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Coupled Thermal-Electromagnetic
Model for Microwave Heating of

Temperature-Dependent Dielectric Media
Yaron Alpert and Eli Jerby

Abstract—Microwave heating processes involve electromag-
netic and thermal effects coupled together through the local
temperature dependence of the material dielectric properties.
This paper presents a one-dimensional model for the coupled
electromagnetic-thermal process and demonstrates its solutions
for typical problems. The local temperature dependence of the
lossy dielectric medium is taken into account in two different time
scales. One is the heat-generation time scale due the microwave
radiation, and the other is the temperature diffusion time scale.
The two time-scale approach minimizes the computation time
and provides an efficient simulation tool for the analysis of
various phenomena. The two-scale model presented in this paper
is benchmarked by a comparison of its numerical results with
other models published in the literature. Several examples of
microwave heating processes in various materials are simulated.
Effects of heat-wave propagation in matter are predicted by the
model. The results show the temporal and spatial evolution of
the temperature and power-dissipation profiles. Variations in the
(microwave) impedance profile in the medium due to the heating
are computed. A further development of this model, including
more complicated geometries and various loss mechanisms, may
yield useful numerical tools for the synthesis and design of mi-
crowave heaters in which the heated material acts as a nonlinear
load in the microwave circuit.

Index Terms—Dielectric heating, dielectric thermal factors/
dielectric losses, electromagnetic heating (microwave heating),
electromagnetic radiation effects (microwave radiation effects),
resistance heating (electric heating).

I. INTRODUCTION

COUPLED thermal-electromagnetic (EM) processes in
temperature-dependent dielectric media are widely used

in industrial application and in scientific experiments [1]–[3].
Numerical tools are needed in many such applications to
simulate the interaction between the radiated medium (and
its environment) and the microwave power. The simulation
should take into account the temperature-dependent dielectric
properties of the medium in order to solve the temporal and
spatial evolution of the nonuniform temperature profile and
the consequent distribution of the EM impedance.

Fig. 1 shows figuratively the microwave propagation
through a medium with a complex, temperature-dependent
dielectric permittivity where is
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Fig. 1. A sketch of the coupled thermal-EM problem.

the local temperature. The heat generated by the microwaves
inside the medium (through the dielectric losses presented by
the imaginary component ) is dissipated in a heat-
conductivity process. The medium introduces a varying
impedance profile for the incident wave and therefore acts
as a nonlinear distributed load.

Coupled thermal-EM problems have been studied in the lit-
erature for various materials [4]–[14]. These include concrete
[4], [5], Zirconia [6], Alumina [7], meat [8], water [9], SiC
[10], [11], fat [12], and muscles [12]–[14]. These problems
have been solved either by the finite-element method (FEM),
or by the finite-difference time domains (FDTD) method. In
the FEM, the structure is divided into an irregular grid, and
the partial differential equations are solved by variational
or residual methods. Solutions based on FEM are given
for one-dimension [4], [15], two-dimension [5], [14], [16],
and three-dimension [12], [17]–[19] configurations. In FDTD
methods, the partial differential equations are substituted by a
set of difference equations. FDTD methods have been used to
solve two-dimension [7], [13], [20], [21] and three-dimension
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[8], [10], [11], [20], [22] configurations. Ray-tracing methods
are used for millimeter-wave heathing models [23].

Typically, three iterative steps are used to solve the coupling
between the EM and thermal processes [4], [5], [7], [8], [10],
[12], [13], [15]–[18]. First, the EM propagation in the medium
is calculated. Then the power dissipation is evaluated using
the local electric field. Finally, a thermal algorithm solves the
time-dependent heat-diffusion equation and computes the new
medium temperature profile. Generally, this process is repeated
until some convergence criterion is satisfied. The inclusion of
temperature-dependent dielectric properties produces a more
accurate characterization of the coupled thermal-EM process
[4], [6]–[8], [16], [18], [24].

Computer resources, such as run time and memory, limit
the accuracy of thermal-EM simulations. For example, typical
simulations needed more than 10 h of an HP730 workstation
[8]. Faster programs required about a half hour of an IBM-
3090 workstation [11]. In order to reduce the needs for these
resources, algorithms use the diffused time-scale assumption.
According to this assumption, the EM field attains a steady
state [4], [5], [7], [8], [13], [16], [18], and therefore its
time scale is much smaller than the heat diffusion. Other ap-
proximations reduce computation by temperature-distribution
correction methods [7].

This paper analyzes microwave heating processes in
temperature-dependent dielectric media subjected to mi-
crowave radiation. The model uses the FEM. Two different
time scales are applied in order to reduce computation
resources. Two separate diffusion functions are derived in
order to simulate more accurately the localized temperature
and the EM field distribution. This approach uses the linearity
of the time-dependent heat-diffusion equation. It separates
the thermal-EM problem into two independent solutions:
one for heat-generation diffusion, and the other for the
initial-temperature diffusion. The two equations are solved
by accurate diffusion functions, which eliminate the field
perturbation error rate [8], [18].

The model is derived in Section II. Numerical results are
presented in Section III. A comparison with other models
shows the validity of this model and its efficiency. Effects of
heat wave propagation associated with the microwave heating
process are predicted by the model.

II. THEORY

A nonlinear model of microwave heating processes in
dielectric media is derived in this section. The model includes
temperature dependences of the dielectric properties which
cause nonlinear effects and spatial nonuniformities in the
heating process.

The problem solved by this model is sketched in Fig. 1. The
dielectric material, in a form of a transversely infinite slab, is
radiated by a perpendicular plane wave. Thermal boundary
conditions, as well as impedance mismatch effects in the
interfaces between the solid dielectric material and the air
surrounding it, are included in the model. The model ignores
material state-phase variations or any presence of liquids,
vapors, or other materials inside the solid dielectric medium.

Fig. 2. A dielectric slab illuminated by an incident plane wave as a stratified
layer model.

The local dielectric properties depend on the local temperature
and on the EM frequency.

Different time scales are defined for the microwave propa-
gation and for the temperature evolution in the medium. The
propagation time of the EM wave is considered much shorter
than the characteristic time of the temperature deviation in
the medium. Thus, the temperature distribution is assumed to
be steady during the propagation time of the EM wave along
the medium. Consequently, the microwave heating process is
separated into two coupled mechanisms in two iterative time
scales. One is the EM-wave propagation time scale, and the
other is the heat-diffusion time scale. The dominant mecha-
nisms during these short and long time-scales, respectively,
are described below.

A. Microwave Propagation

In order to analyze the wave propagation in the nonuniform
medium, it is stratified by the model to thin layers as shown in
Fig. 2. The dielectric permittivity of each infinitesimally thin
layer may vary as a function of the local temperature, and it
may depend on the instantaneous microwave frequencyThe
medium properties, such as the function are assumed
to be known.

The EM plane wave propagates in thedirection, with
perpendicular electric and magnetic field components

and respectively. Following [25],
the general solution of the one-dimension wave equation in
the stratified medium is

(1)

where is the electric field in the th layer,
is the local wavenumber, is the amplitude of the incident
wave, is the overall reflection coefficient at the in-
terface plane , and is the local reflection
coefficient.

The values of and are computed by continuity
conditions between the various layers. The equations for the
transmitted and reflected waves for theth layer result in the



ALPERT AND JERBY: COUPLED THERMAL-ELECTROMAGNETIC MODEL 557

generalized reflection coefficient

(2)

The amplitude is related to by

(3)

where the transfer relation for theth layer is given by

(4)

The local reflection coefficient, i.e., the ratio between the
reflected and incident wave amplitudes in theth layer, is
given by

(5)

where and are the th layer permeability and local
wavenumber of the th layer.

The EM field in the surface of theth layer,
is given by

(6)

The EM power dissipation in each layer

(7)

is the heat source in the coupled EM-thermal model as
described below. The total power dissipated in the entire
dielectric slab, i.e., the sum of all different layers

(8)

is used as an energy-conservation benchmark for the simula-
tion accuracy.

B. Heat Transfer

A linear one-dimensional heat-conduction equation is given
by

(9)

with the initial condition The heat
equation describes the evolution of the temperature distribution
profile in the medium, where is the heat source
distribution, is the diffusion coefficient, is the density, and

is the specific heat of the medium. The diffusion coefficient
may vary with the local temperature, as well as the other

parameters in (9).
The temperature is divided in this model to two compo-

nents, where satisfies the
homogeneous heat equation

(10)

Fig. 3. The EM power transfer and heat-diffusion process in a single layer.

with the initial condition and satisfies
the inhomogeneous equation

(11)

with a null initial condition The heat diffu-
sion and generation components in a single layer are shown
schematically in Fig. 3.

The distinction between the functionsand regards the
temperature evolution as a combination of two processes in
each iteration. The functiondescribes predominantly the heat
diffusion, whereas the function adds the heat generation
process.

The solution for the initial-value problem, assuming that
is constant only during the time interval is presented

in the form [26]

(12)

where the Kernel is given by

(13)

The solution for the inhomogeneous problem (11) is

(14)

The time dimension is discretized in order to solve the
coupled microwave-heating problem iteratively. The temper-
ature distribution found in each iterative step is used as an
initial condition for the successive step in (12). Assuming that
the heat source is steady during the time interval (i.e.,
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Fig. 4. A flow chart of the coupled thermal-EM model algorithm.

for where ), the
solution of (14) is given by

(15)

where the heat-generation Kernel attains the form

(16)

The solution for the temperature during the time interval
is the discretized sum of the two independent effects [i.e.,

(12) and (25)] as follows:

(17)

Boundary conditions are presented by dummy layers with
specific properties in both sides of the finite rod, or by an

Fig. 5. The impulse-response temperature-diffusion functionsKv andKw
for concrete.

adjustment of the heat source value near the boundary
layers.

Assuming that there is no other heat energy source inside
the medium (except the microwave radiation) the heat source

is given in any time interval at each layer by

(18)

Other processes, such as blackbody radiation and heat
convection, can be included in the model by an adjustment
of the heat source parameter, as done in [7].

Each layer is characterized by parameters of diffusion
coefficient, density, and specific heat. The microwave heat
production results in the evolution of the local tem-
perature For the numerical simulation, (13) and (16) are
discetized in space and time, and (17) is solved numerically.
The expressions are used in Section III to simulate microwave
heating processes in various conditions.

The computation process is described by a flow chart in
Fig. 4. This two-scale method allows one to increase the time
steps, hence to accelerate significantly the simulation run time.
The normalized diffusion function results from the impulse
response (13)

(19)

where is shown in Fig. 5 with the function
The layer width is taken to be smaller than 1/10 of

the radiation wavelength. The width of the diffusion function
(19) determines the typical time step for the computation as

(20)

This time step is much longer than that used in any other
method [4], [5], [7], [8], [22], and the computation time
is much shorter accordingly. The blackbody radiation effect
is not included yet in the model and therefore its validity
is limited to 300 C. Numerical results are presented in
Section III.
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(a)

(b)

Fig. 6. Propagation and dissipation of microwave power in a concrete slab
(2.4 �106 Wm�2 along a 0.6-m slab) at (a) 0.896 GHz and at (b) 2.45 GHz.

III. RESULTS

Numerical results of the model are presented in this section
in two aspects. First, published results of other models are used
as a benchmark for the validity and computation time at the
model. Second, the model is used to describe possible effects
in materials with various (arbitrary) types of dependence.
The code is applied as well to real materials such as Zirconia,
Alumina, and food phantom based on parameters given in
[6]–[8], respectively.

A. Comparison with Other Models

The results given in [4] are reproduced by our model.
Both constant and temperature-dependent dielectric permit-
tivities are compared. The computation was performed for
each specified frequency (0.896, 2.45, 10.6, and 18.0 GHz).
A regression process is computed in order to determine the
dielectric-permittivity function on the basis of [4].

(a)

(b)

Fig. 7. Temperature dependences of dielectric permittivity components (a)
"0(T ) and (b) "00(T ) for arbitrary materials chosen as examples for this
analysis.

TABLE I
TEMPERATURE DEPENDENCETYPES OF TYPICAL

MATERIALS’ DIELECTRIC PERMITTIVITIES

The power-dissipation at the high frequencies (10.6 and
18.0 GHz) in constant dielectric-permittivity values is perfectly
matched to the results of [4]. In low frequencies, power-
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TABLE II
PARAMETERS FOR THEARBITRARY MATERIAL COMPUTATION

(a)

(b)

(c)

Fig. 8. The power-dissipation drift within arbitrary material types (a) UD,
(b) UH, and (c) DH.

(a)

(b)

Fig. 9. The localized power dissipation within of the types (a) PH and (b)
DU.

dissipation deviations of 10% at 2.45 GHz and 1.5% at
0.896 GHz are observed. Temperature distributions at high
frequencies are matched within 0.5% deviation. At low fre-
quencies, temperature distributions deviations of 10% at 2.45
GHz and 1% at 0.896 GHz are obtained. These mismatches are
attributed to the surface-cooling effect and to the impedance
mismatch effect. Both effects are included in our model
but neglected in [4]. A full agreement of the temperature
distribution results are accomplished by a power adjustment
to the input level of [4].

The power dissipation and temperature distributions
at high frequencies are also matched in the analysis of
temperature-dependent dielectrics. Power-dissipation and
temperature-distribution differences of less then 2 and 1%,
respectively, are observed. At 2.45 GHz, differences of power
dissipation within 12% and of temperature distributions within
3% are obtained (15 and 4%, respectively, at 0.896 GHz). An
input power-level adjustment to compensate for the surface
cooling results in a perfect agreement between the two
models.

Fig. 6 shows the variations in the propagating, reflected,
and absorbed microwave-power components during the heat-
ing process. The propagating power tends to increase at
the beginning of the process and then decreases, whereas
the reflected power has an opposite tendency. The absorbed
power component remains almost constant. This nonlinear
behavior of a temperature-dependent reflection coefficient is
not described elsewhere in the literature.
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(a)

(b)

Fig. 10. Microwave power distribution within (a) PH and (b) DU materials,
as in Fig. 9.

B. Results for Arbitrary Materials

In order to achieve a better understanding of the cou-
pled thermal-EM phenomena, some arbitrary materials have
been conceived. These arbitrary materials are characterized
by different types of local temperature dependencies of the
dielectric constant and losses as demonstrated
in Fig. 7(a) and (b), respectively. The tendency of the tem-
perature dependence is characterized by four groups, where
U, D, P, and H denote “up,” “down,” “parabolic,” and “hy-
perbolic” tendencies, respectively. Examples for real materials
with temperature-dependent dielectric parameters are given in
Table I. The other physical parameters used in this analysis
are listed in Table II. The computation is terminated when the
temperature reaches 300C. The parameters of this example
were adjusted in order to yield the desired effects presented
in this section.

A drift in the localized power concentration is observed
in this analysis, as shown in Fig. 8(a)–(c). These effects, of
a drifting localized power, are followed in some cases by a
creation of a successive peak, as shown in Fig. 8(a) for UH

(a)

(b)

Fig. 11. Surface cooling and thermal runaway effects in (a) DH and (b) UD
material types.

material. A similar effect was observed also in DH, PH, and
HH material types. Doubling the time and spatial resolutions
yields the same phenomena. The heating rate plays a dominant
role in this process, as will be presented in a future publication.

Another effect observed in this analysis in the oscillatory
behavior of the penetrating power, shown in Fig. 9(a) and
(b) and Fig. 10(a) and (b). This effect is observed in the
media types UU, DU, DP, PU, PH, HU, HD, and HP.
Heat oscillations observed were examined in different time
and spatial resolutions. In the examination of Fig. 10(b),
the same oscillations are obtained with time steps doubled
twice (i.e., 1, 2, and 4). The “thermal-runaway” [9], [27] and
“surface-cooling” phenomena are observed in this analysis, as
demonstrated in Fig. 11(a) and (b).

IV. DISCUSSION

A nonlinear model for heat-transfer and temperature-
distribution evolution within media radiated by microwaves
has been derived. The simulation run time and memory needs
are reduced by using separate thermal-diffusion functions.
The simulation examples provide a comparison with other
models. These benchmarks prove the validity of the model
and its efficiency and reveal the importance of new features
embedded in it, such as the surface cooling and microwave
impedance mismatch at the interface.
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The analysis of power-dissipation and temperature distribu-
tions by this model reveals effects such as varying impedance
distribution, local thermal-power drift, and power oscillation.
The dynamic temperature-dependent reflection coefficient en-
ables one to evaluate the microwave impedance variation and
to increase the supplied power by an adaptive impedance
matching apparatus. The temperature profiles predicted by the
model provide a way to avoid thermal-runaway phenomena.
The model is applicable also to combined temperature and
frequency dependencies such as multifre-
quency heating mechanisms [28]. This model can be used
to investigate the phenomena of heat oscillations and hot-
spot drifts shown in Section III, and to study the effect
of a varying heating rate. Advanced two-dimensional and
three-dimensional versions of this model, including blackbody
radiation, will be applicable to higher temperature300 C)
and to more complicated structures.
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