain 
frequency  bandwidth  in the low-gain  regime: 

B. The Gain-Frequency Curve of a Waveguide FEL 
In the conclusion of this  section, we consider briefly the 

question of the  gain  curve  and  gain  bandwidth in a  dis- 
persive electromagnetic  structure,  and specifically, in a 
waveguide.  Since in the  formulation of our model we as- 
sumed  an arbitrary valLte for the radiation  mode  wavenum- 
ber k z ( w ) ,  the  definition of the  four  operating  parameters 
(35a)-(35d), and  all  the  derivea  expressions  and  curves 
apply to any  kind of dispersive  electromagnetic  mode  (as 
long as  the  mode  cross-section profile is uniform  along  the 
interaction  length).  The  formulation specifically applies to 
waveguide modes,  where  the  mode wavenumber is given 

The only  aspect  in  which  the final results are  different, 
in a  dispersive  electromagnetic  structure, is in  the  gain 
curve  dependence  on  frequency  and  the  associated  fre- 

by (73). 
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Fig. 17. Construction of the  gain  curve  dependence on frequency G ( w )  (c) 
out of the given gain  detuning  curve G ( 8 )  (a) for a detuning  parameter 
dependence  on frequency 8 ( w )  corresponding  to  a waveguide dispersion 

, relation (73) (b). 

quency  bandwidth parameters. However,  if the dispersion 
relation k , ( w )  is known [in a waveguide,  given by (73)], 
then  the  dependence of the  detuning  parameter 8 [see  (23), 
(35d)l  on w is explicit and  the  gain curve  dependence  on 
frequency G(w) can  be  drawn.  Fig. 17 demonstrates  the 
construction of G(w) when G(8) is  known,  and 8 ( w )  = 
[w/uZo - (w2 - W&)"~/C - kw]L  is  the  detuning  parameter 
in a waveguide structure. 

The function e(w) is clearly a function  with a minimum. 
It  attains  its  minimal  value 

at frequency 

Wtan = Y Z O ~ C O .  (85) 

At  this  frequency,  the group velocity of the  mode  (the tan- 
gent  to  the  dispersion curve) is equal  to  the  beam velocity 
uzo. If e,,,, >> [e, is  the  larger  root of (78) or  (79)], then 
at  no frequency w is  gain available (in the low-gain re- 
gime, a sufficient condition for this is e,,, > 0). On  the 
other  hand, if e,,,, << 8, (or e,,, - eta, << A8/2),  then 
the  construction of Fig. 17 results in two  well-separated 
gain  curves, which attain  their  maxima  at 

- 

(86) 

In  this  limit,  the  linear  approximation $(w) = (@/dw) 
(w - wo) = ( u i '  - u z ' )  L ( w  - wo) holds,, and  the two 
gain  curves G(w) are similar  to  the  detuning  curves G(8) 
computed  in  this  paper.  The  frequency  bandwidth is given 
then by (74).  Note  that in the  higher  frequency  gain  curve 
ugO > uz0, and  the  opposite  takes  place  in  the  lower  fre- 
quency  gain curve. Consequently,  the  two  curves  describ- 
ing the  gain  dependence  on  frequency  will look like  mirror 
images of each  other, but scaled in the  frequency  dimen- 
sion by a different  factor Iu,;' - u ~ ~ , , ~ (  (see  Fig.  17(c), 
curve 111). The height of the two gain  curves  will  be  the 

- I  

same.  Only when the two  peak  frequencies  are  different 
enough  to  change  the constitutive  parameters Q, 8 t h .  will 
the  maximum  gains  and  the  entire  gain  functions  be  dif- 
ferent for both  curves.  This kind of two  gain  lines  behav- 
ior was observed  before,  experimentally  [44]  and  theoret- 
ically [45]. 

Note  that,  in  order for the  above  discussion to apply, the 
waveguide FEL parameters must satisfy  the  inequalities 

_ -  

The right-hand  side of the  equality  makes sure  that (86) 
has a real  solution (here we simplified the  condition  with 
the  assumption k,L >> e,,,, which makes  (87) a condi- 
tion for possible synchronization  between  the  beam waves 
and  the  radiation  mode). The  left-hand  side of the  ine- 
quality  (87)  assures  that kZ(wmax,) > 0, which corresponds 
to a forward  propagating  mode. In the  opposite  case, 

the  lower  frequency  solution  is a backward  propagating 
wave kz, < 0. This particular case may result  in  backward 
wave oscillations  (absolute  instability)  in  the FEL, and  is 
not treated in the  present  article  [46], - [47]. - 

In the  intermediate  regime el 5 8," s 02,  the  gain 
curve G(w) may be  quite  dissimilar  to G(8) (see  Fig. 17, 
curves I ,  11). Curve I1 demonstrates a double  peak behav- 
ior of G(w) [45] when e,,, < e,,,. The frequency  band- 
width may be  made somewhat  larger  than  (74), (75) (up 
to  about a factor of 2), when this is a desirable  feature. 
However, note  that  the maximum gain  is not increased in 
this  regime,  and it is  still  bounded by G,,, = G(e,,,,,). 
More  accurate  determination of the  frequency  bandwidth 
in this  regime  requires  numerical  computation. 

For a complete  quantitative  description of the waveguide 
FEL gain curve,  one should use  also  expressions for the 
gain  parameter e and  space  charge  parameter ep, which 
are valid in a waveguide structure.  The gain  parameter 
Q of a waveguide FEL can  be  computed  from  the coupling 
coefficient expression  (A6)  and (31) and  (35a). How- 
ever, we note  that  the  plasma  frequency  parameter w;, 
which is  necessary for calculating uco and ep, is also  mod- 
ified  in a waveguide structure.  There  are different plasma 
frequency modification factors for the solenoidal and  space 
charge waves  of the  system 1451, [48]. Both modifications 
are  ignored in the  present  work, which keeps  the  present 
waveguide FEL model valid only for e-beam  transverse 
dimensions which are  large, relative to  the  longitudinal 
wave  wavelength (kzO + kvv ) - ' .  Certainly,  the  formulation 
is valid in the  tenuous  beam  regimes  where  space  charge 
effects are totally  negligible. 

- 

VI. CONCLUSION ' 

In this  paper, we presented  the  general  gain-dispersion 
relation of the FEL in terms of only four  characteristic 
parameters: Q, e,, e t h ,  and e. We defined  the  various  gain 

_ -  
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regimes,  their analytic gain  expressions,  and  their validity 
conditions in terms of these  parameters.  The analytic 
expressions were  compared  to  the  numerically  calculated 
results  and  the relative errors  were mapped for the  various 
cases.  The  transitions between the gain regimes,  where 
the relative error is high, were  described  with  the aid of 
numerically  calculated  contour  maps. 

We introduced  a  number sf  alternative definitions for 
detuning  spread  acceptance,  and  showed  their usefulness 
for estimating  electron  beam quality acceptance  parame- 
ters  and for evaluating the  gain analytically in the  inter- 
mediate  regime. We also  defined  and  calculated  parame- 
ters of detuning  bandwidth in  amplifiers,  oscillators,  and 
waveguide FEL's.  These  parameters  are  useful, for ex- 
ample, for estimating  the  frequency  bandwidth of the FEL 
and its beam  energy instability acceptance. 

In  order  to  keep  the analysis comprehensive  and appli- 
cable for various devices and  problems, we provided 
expressions for the coupling parameter K of various FEL 
kinds,  and for the  detuning  spread  parameters 8 t h  corre- 
sponding  to various causes for axial velocity spread of the 
electron  beam. 

In order  to  use the design tools provided by this paper, 
_ -  in a  specific  problem,  the constitutive parameters 
Q ,  0,, e,), must  first  be  calculated. 8 t h  can be  calculated 
using the  formulas of Appendix B. is given by (27) and 
(35c),  and a is given by (31), (35a), and  Appendix A.  
The second  design  stage is to find out if the  FEL param- 
eters fall well inside one of the analytic approximation gain 
regimes. If this is the  case,  the  appropriate analytic 
expression for the  gain  and  the  maximum  gain point may 
be  used (Table I).  The relative error  can be  estimated by 
Fig. 9 or 10(a) or  (b). If the  parameters lead to the  inter- 
mediate  or  warm  beam  regimes  and 8 t h  >> one may 
use  the  contours of Fig. 11 to  estimate  the  gain. In a  wide 
range of warm  beam intermediate  regime  parameters,  the 
gain  can  be  estimated by the  heuristic  formula (71) and 
the  curves of @; which are displayed in Fig. 14. 

This  procedure  covers  the  entire  parameters'  range  and 
provides  a tool for the  estimation of the  FEL  gain, without 
the need for complicated  calculations. 

APPENDIX  A 
THE COUPLING PARAMETER K 

The coupling parameter K measures  the  strength of the 
coupling  between  the  electromagnetic wave and  the elec- 
tron beam  plasma  waves.  While the other  parameters of 
the  model  depend  only on  the  properties of the  electron 
beam, K is the  only parameter which is dependent on the 
specific scheme of FEL  considered.  This way, the  gain- 
dispersion relation (4) is a  generic  formula for various 
kinds of FEL's. 

Expressions for K for various  FEL's  are given  and  dis- 
cussed in [9] and  listed  again for convenience in Table 111. 

A ,  is the  electron  beam  cross-section  area  and Izo(x,  y )  
is the longitudinal electric field profile function of the elec- 
t romagnetic mode. 
€,,(x, y )  is the longitudinal electric field  profile function 

TABLE 111 
THE  COUPLING  PARAMETER K OF VARIOUS FEL's (THE  HIGHLY  RELATIVISTIC 

LIMIT  EXPRESSIONS  ARE  GIVEN IN BRACKETS) 

FEL K 

Cerenkov 
2 x 6  I,& ( x ,  ) > ) I 2  dx dy 

of the  first-order  space  harmonic of the  electromagnetic 
mode  in  the  Smith-Purcell  periodic  waveguide,  given by 

E?&., y )  = - e-i(kzO+kx,)Z E 
h ,  s"" 0 ,(x, Y ,  z )  dz (All 

where X, is  the  period of the  periodic  electromagnetic 
structure. 6 is the total electromagnetic  power of the un- 
coupled  mode:, 

m 

6 = 1 Re[I(x, y ,  z )  x X * (x, y ,  z ) ]  - iz dx dy. 
--co 

(A21 

For  a longitudinal electrostatic FEE [15] , the  parameter 
a2 is defined by 

where & = E,/k, is  the  amplitude of the  periodic elec- 
trostatic  potential in this  laser.  In this case, x ( w ,  s) must 
be replaced in  the  gain-dispersion relation (4) by 

xcu, s) = (1 + a2> xp(w, s) (A4) 

where x, is given by (6). 
In all longitudinal interaction  FEL's  (rows 1-3), the 

magnetized  plasma  approximation  was  used  in  deriving 
the expressions for k .  

For transverse  electrostatic  FEL [15], [ 161, E, is  the 
rms  electrostatic field of the transverse wiggler, and for 
magnetic  bremsstrahlung  FEL [IO], [ 111, E ,  is the  rms 
magnetic  wiggler field (either linear  or  helical). In the 
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Compton-Raman FEL  [8],  the  electron beam is pumped 
by a  time-varying  electromagnetic  wave,  propagating in 
counterdirection to the  electron  beam  with a Poynting vec- 
tor power density S ,  and  transverse electric field ampli- 
tude E,. In all  the  transverse  FEL  schemes (rows  4-6), 
the coupling coefficient is calculated specifically for a 
TEM radiation mode.  The  parameter A,, in these  cases 
is the effective electromagnetic  mode area defined by 

where xe, y e  are  the  electron  beam  coordinates. 
The  FEL  scheme of most interest  is  the magnetic 

bremsstrahlung  FEL.  For  this  device, we calculated the 
coupling coefficient separately in a  model which includes 
also waveguide effects [47].  The result can  be  written in 
the highly relativistic limit  in  the  compact way: 

where a,,, = eB,J(k,mc). 
In the  limit of nondispersive  electromagnetic  structure 

(k, = w/c, X = X,,,/2y:o), (A6)  reduces to the expression 
in row 5 of  Table 111. For  the  purpose of convenience in 
application, we also  list  here explicitly the conventional 
expression for the gain parameter a corresponding to this 
specific case: 

where 

re = e’/(4n~~rnc~) = 2.818 X m 

is the classical electron  radius  and Io is  the instantaneous 
beam  current. 

We note   ha st in the  case of a  strong  linear wiggler  (high 
harmonics  operating  regime) a, >> 1, the  coupling  and 
gain parameters (A61 and  (A7)  should  be  modified by a 
reduction factor of 

where J o ,   J ,  are the zero-  and  first-order Bessel functions, 
respectively [49]. With  this modification, the gain disper- 
sion (4) continues to be  valid, at least in the  tenuous  beam 
regimes.  The effects of space  charge  and  operation at high 
harmonics  are described in [49]. 

APPENDIX  B 
T H E  D E T U S I N G  SPREAD  PARAMEiER e t h  

The  axial velocity spread of the  electron  beam generally 
causes  a reduction in the gain of the FEL.  The various 
sources for the  axial velocity spread are discussed in [40] 
and briefly summarized in  Table IV, for the highly relativ- 
istic limit 0; -+ 1. Note, however, that the  free  space  prop- 
agation assumption (kzo = d c )  is not used,  and  the 

TABLE IV 
AXIAL VELOCITY AND DETUNING SPREAD PARAMETER 

- 
Spread  source V,,h/C 0 t h  

Energy spread 1 AE T A E L  
2 7 :  E -yf E X 
_ _  

Angular  spread (dT)’ 1 € 2  L - 
2 &  

;G 4 

- _ _  
7r & X 

Transverse 
gradient 

Emittance 1 kBeLiX 
(minimal) -kg€ 21r 

Space  charge 

T kg 6 LiX 

3 x x 2 I,, 
1 

6 T X X - 
I L  

Y: Y rS Y x 

expressions for 8 t h  apply  also for dispersive  electromag- 
netic structures  like  a waveguide (73). 

The  total  energy  spread  parameter A E (row 1) is the 
FWHM  energy  spread A E  = Aymc’. For a Gaussian en- 
ergy  distribution, A E  is defined as A E = 2 E t h  where 
Eo Et,, are  the l /e  falloff points of the energy distribu- 
tion.  When  an  RF  linac is used, A E  is attributed mostly 
to the  finite  phase  bunching of the electron microbunches 
in the acceleration gaps. 

The  emittance E (row 2) is defined by 

E = nrboeb (B1) 

where rho is  the initial beam  radius  and Ob is the half 
opening  angle of the  angular  spread.  The  emittance is a 
beam parameter which is independent of the focusing ap- 
paratus.  It is limited in most RF accelerators by the  phe- 
nomenological  “Lawson-Penner” relation 1431, although 
many  well-designed  accelerators have a  lower  emittance 
than  that  given by this  limit. In particular, much smaller 
emittance values are available in storage ring beams.  The 
finite emittance  corresponds to a finite  transverse velocity 
spread of the  electrons  in  the wiggler, and  consequently 
(if the total velocity spread is negligible) results in the  ax- 
ial velocity spread  given in  row 2. 

Another  source for the  transverse  spread is the  trans- 
verse  gradient in the wiggler field (row 3), which is pres- 
ent in any realizable wiggler. This  transverse  gradient 
produces  a  gradient in the  electrons’  transverse quiver ve- 
locity (corresponding  to  their  transverse position), and 
consequently  causes a spread in the  axial velocity of a fi- 
nite  width  monoenergetic beam, which propagates  along 
the wiggler axis.  The  transverse  gradient also produces  a 
focusing effect on the  beam  which  causes the electrons to 
perform long wavelength (betatron)  oscillations with  an 
oscillation  wavenumber  [40] : 

k,  = 

Jz Pzr 
k,v (B2) 

where a,  = eB,/k,mc is  the  normalized vector potential 
of the  wiggler  magnetic field amplitude B,. rh is  the  max- 
imum radius of the beam  envelope inside the wiggler. 
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For  a  long  enough wiggler, minimal  axial velocity spread 
is  attained  when  the  electron  beam  is  inserted  with  an  op- 
timal beam  radius: 

r,  = (-$. 

In this  condition,  as  noted in [40], the beam  envelope is 
uniform  and  the  total  emittance contribution due  to  both 
the  transverse  gradient  and  the  angular  spread is minimal 
and  listed in line 4. 

The  potential  depression  across a dense,  nonneutralized 
electron  beam  also  contributes  axial velocity spread  (row 
5) .  Io is the  beam  peak  current,  expressed in amperes. 

In  calculating  the  total  detuning  spread  parameter a & ,  

one  should  add in quadratures  the contributions of the an- 
gular  spread  and  the  transverse  gradient to &. Other  con- 
tributions  add  up in a  more  complicated way and usually 
generate  a  total  axial velocity distribution which is not 
necessarily  Gaussian [50]. A “worst  case”  estimate  for- 
the total detuning  parameter  spread would be  obtained by 
adding  the  contributions linearly. When the exact distri- 
bution function is known, uzth/C and  consequently &, = 
(uah/C) (27rL/X) can  be  calculated by fitting a  Gaussian to 
the  given  distribution. 

Table IV  applies for both  linear  and helical wiggler 
cases.  Note, however, that in a  linear wiggler, there  is  a 
transverse  gradient focusing effect and  betatron  oscilla- 
tion only in the polarization plane (perpendicularly to the 
wiggling  plane). 
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