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Transfer Matrix Function (TMF) for Wave
Propagation in Dielectric Waveguides

With Arbitrary Transverse Profiles
Zion Menachem and Eli Jerby

Abstract—A transfer matrix function (TMF) is derived for the
analysis of electromagnetic (EM) wave propagation in dielectric
waveguides with arbitrary profiles, situated inside rectangular
metal tubes. The TMF relates the wave profile at the waveguide
output to the (arbitrary profile) input wave in the Laplace space.
The TMF consists of the Fourier coefficients of the transverse
dielectric profile and those of the input-wave profile. The method
is applicable for inhomogeneous dielectric profiles with single or
multiple maxima in the transverse plane. The TMF is useful for
the analysis of dielectric waveguides in the microwave and the
millimeter-wave regimes and for diffused optical waveguides in
integrated optics.

Index Terms—Dielectric waveguides, propagation.

I. INTRODUCTION

DIELECTRIC waveguides and dielectric-loaded metallic
waveguides have attracted a considerable interest in

practice and theory [1]–[14] in a wide variety of transverse
profiles. The purpose of this study is to develop transfer
relations between the wave components at the output and input
ports of such waveguides as matrix functions of their dielectric
profiles. The approach presented in this paper is applicable for
arbitrary profiles of the input field and of the dielectric, and is
particularly useful for smoothly varying profiles.

Various methods for the analysis of similar problems (of
wave propagation in dielectric inhomogeneous waveguides)
have been studied in the literature. The review presented in [1]
describes a wide range of homogeneous and inhomogeneous
waveguides in the microwave and optical regimes. The main
approaches discussed there are based on point matching,
integral equations, finite differences, and finite elements. In
[2], a variational formulation of the electromagnetic (EM)
Maxwell equations is applied to dielectric-loaded rectangular
waveguides. Reference [3] uses the method of finite differ-
ences to compute modes of dielectric guiding structures. The
method of effective index is implemented in [4] in order
to determine the dispersion of optical fibers with arbitrary
cross-section shapes.

The modes of dielectric waveguides with arbitrary profiles
are computed in [5] by a two-dimensional Fourier expan-
sion. The scalar-wave equation is converted into a matrix
eigenvalue equation by an expansion of the unknown field
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in a complete set of orthogonal functions. This expansion is
applied to convert a linear partial differential equation into
a matrix eigenvalue equation. Reference [6] presents modes
of homogeneous and inhomogeneous lossless dielectric-slab
rectangular waveguides. The Schrödinger equation is applied
to dielectric waveguide problems in [7]. A domain-integral-
equation method is proposed for the computational modeling
of diffused channel waveguides [8]. This method is used in the
design of channel waveguides realized by an ion-exchange
process in glass substrates.

A general method to solve the scalar-wave equation for
integrated optical devices is presented in [9]. The method is
applied to three-dimensional problems with reflected waves by
dividing the device into a series of sections of axially uniform
waveguides. Guided modes of general dielectric waveguides
are solved in [10] by expanding the unknown field vectors in
sine series. Expansion of an arbitrary field in terms of wave-
guide modes using a Sturm–Liouville equation is presented
in [11]. Scattering and transfer-matrix methods are used for
modal analysis of lossy and amplifying waveguides [12], and
for distributed-feedback devices [13], respectively. A review
of the numerical and approximate methods for the modal
analysis of general optical dielectric waveguides [14] discusses
the methods of finite elements, finite differences, integral
equations, series expansion, and separation of variables.

The following sections present the derivation of a transfer
matrix function (TMF) for dielectric waveguides with arbitrary
profiles. The method is applicable in general for lossy, as well
as amplifying, dielectric media. It was first used to analyze
waveguiding effects in free-electron lasers (FEL’s), both in
metal tubes and free space [15], [16]. In this paper, the TMF’s
are derived for passive lossless dielectric guides situated inside
rectangular metallic tubes. The TMF computational algorithm
is presented, and various examples are solved in order to
demonstrate the TMF capabilities.

II. THE TMF DERIVATION

A general scheme of a dielectric waveguide with an arbitrary
profile in a rectangular metallic tube is shown in Fig. 1. The
wave equations for the electric- and magnetic-field compo-
nents in the inhomogeneous dielectric medium are
given by

(1a)
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Fig. 1. A general scheme of an arbitrary profile dielectric waveguide.

and

(1b)

respectively. The dielectric transverse profile is defined as

(2)

where represents the vacuum dielectric constant, is
the susceptibility of the dielectric material, and is its
profile function in the waveguide.

The normalized transverse derivatives of the dielectric pro-
file are defined as

(3a)

and

(3b)

Using these definitions, the wave equation (1a) is written
in the following form:

(4a)

(4b)

(4c)

where is the local wavenumber parameter,
, and

is the free-space wavenumber.
The Laplace transform

(5)

is applied on the -dimension, where represents any
-dependent variables in (4a)–(4c). These are rewritten in the
-plane in the following form:

(6a)

(6b)

(6c)

The transverse Laplacian operator is defined as
, and , are the initial values of the

corresponding fields at , i.e.,
and .

The use of the Laplace transform in the-direction is
preferred because it enables one to explicitly present the
initial condition of the EM wave at the waveguide entrance.
In addition, it displays (by the location of singularities on
the complex -plane) the convective instabilities of amplified
or evanescent waves along media with inhomogeneous or
complex dielectric constants.

A Fourier transform is applied on the transverse dimension

(7)

and the differential equation (6a)–(6c) are transformed to an
algebraic form in the ( ) space as follows:

(8a)

(8b)

(8c)

where . The asterisk symbol denotes the
convolution operation

(9)

In order to solve the algebraic equations (8a)–(8c) numer-
ically, the continuous space is discretized to fundamental
transverse wavenumbers and , where

and are the transverse dimensions of the rectangular
boundaries. Hence, we substitute and ,
where the integers and are truncated by
and , respectively. The orders and
determine the accuracy of the solution, as shown in the
convergence analysis in the following section.

In general, the TMF method is applicable for two kinds
of waveguides: dielectric guides in free-space and dielectric-
loaded metallic rectangular waveguides. In the first case, the
(artificial) transverse boundaries and should be large
enough to neglect the wave there. In the second case, the (real)
metallic boundary conditions should be taken into account.
This can be done by the method of images, as described below.

In order to solve the TMF for a dielectric-loaded metallic
rectangular waveguide, the method of images is applied to
satisfy the conditions and on the
surface of the ideal metallic waveguide walls, whereis a
unit vector perpendicular to the surface. The dielectric profile

is defined inside the waveguide boundaries
and . In order to maintain the boundary conditions
without physical metallic walls, a substitute physical problem
is constructed with infinite transverse extent. The periodicity
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Fig. 2. The image method—substitution of metallic boundary condition by
symmetrical and antisymmetric periodic continuation of images.

and the symmetry properties are chosen to force the boundary
conditions at the location of the walls in the real problem.
This is done by extending the waveguide region ,

to a fourfold larger region, as shown in Fig. 2.
Hence, the following relations are yielded:

(10a)

(10b)

The region is then further extended
to infinity by periodic replication

, where . The field components, ex-
tended by an antisymmetric continuation in the-direction and
by a symmetric continuation in the-direction, are periodically
replicated in the same way, namely,

for . The substitution of the
physical problem is equivalent to the original problem in
the region , and satisfies the same
boundary conditions on the boundary of this region. However,
contrary to the original problem, it is infinite and periodic
in the transverse dimensions. Therefore, it can be expanded
by a discrete Fourier-transform series with and

. For dielectric waveguide in free space, or in
cases where the metallic boundary conditions are negligible,

the method of images is not needed and the computation of
the TMF is simplified.

The Fourier components of the fields and of the
other transverse functions in Fig. 8(a)–(c), with or without the
image continuation, are discretized as

(11)

and form a spatial spectrum of plane waves. Its components
are organized in a vectorial notation as follows:

...

...

...

(12)

The convolution operation

(13)

is written in a matrix form as where
and the matrix order is . The

convolution operation is expressed by the cyclic matrix,
which consists of Fourier components of the dielectric profile

, shown in (14), at the bottom of this page.
Equation (8a)–(8c) are rewritten in the following matrix

form:

(15a)

(15b)

(15c)

where the initial-value vectors , , and consist
of the transverse Fourier components of the input fields

...
...

.. .
...

. . .
. . .

. . .
. . .

. . .
. . .

...
...

(14)
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, , and ,
and are organized in the form of (12). The field profile at the
entrance to the waveguide can be substituted as any analytical
function or numerical data according to the given problem.

The diagonal matrices , , and are defined as

(16a)

(16b)

(16c)

where and are the Kronecker delta functions.
The modified wavenumber matrices are defined as

(17a)

(17b)

(17c)

and (15a)–(15c) result in

(18a)

(18b)

(18c)

After some algebraic steps, the TMF’s are formulated as

(19a)

(19b)

(19c)

The TMF’s (19a)–(19c) describe the transfer relations be-
tween the spatial spectrum components of the output and input
waves in the dielectric waveguide.

The transverse-field profiles are computed by the inverse
Laplace and Fourier transforms as follows:

(20a)

The inverse Laplace transform is performed in this study by
a direct numerical integration on the-plane by the method
of Gaussian quadrature. The integration path in the right side

Fig. 3. A flowchart of the TMF computational algorithm.

Fig. 4. A dielectric slab in a rectangular metallic waveguide.

of the -plane includes all the singularities, as proposed by
Salzer [17], [18] as follows:

(20b)
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(a) (b)

(c)

Fig. 5. A benchmark solution of the TMF (19) for a dielectric slab
(�r = 9; a = 2 cm, b = 1 cm, d = 3:3 mm, L = 20 cm, and� = 6:9

cm) with the transcendental-equation mode (21a), (21b) as an input. (a) The
wave amplitude solution of the TMF forN = 1–9. The solid line shows the
transcendental-equation mode. (b) The output phase profile corresponding to
Fig. 5(a). (c) The convergence of the TMF results.

where and are the weights and zeros, respectively, of
the orthogonal polynomials of order 15 presented in [17] and
[18]. The Laplace variable is normalized by in the
integration points, where and all the poles should
be localized in their left side on the-plane. This approach
of a direct integral transform does not require (as with other
methods) dealing with each singularity separately. (An al-
ternative approach could be to find the eigenmodes by the
TMF eigenvectors and their wavenumbers by the associated
eigenvalues. The input field could then be decomposed to those
eigenmodes, propagated along the waveguide and composed
again at the end. The direct inverse Laplace transform [17],
[18] saves this effort by a robust solution of the TMF.)

A computational algorithm for the TMF solution is pre-
sented schematically by the flowchart shown in Fig. 3. Based
on this recipe, a Fortran code was developed using NAG
subroutines.1 Several examples computed by this code [19]
on a Unix system are presented in the following section.

III. EXAMPLES OF TMF APPLICATIONS

This section presents several examples which demonstrate
features of the TMF derived in the previous section. First, the
TMF model is applied to a dielectric slab with abrupt edges
in a rectangular waveguide. The solution is compared to the

1The Numerical Algorithms Group (NAG) Ltd., Wilkinson House, Oxford,
U.K.

(a) (b)

(c) (d)

Fig. 6. A dielectric slab in a rectangular waveguide (�r = 10, a = 2 cm,
b = 1 cm, d = 0:5 cm, L = 13 and � = 3:75 cm). (a) The slab
profile. (b) The output field amplitude as response to a half-sine (TE10)
input-wave profile. (c) The output phase profile corresponding to Fig. 6(b).
(d) The convergence of the TMF results (23).

results of the known transcendental equation as a benchmark.
Second, the TMF is applied to solve problems of continuous
dielectric profiles. In all the examples presented below, the
wavelengths are in the centimeter range, the dimensions of
the metallic rectangular tube are cm and cm, and
the TMF orders are .

A. Dielectric Slab

The dielectric slab cross section in a rectangular metallic
waveguide is shown in Fig. 4. Since its theoretical solution
is known by other methods, this problem is used here as a
benchmark for the TMF. Following [20], the solution for the
wave propagation in a symmetrical slab is given by

(21a)

(21b)

where and result from the
transcendental equation

(22)

for and . The solution
obtained for the wave profile (21a), (21b) describes a sym-
metrical mode of the dielectric slab. For the benchmark, this
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(a)

(b)

Fig. 7. A Gaussian dielectric waveguide (a = 2 cm,b = 1 cm,L = 29 cm,
� = 3:75 cm, andN = 7). (a) The Gaussian transverse profile of the
dielectric waveguide�r(x; y). (b) The output wave profile in response to a
half-sine (TE10) input-wave profile.

mode is substituted as an input wave at to the TMF.
The corresponding output resulting from the TMF is then
compared to the original mode amplitude profile at .
The preservation along the waveguide (by the TMF) of the
amplitude profile, which results from (21a) and (21b), provides
a benchmark for the TMF accuracy, including the direct
integration stage of the inverse Laplace transform.

Fig. 5(a) shows the resulting benchmark solution of the
TMF for , , , , and , where the input is the
fundamental mode (21a), (21b) and the other parameters are

, mm, and cm. The TMF results in
Fig. 5(a) converge to the exact mode.

(a)

(b)

Fig. 8. Two dielectric waveguides with a double-humped Gaussian profile
(a = 2 cm, b = 1 cm, L = 18 cm, � = 3:75 cm, andN = 7). (a) The
dielectric profile�r(x; y). (b) The output field profile as a response to a
half-sine input-wave profile.

The corresponding phase profile is shown in Fig. 5(b). The
convergence of the solution is verified by the criterion

(23)

The convergence rate of the peak amplitudes is shown in
Fig. 5(c). An accuracy better than 1% is achieved in this
example for , with respect to the exact solution of
(21a) and (21b).
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(a)

(b)

Fig. 9. A dielectric slab with a diffused edge (�r = 10, a = 2 cm,
b = 1 cm, L = 33 cm, � = 3:75 cm, andN = 9). (a) The dielectric
profile of a slab with a diffused edge profile. (b) The output field amplitude
as a response to a half-sine input wave.

The response of the dielectric slab to an input-wave pro-
file with a shape of a rectangular waveguide empty-
waveguide mode is described in Fig. 6(a)–(c). The parameters
of this example are , cm, cm, and

cm. The dielectric profile is shown in Fig. 6(a).
The resulting amplitude and phase profiles of the output wave
are presented in Fig. 6(b) and (c), respectively, for – .
The convergence rate is shown in Fig. 6(d). For , the
convergence rate in these conditions is %.

B. Diffused Dielectric Waveguides

The ability of the TMF method to solve continuous prob-
lems is presented in this section by several examples of
smoothly varying dielectric profiles. These examples include a
Gaussian dielectric profile, a double-humped Gaussian profile,
a dielectric slab with a diffused edge, and a composition of a
Gaussian profile and a slab with a diffused edge. Continuous
non-Gaussian profiles can be solved as well by the TMF
method.

The first example shown in Fig. 7(a) is a Gaussian dielectric
profile in the form

(24)

(a)

(b)

Fig. 10. A composition of a Gaussian profile dielectric rod and a slab with a
diffused edge (a = 2 cm, b = 1 cm,L = 17 cm � = 3:75 cm, andN = 9).
(a) The dielectric profile�r(x; y). (b) The output filed profile as a response
to a half-sine input wave profile.

Equation (3a) and (3b) result in
and . The input waves

are chosen arbitrarily as the profile of the of the empty
waveguide. Fig. 7(b) shows the wave profile evolved in this
waveguide as the result of this input-wave profile, for

mm, mm, and cm. Both the half-sine
( ) profile and the Gaussian shape emerge in the output
wave profile.

A dielectric profile with double-humped Gaussian shape is
shown in Fig. 8(a). The centers of the two Gaussian slabs are
located at , , and , .
The wave profile evolved as a result of an (arbitrary) input
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as a mode is shown in Fig. 8(b). The result shows that
the radiation power is split between the two diffused dielectric
waveguides.

A diffused-slab waveguide profile is shown in Fig. 9(a). The
output wave profile for the same parameters, as in the previous
example, is seen in Fig. 9(b). In another example, a Gaussian
channel is diffused on top of the slab continuous edge, as
shown in Fig. 10(a). The output wave profile is presented
in Fig. 10(b). The waveguiding is clearly observed in the
resulting duct effect.

IV. DISCUSSION

The TMF approach presented in this paper provides a
numerical tool for the calculation of wave propagation in ar-
bitrary shaped dielectric waveguides. The model is applicable
for continuous transverse dielectric profiles and for arbitrary
input-wave distributions. The evolution of the wave along
the waveguide is computed byinput–output matrix relations
(19a)–(19c).

The numerical solutions presented in this paper show a
variety of examples of the TMF features. The model can be
used to find eigenmodes of the dielectric waveguide and to
analyze coupling between adjacent dielectric waveguides.

The TMF model is especially applicable to continuous
problems (i.e., smoothly varying profiles) in which the di-
mensions of the transverse variations are of the order of the
EM wavelength. In these cases, the TMF provides reasonable
accuracy and computation time.

The TMF might be a useful tool for the analysis of contin-
uous dielectric waveguides in the microwave and millimeter-
wave regimes and for diffused waveguides in integrated optics
[21]. Applications of the TMF to lossy and amplifying di-
electric media in metal boundaries and in free space will be
presented in the future.
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