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Transfer Matrix Function (TMF) for Wave
Propagation in Dielectric Waveguides
With Arbitrary Transverse Profiles

Zion Menachem and Eli Jerby

Abstract—A transfer matrix function (TMF) is derived for the  in a complete set of orthogonal functions. This expansion is
analysis of electromagnetic (EM) wave propagation in dielectric applied to convert a linear partial differential equation into
waveguides with arbitrary profiles, situated inside rectangular a matrix eigenvalue equation. Reference [6] presents modes

metal tubes. The TMF relates the wave profile at the waveguide fh d inh loss| dielectric-slab
output to the (arbitrary profile) input wave in the Laplace space. Of homogeneous and Inhomogeneous [0ssiess dielectric-sia

The TMF consists of the Fourier coefficients of the transverse rectangular waveguides. The Satinger equation is applied
dielectric profile and those of the input-wave profile. The method to dielectric waveguide problems in [7]. A domain-integral-
is applicable for inhomogeneous dielectric profiles with single or equation method is proposed for the computational modeling
multiple maxima in the transverse plane. The TMF is useful for ot gitfsed channel waveguides [8]. This method is used in the
th_e_analy5|s of dlelt_ectnc wavegum_les in the microwave r_:md t_he desi f ch | id lized b ion-exch
millimeter-wave regimes and for diffused optical waveguides in esign 0_ Channel waveguides realized by an lon-exchange
integrated optics. process in glass substrates.

A general method to solve the scalar-wave equation for
integrated optical devices is presented in [9]. The method is
applied to three-dimensional problems with reflected waves by
I. INTRODUCTION dividing the device into a series of sections of axially uniform

IELECTRIC waveguides and dielectric-loaded metamgvaveguide;. Guided modes .of general dielect_ric wavegui(jes
Dwaveguides have attracted a considerable interest aff Selved in [10] by expanding the unknown field vectors in
practice and theory [1]-[14] in a wide variety of transvers&N€ Series. Expgnsmn of an ar_bltra_ry field in terms of wave-
profiles. The purpose of this study is to develop transf@Hide modes using a Sturm-Liouville equation is presented
relations between the wave components at the output and inffuf11]- Scattering and transfer-matrix methods are used for
ports of such waveguides as matrix functions of their dielectrf@oda! analysis of lossy and amplifying waveguides [12], and
profiles. The approach presented in this paper is applicable fof distributed-feedback devices [13], respectively. A review
arbitrary profiles of the input field and of the dielectric, and i8f the numerical and approximate methods for the modal
particularly useful for smoothly varying profiles. analysis of general_ qptlcal dielectric _W_aveg_wdes [14] dl_scusses

Various methods for the analysis of similar problems (dh€ methods of finite elements, finite differences, integral
wave propagation in dielectric inhomogeneous waveguidé%‘juat'ons’ series expansion, and separat.|on.of variables.
have been studied in the literature. The review presented in [1]Th€ following sections present the derivation of a transfer
describes a wide range of homogeneous and inhomogene'%\?éf'x function (TMF)'for dleilectnc yvavegwdes with arbitrary
waveguides in the microwave and optical regimes. The mdCfiles. The method is applicable in general for lossy, as well
approaches discussed there are based on point matchfig@MPlifying, dielectric media. It was first used to analyze
integral equations, finite differences, and finite elements. Y¥veguiding effects in free-electron lasers (FEL's), both in
[2], a variational formulation of the electromagnetic (EmJ€t@l tubes and free space [15], [16]. In this paper, the TMF's
Maxwell equations is applied to dielectric-loaded rectangulaFe derived for passive lossless dielectric gwde.s situated !nS|de
waveguides. Reference [3] uses the method of finite diﬁe_rrectangular metallic tul?es. The TMF computanonal_algonthm
ences to compute modes of dielectric guiding structures. TiePresented, and various examples are solved in order to
method of effective index is implemented in [4] in ordef€monstrate the TMF capabilities.
to determine the dispersion of optical fibers with arbitrary
cross-section shapes. II. THE TMF DERIVATION

The modes of dielectric waveguides with arbitrary profiles A general scheme of a dielectric waveguide with an arbitrary
are computed in [5] by a two-dimensional Fourier expamrofile in a rectangular metallic tube is shown in Fig. 1. The
sion. The scalar-wave equation is converted into a mattixave equations for the electric- and magnetic-field compo-
eigenvalue equation by an expansion of the unknown fietgnts in the inhomogeneous dielectric mediufa, y) are
given by

Index Terms—Dielectric waveguides, propagation.
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Fig. 1. A general scheme of an arbitrary profile dielectric waveguide.

and

V?H + w?pucH + Ve o (v xH) =0 (1b)
€

respectively. The dielectric transverse profile is defined as

(@)

where ¢y represents the vacuum dielectric constayy, is
the susceptibility of the dielectric material, ap@c, ) is its
profile function in the waveguide.

e(z, y) = co[l +x,9(z, y)]

The normalized transverse derivatives of the dielectric pro-

file g(x, y) are defined as

and
"= {a% (@, y)} . (3b)
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The transverse Laplacian operator is definedV&s =
V2 -9%/92% and E,,, E,,, E., are the initial values of the
corresponding fields at = 0, i.e., E,, = F,(z,y, z = 0)
and B!, = (9/92) E.(x, ¥, )|.=o-

The use of the Laplace transform in thedirection is
preferred because it enables one to explicitly present the
initial condition of the EM wave at the waveguide entrance.
In addition, it displays (by the location of singularities on
the complexs-plane) the convective instabilities of amplified
or evanescent waves along media with inhomogeneous or
complex dielectric constants.

A Fourier transform is applied on the transverse dimension

vy
(7)

and the differential equation (6a)—(6c) are transformed to an
algebraic form in thed«, s, &k, k,) space as follows:

(52 + k2)E + k2x07 % Ea + jka(F, * Bu + g, * E,)
=sE,, + E;O (8a)
(s° + k2)Ey + k2xog % By + jky (3, * Bo +7, * )
_E, +E, (8b)
(s + kf)Ez + k2x,7 * Ez + s(g,, * Em + 7, * Ey)

=SB, +E. +(Gy* B, +7, % Eyy) (8c)

wherek, = ,/k2 — k2 — k2. The asterisk symbol denotes the
convolution operation

g+ E = F{g(z, v)E(z, u)}. 9)

Using these definitions, the wave equation (1a) is written In order to solve the algebraic equations (8a)—(8c) numer-

in the following form:

VQEJ: + kQEm + aa:(Eacgac + Eygy)
V?E, + k*E, + 9,(E.g, + E,g,) =0
VE. +K°E. + 0.(E,g, + E,g,) =0

0 (4a)
(4b)
(4c)

where k is the local wavenumber parameterk =

wy/pe(x, y) = kov/1+xo9(x, v), and ko = w/noco

is the free-space wavenumber.
The Laplace transform

a(s) = L{a(z)} = / ioo a(2)e= dz (5)

ically, the continuousk, space is discretized to fundamental
transverse wavenumbets, = r/a andk,, = w/b, where

a and b are the transverse dimensions of the rectangular
boundaries. Hence, we substitiig = nk,, andk, = mk,,,
where the integerg andm are truncated by-N < n < N

and —M < m < M, respectively. The order&y and M
determine the accuracy of the solution, as shown in the
convergence analysis in the following section.

In general, the TMF method is applicable for two kinds
of waveguides: dielectric guides in free-space and dielectric-
loaded metallic rectangular waveguides. In the first case, the
(artificial) transverse boundaries and b should be large
enough to neglect the wave there. In the second case, the (real)

is applied on thez-dimension, wherea(z) represents any metallic boundary conditions should be taken into account.
z-dependent variables in (4a)—(4c). These are rewritten in tfigis can be done by the method of images, as described below.

s-plane in the following form:

(V3 +8° + k) Ey + 02(Ergs + Eygy)

= sk, + E;;O (6a)
(V2 + 82+ kD) E, + 8,(Evg. + Eyg,)

= sk, + E;,O (6b)
(V3 + 2 +E)E. + s(Erg. + Eygy)

= $E., + B + (Euy 0o + Eyy0y)- (6c)

In order to solve the TMF for a dielectric-loaded metallic
rectangular waveguide, the method of images is applied to
satisfy the condition& x F = 0 and7 - (7 x E) = 0 on the
surface of the ideal metallic waveguide walls, wheres a
unit vector perpendicular to the surface. The dielectric profile
g(z, y) is defined inside the waveguide boundafies = < a
and0 < y < 0. In order to maintain the boundary conditions
without physical metallic walls, a substitute physical problem
is constructed with infinite transverse extent. The periodicity
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y the method of images is not needed and the computation of
a the TMF is simplified.
The Fourier components of the fiel@ k.., k,) and of the
b @ O > other transverse functions in Fig. 8(a)—(c), with or without the
x image continuation, are discretized as
Q O > En, m :E(nkoxa mkoy)
a b
1 / / Ba, y)-c—i0 /@24 (< 09) g g
—aJ—b

E, Eyo E, - m
(11)

E, - T and form a spatial spectrum of plane waves. Its components
are organized in a vectorial notation as follows:

_E_ - -
E, N,—M
E, E_n 4+m

E= : (12)
E +n,+m

Fig. 2. The image method—substitution of metallic boundary condition by —
symmetrical and antisymmetric periodic continuation of images. —E+N, +M -

The convolution operation

and the symmetry properties are chosen to force the boundary _ ol al M £ 13
conditions at the location of the walls in the real problem. 9% = Z Z In—n/,m—m’ Em’,m/ (13)

This is done by extending the waveguide regibk = < a, ) ) i

0 <y < bto a fourfold larger region, as shown in Fig. 2iS Written in a matrix form a&Z E whereG(n, m)(n’, m’) =

Hence, the following relations are yielded: gn—n', m—ms @nd the matrix order i€2V + 1)(2M +1). The

convolution operation is expressed by the cyclic mat@x
a(—z, y) =glz, —y) = g(z, y) = g(—z, —y) (10a) which consists of Fourier components of the dielectric profile
Eu(z, —y) = —Ey(z, y), Eo(—2, y) = Ex(z, y). (10b) Tnms shgwn in (14), at the bottpm of this page. ' .
Equation (8a)—(8c) are rewritten in the following matrix

The region—a < z < a, —b < y < b is then further extended form:

to infinity by periodic replicationg(z + 2fa, y + 2kb) =

g(z, y), where—cc < £, k < oco. The field components, ex- Q(O)Em +

tended by an antisymmetric continuation in ghdirection and

n'=—Nm'=—M

k2 ke
“Xgp, + NG E,+C E,)

2¢ =77 2s ==

by a symmetric continuation in thigdirection, are periodically = E,, ) . (15a)
replicated in the same way, nameW, (x + 2¢a, y + 2kb) = KOg k3 xo Jkoy

o ,+—=——GE, + MG E, +G E
E,(z,y) for —co < ¢ k < oo. The substitution of the = Y 2 =7Y 2 M@, Zy_y)

physical problem is equivalent to the original problem in = Eyo (15b)

the region0 < z < a, 0 < y < b and satisfies the same k2x0 1

boundary conditions on the boundary of this region. However, KE, + ;—S GE.+5 (G E. +G E,)

contrary to the original problem, it is infinite and periodic R 1

in the transverse dimensions. Therefore, it can be expanded = E., +5-(G E. +G E,) (15c)

by a discrete Fourier-transform series with = nr/a and R R R
k, = mn/b. For dielectric waveguide in free space, or iwhere the initial-value vectords, , E,, and E, consist
cases where the metallic boundary conditions are negligibtd, the transverse Fourier components of the input fields

goo g-10 g-20 -°° G—nm T 9-NM
gio goo g-10 -7 G—(n—1)m " G- (N-1)M
920 910 '
G=| i g o (14)
Gnm goo :
lgvnr - goo |
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(5B + E,.)/25, (sEyy + E,)/2s, and (sE., + E.,)/2s,

: ; - / (a) DATA
and are organized in the form of (12). The field profile at the o Input Wave Profile E,(xy,2=0)
entrance to the waveguide can be substituted as any analytica] ¢ Dielectric Profile g(x.y)
function or numerical data according to the given problem. ‘ FD““"S“’"S a’b’t
. . . * prequenc o =
The diagonal matrice&”, N, and M are defined as aueney : o
KO {[k — (nm /a) — (mm /b)2 + 32] /2s} (b) TRANSVERSE FOURIER TRANSFORMATION
=(n,m)(n’,m’) Boundary Imagi
. ry Imaging (Eqgs. 10a,b)
y 6nn’ 6rnrn’ (166\) » Input Spatial Spectrum Em(n,m) (Eq. 11)
=(n,m)(n/,m’) = ménn’émm’ (16b) * Dielectric Profile g(n,m)
(n, m)(n’, m’) =n0nn Omm/ (16c) ‘
’ ’ (c) VECTORS and MATRICES
, , H Ordering of the s-independent:
whereé,,,,, andé,,,,,,» are the Kronecker delta functions. « Input Field Voctors EoEo B, (B 1)

The modified wavenumber matrices are defined as

e Dielectric-Profile Matrix g (Eq. 14)
k2 ik e Dielectric Gradients G ,G
= g(©® 4 FoXo oz =20y
21; _£ Ry 2s G +- 2s EG (176\) * Diagonal Matrices E,ﬂ (Eqs. 16b,c)
k2 ko
D =K" 1" XNg Nuyg (17b) v
=v = 2s 2s (d) LAPLACE INTEGRATION PATH  (Refs. 17,18)
k e Salzer points in s-plane  s=p, /L <
D =K1 g (17¢)
2s = v
and (15a)—(15c) result in (e) MATRICES IN LA?LACE P(I;)ANE
* Wavenumber Matrix K (Eq. 16a)
Q Eg{; :Ewo i jI;oa} Egy Ey (183) * Modified Matrices Ex’gy’gz (Egs. 17a,b,c}
=, 5 =,
i v
DE,=E, - oy MG E, (18b) () MTF SOLUTION IN LAPLACE-FOURIER SPACES
v 2s === * Matrix Inversion (Standard Subroutine)
D FE_ = E, + ]_/23 (G EFE +GE ) e Qutput Field Vectors E..E ,E, (Egs. 192,b,c)
=== =20 —z="%0 =y—Yo 4
~1/2(G,E, +G E,). (18¢) v =]
(2) LAPLACE INTEGRATOR 2
After some algebraic steps, the TMF's are formulated as « Salzer Integration szigy@:ﬂ) (Eq. 20b)
I Kok 17 o )
oxlNo o] Laplace Transft ) =
ET _ Q 4 Bowlloy Koz oy NG D~ lMG nverse Laplace Transform E (z=1)
* = 452 ===y == ‘
[ ik 1 (h) INVERSE FOURIER TRANSFORM
Exo - 2_? ggygy Ey0:| (193) * Transverse Profile E (x,y,z=L1) (Eq.20a)
b 4 bk N v
E, =D + M G D N G (i) ACCURACY TESTS
=Y 52 i e Convergence (Eq. 23)
r J/{J ’ R e Power Conversion
E, -=*MG Q—lﬁxo} (19b)
L 2 —==== Fig. 3. A flowchart of the TMF computational algorithm.
1|4
E.=D'|E,+1/2(G E, +GE,) y
- 1/2(G B, + G E,)|. (19¢) b
The TMF's (19a)—(19c) describe the transfer relations be- g, € €,
tween the spatial spectrum components of the output and input
waves in the dielectric waveguide. o P
The transverse-field profiles are computed by the inverse t d ot
Laplace and Fourier transforms as follows: Fig. 4. A dielectric slab in a rectangular metallic waveguide.
E,( "+J°° of the s-plane includes all the singularities, as proposed by
(@, y, 2) ZZ (n, m, s) Salzer [17], [18] as follows:
inkeyxt+imke,ytsz T+joo 1 o+joo
.GJ JmBoy¥TZ (s (20a) / oL E,(s)ds =+ / ¢PE (p/L)dp
T—Joo L T—joo

The inverse Laplace transform is performed in this study by 1L
a direct numerical integration on theplane by the method == Z w;E, (s =p;/L) (20b)
of Gaussian quadrature. The integration path in the right side L
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N=7.9

N=5 /)
N=3

abs(Ey) [V/m]
A
==
/
Phase(Ey)
&
abs(Ey) [V/m]
~1
/

o .
(=] * (=] (=]
s \ s - S \
0.00 0.02 0.00 0.02 0.00 6.02 0.00 0.02
x [m] x [m] x [m] x [m]
(@ (b) (@ (b)
0 4
»
o
P &
Z [}
Z | g
S £
”
e =
T T . % i .
1 3 5 7 0.00 ! 3 5 -
N x [m] N

(©) (©) (d)

Fig. 5. A benchmark solution of the TMF (19) for a dielectric slaq:ig_ 6. A dielectric slab in a rectangular waveguide & 10, « = 2 cm
(- =9,a=2cmb=1cmd=33mm L =20cm and\ = 6.9 = 1cmd = 05cm L = 13 andA = 3.75 cm). (a) The slab
cm) with the transcendental-equation mode (21a), (21b) as an input. (a) }PSfiIe. (b) The output field amplitude as response to a half-i, )

wave amplitude solution of the TMF faV = 1-9. The solid line shows the : ) - : -
; ) - _input-wave profile. (c) The output phase profile corresponding to Fig. 6(b).
transcendental-equation mode. (b) The output phase profile correspondin S)o

Fig. 5(a). (c) The convergence of the TMF results. gd The convergence of the TMF results (23).

. _ results of the known transcendental equation as a benchmark.
wherew; andp; are the_ weights and zeros, respepnvely, cg cond, the TMF is applied to solve problems of continuous
the orthogonal ponnormaIs qf order 1.5 presented n [17] arb‘falectric profiles. In all the examples presented below, the
.[18]' The Laplace vsrlables IS norma(l;zelij :ypi/lL n r:held wavelengths are in the centimeter range, the dimensions of
Etelgratll_on go.mti’ w Ie:ctﬁe_(gi) > Or?n Ia t er?o es shou h the metallic rectangular tube age= 2 cm andb = 1 cm, and

e localized in their left side on the-plane. _T is approach o T\E orders areV = M < 9.
of a direct integral transform does not require (as with other
methods) dealing with each singularity separately. (An aj- . .
ternative approach could be to find the eigenmodes by thé Dielectric Slab
TMF eigenvectors and their wavenumbers by the associated he dielectric slab cross section in a rectangular metallic
eigenvalues. The input field could then be decomposed to th¥¥aveguide is shown in Fig. 4. Since its theoretical solution
eigenmodes, propagated along the waveguide and compoS§elnown by other methods, this problem is used here as a
again at the end. The direct inverse Laplace transform [1Pgnchmark for the TMF. Following [20], the solution for the
[18] saves this effort by a robust solution of the TMF.) ~ wave propagation in a symmetrical slab is given by

A computational algorithm for the TMF solution is pre- k. ke
sented schematically by the flowchart shown in Fig. 3. Based £v1 =J o sin(va) e/, 0<z <t (21a)
on this recipe, a Fortran code was developed using NAG k. sin(vt) o
subroutineg. Several examples computed by this code [19] Ey2 =7 — cos(ult —aj2) cos[(p(x — a/2))] e "7,

. . . . €0
on a Unix system are presented in the following section. t<z<a/2 (21b)
lll. EXAMPLES OF TMF APPLICATIONS wherev = /i3 — k2 andp = \/kJe, — k2 result from the

. . . transcendental equation
This section presents several examples which demonstrate

features of the TMF derived in the previous section. First, the (9 _ 1) pd o <N_d> Ct)eot(t) =0 (22)
TMF model is applied to a dielectric slab with abrupt edges d 2 2
in a rectangular waveguide. The solution is compared to t'ft?r vt # kr and (ud/2) # (2k + 1)(x/2). The solution

1The Numerical Algorithms Group (NAG) Ltd., Wilkinson House, Oxford,Obtai'ned for the wave .profilg (213-)1 (Zlb) describes a Sym'
UK. metrical mode of the dielectric slab. For the benchmark, this
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half-sine (TEo) input-wave profile.

half-sine input-wave profile.

Fig. 8. Two dielectric waveguides with a double-humped Gaussian profile

The corresponding phase profile is shown in Fig. 5(b). The

The corresponding output resulting from the TMF is thegonvergence of the solution is verified by the criterion

compared to the original mode amplitude profilezat= L.

The preservation along the waveguide (by the TMF) of the
amplitude profile, which results from (21a) and (21b), provides

a benchmark for the TMF accuracy, including the direct

integration stage of the inverse Laplace transform.

Fig. 5(a) shows the resulting benchmark solution of the

C(N,N+2)=

Y (BN +2) = E,(N)))

Zx

STUE,W +2) + B,V

x

(23)

TMF for N = 1, 3, 5, 7, and 9, where the input is the The convergence rate of the peak amplitudes is shown in
fundamental mode (21a), (21b) and the other parameters Big. 5(c). An accuracy better than 1% is achieved in this

e = 9,d =33 mm, and\ = 6.9 cm. The TMF results in example forN >
(21a) and (21b).

Fig. 5(a) converge to the exact mode.

5, with respect to the exact solution of
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. . . D = SN (X RN
waveguide mode is described in Fig. 6(a)—(c). The parameters E> %t{:}:{{%&.&.’@’ Nk
. 50 t\\‘\‘\\\‘\\‘\\\:\\‘ () 2
of this example are, = 10, d = 0.5 cm, L = 13 cm, and %’::::f:g\\:::m}‘ 002
. . . . . . % SRORRREA00
A = 3.75 cm. The dielectric profile is shown in Fig. 6(a). ‘:‘:‘.“.:::.:.0
. . . \ ()
The resulting amplitude and phase profiles of the output wave Y

are presented in Fig. 6(b) and (c), respectively, for= 1-9.
The convergence rate is shown in Fig. 6(d). Por= 9, the )
convergence rate in these conditiong’is= 0.1%.

Fig. 10. A composition of a Gaussian profile dielectric rod and a slab with a
diffused edged =2 cm,b=1cm,L =17 cm A = 3.75 cm, andN = 9).

(a) The dielectric profile:, (2, y). (b) The output filed profile as a response
The ability of the TMF method to solve continuous probt-0 & half-sine input wave profle.

lems is presented in this section by several examples of

smoothly varying dielectric profiles. These examples include aEquation (3a) and (3b) result ig,(z, ¥v) = —[2(z —
Gaussian dielectric profile, a double-humped Gaussian profitg2)]/p? and g, (x, y) = —[2(y — b/2)]/p;. The input waves

a dielectric slab with a diffused edge, and a composition ofage chosen arbitrarily as the profile of th#&,, of the empty
Gaussian profile and a slab with a diffused edge. Continuowgveguide. Fig. 7(b) shows the wave profile evolved in this

non-Gaussian profiles can be solved as well by the TMFaveguide as the result of this input-wave profile, fqr =

B. Diffused Dielectric Waveguides

method. 7mm, p, = 5 mm, andA = 3.75 cm. Both the half-sine
The first example shown in Fig. 7(a) is a Gaussian dielectfi¢’E10) profile and the Gaussian shape emerge in the output
profile in the form wave profile.
y y A dielectric profile with double-humped Gaussian shape is
er(z, y) =5 exp [M} exp [_(y _Qb/z) } ] shown in Fig. 8(a). The centers of the two Gaussian slabs are
Pz Dy located atr; = a/6, y1 = b/2, andzs = 5a/6, y2 = b/2.

(24) The wave profile evolved as a result of an (arbitrary) input



982

as aTE;o mode is shown in Fig. 8(b). The result shows thgto]
the radiation power is split between the two diffused dielectric
waveguides. 111
A diffused-slab waveguide profile is shown in Fig. 9(a). The
output wave profile for the same parameters, as in the previ
example, is seen in Fig. 9(b). In another example, a Gaussian
channel is diffused on top of the slab continuous edge, as
shown in Fig. 10(a). The output wave profile is presentéﬂis]
in Fig. 10(b). The waveguiding is clearly observed in the
resulting duct effect. [14]

IV. DISCUSSION [15]

The TMF approach presented in this paper provides a
numerical tool for the calculation of wave propagation in ar6l
bitrary shaped dielectric waveguides. The model is applicable
for continuous transverse dielectric profiles and for arbitrafg7]
input-wave distributions. The evolution of the wave along
the waveguide is computed bgput-output matrix relations [18]
(19a)-(19c).

The numerical solutions presented in this paper show[ﬁ]
variety of examples of the TMF features. The model can be
used to find eigenmodes of the dielectric waveguide and to
analyze coupling between adjacent dielectric waveguides.

The TMF model is especially applicable to continuougi]
problems (i.e., smoothly varying profiles) in which the di-
mensions of the transverse variations are of the order of the
EM wavelength. In these cases, the TMF provides reasonable
accuracy and computation time.

The TMF might be a useful tool for the analysis of contin-
uous dielectric waveguides in the microwave and millimete
wave regimes and for diffused waveguides in integrated opti
[21]. Applications of the TMF to lossy and amplifying di-
electric media in metal boundaries and in free space will |
presented in the future.
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