Plasma column and nano-powder generation from solid titanium by localized microwaves in air

Citation: Journal of Applied Physics 118, 023302 (2015); doi: 10.1063/1.4926491
View online: http://dx.doi.org/10.1063/1.4926491
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/118/2?ver=pdfo
Published by the AIP Publishing

Articles you may be interested in
Theoretical and numerical predictions of hypervelocity impact-generated plasma
Phys. Plasmas 21, 082112 (2014); 10.1063/1.4893310

Effect of Ti-Al cathode composition on plasma generation and plasma transport in direct current vacuum arc

Laser ablated copper plasmas in liquid and gas ambient
Phys. Plasmas 20, 053503 (2013); 10.1063/1.4807041

Nanoparticle plasma ejected directly from solid copper by localized microwaves
Appl. Phys. Lett. 95, 191501 (2009); 10.1063/1.3259781

Characteristics of an atmospheric microwave-induced plasma generated in ambient air by an argon discharge excited in an open-ended dielectric discharge tube
Phys. Plasmas 9, 4045 (2002); 10.1063/1.1495872
Plasma column and nano-powder generation from solid titanium by localized microwaves in air

Simona Popescu,1 Eli Jerby,1,4) Yehuda Meir,1 Zahava Barkay,2 Dana Ashkenazi,1 J. Brian A. Mitchell,3 Jean-Luc Le Garrec,9 and Theyencheri Narayanan4

1Faculty of Engineering, Tel Aviv University, Ramat Aviv 6997801, Israel
2Wolfson Applied Materials Research Center, Tel Aviv Univ., Ramat Aviv 6997801, Israel
3IPR., U.M.R. No. 6251 du C.N.R.S., Université de Rennes I, 35042 Rennes, France
4European Synchrotron Radiation Facility, 38043 Grenoble, France

(Received 2 May 2015; accepted 28 June 2015; published online 8 July 2015)

This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy, and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ~0.4 eV and ~1019 m−3, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.

© 2015 AIP Publishing LLC.

I. INTRODUCTION

Titanium dioxide (titania) in its various forms1 is widely used, for instance, in applications related to air cleaning,2–4 water purification,5–8 photo-catalysts,9–14 semiconductors,15,16 solar energy conversion,17,18 paints, pigments,19,20 food coloring, and sunscreens.21–23 Titania has three main types of crystalline polymorphs, namely, rutile, anatase, and brookite. While they all have the same chemical formula (TiO2), rutile and anatase have a tetragonal primitive unit cell, and brookite is orthorhombic.24–26 The brookite and anatase phases are metastable and convert easily to rutile upon heating at temperatures in the range of 550–750 °C.27–30 Thermodynamically, the transformation of the metastable anatase and brookite to rutile is irreversible. It is the rutile phase, thus, which is the most stable (polymorph) form of titania and hence the most common natural titanium oxide. While the rutile phase is used in most of the applications mentioned above, it is the anatase phase which is active in photo-catalysis.

Titania is synthesized by various techniques, such as spark plasma sintering,31,32 pyrolytic processes,33 microwave plasma torch,34,35 cathodic arc deposition,36 thermal plasma,37 arc discharge method,38 hydrothermal processes,39 and by other chemical methods.40,41 The synthesis temperature has a significant role in the preparation of each phase of the TiO2 particles. Thus, the rutile phase is obtained at temperatures higher than ~600 °C,42 whereas the anatase and brookite phases are obtained at lower temperatures.

This paper presents the synthesis of titania nanoparticles in a transition mixed form of the brookite-anatase-rutile phases obtained by a microwave plasma-column technique.43 The morphology of the titanium powder produced is studied using scanning electron microscopy (SEM) and its crystallinity is characterized by X-ray diffraction (XRD). The dusty plasma obtained is analyzed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy, and microwave scattering. Potential applications are discussed for this technique of titania nano-powder production directly from solid titanium in air atmosphere.

II. EXPERIMENTAL SETUP

The experimental setup shown in Fig. 1 consists of a microwave cavity made of a rectangular waveguide (96 × 46 mm2 inner cross-section). The metallic-vane windows enable a direct view of the plasma column (as in Ref. 43) with no microwave leaks. The microwave cavity is energized by a 2.45-GHz magnetron fed by a switched-mode power supply which provides an adjustable input microwave power up to ~1 kW.

The titanium source plate (~20 × 10 × 1 mm3) is positioned vertically in the cavity, as illustrated in Fig. 1. The plasma column is ejected from a hotspot created on its upper edge toward the copper collector plate (horizontally installed

4)Author to whom correspondence should be addressed. Electronic mail: jerby@eng.tau.ac.il.
on the ceiling of the cavity). Optionally, a movable inner electrode (also made of titanium) is inserted via a hole in the ceiling, either vertically through the collector or in a 50° inclination angle as shown in Fig. 1 (thus the collector plate is uniform in the deposited area). The electrode expedites the excitation of a hotspot when brought into contact with the inclined electrode, the typical deposition time is setting specific time depositions (e.g., 40 or 60 s) enables the thickness of the deposited layers to be varied.

Structural and morphological analyses of the titania nanoparticles obtained from the titanium plasma columns were performed in-situ by SAXS, optical spectroscopy, and microwave reflectometry, and ex-situ using SEM and XRD analyses. The SAXS measurements (at the European Synchrotron Radiation Facility, ESRF) involved taking scattering images at a rate of 5 frames/s with the detector located at a distance of 10 m inside an evacuated flight tube. The SEM morphological imaging was performed using a Quanta 200FEG environmental SEM (ESEM). The titanium oxide content was verified using INCA software with an Oxford energy-dispersive spectrometer (EDS) with a liquid nitrogen cooled Li (Ni) detector. The optical spectral emission was captured by an optical spectrometer (Avaspec-3648) with 0.3-nm resolution in the range of 400–1000 nm (calibrated by an AvaLight Deuterium-Halogen light source DH-BAL-CAL UV/VIS).

III. EXPERIMENTAL RESULTS

A. In-situ observations

The plasma ejected from the titanium source is visually observed in various shapes, which may appear at different stages and operating conditions. Figures 2(a)–2(d) show images captured in various experimental runs and in different periods after ignition. The intense plasma-column mode shown in Fig. 2(b) appears to be the most common and stable mode and is therefore the main interest of this study. However, less intense plasma in the shape of a candle flame (Fig. 2(a)) tends to appear at the beginning of the process, and under reduced microwave input power. Another form, that of a detached fireball shown in Fig. 2(c), may evolve at higher input power if the gap between the source plate and the ceiling is sufficiently large.

The fireball mode is less stable than the plasma column, since the fireball tends to move away and disappears in a sub-second timescale. Both modes may coexist stably though, as the fireball could be accompanied by a plasma column (or by a candle-like flame) ejected from the hotspot, as seen in Fig. 2(d). It is noted, however, that the plasma column alone exists if the source-plate edge is higher than 5 mm (leaving less than 41-mm gap between the source plate and the cavity ceiling). The stability of the titanium plasma-column is also presented by its microwave reflection. Its de-embedded reflection coefficient (with no impedance matching) remains stable during the 60-s run in the level of $|\Gamma| \sim 0.86$ with no significant phase changes.

Motions of plasma columns along the source-plate edge, from one corner to the other, have also been observed in most of the experimental runs. Figure 3 shows this back-and-forth motions by the time-varying positions of the plasma columns along the source-plate edge. The relative position, denoted as $x(t)$, is shown for five typical examples of plasma columns. The lateral speed of the titanium plasma-column motion observed along the source-plate edge may exceed ~1 mm/s.

| TABLE I. Physical parameters of the analyzed titanium plasma-column. |
|---------------------|--------------|--------------|
| Parameter | Symbol | Value | Source |
| Plasma column mean diameter | d_{PC} | 15 mm | Observation |
| Effective dissipation factor | ϵ'' | ~300 | Measurement |
| Average dust particle radius | r_d | ~20 nm | SAXS analysis |
| Dust grain density | n_d | $\sim3.8 \times 10^{17}$ m$^{-3}$ | SAXS analysis |
| Dust collision length factor | l_d | ~2 mm | Equation (6) |
| Dust charging frequency | η | $<10^{9}$ s$^{-1}$ | Reference 55 |
| Dust charging factor | η_d | 1.3×10^{14} F/m2s2 | Equation (6) |
| Neutrals density | N_n | 10^{20} m$^{-3}$ | Reference 55 |
| Neutrals cross-section | σ_n | 4.4×10^{-20} m$^{-2}$ | Reference 55 |
| Electron collision frequency | v | $\sim10^{10}$ s$^{-1}$ | Reference 55 |
| Electron temperature | T_e | ~0.4 eV | Boltzmann plot |
| Electron thermal velocity | V_{Te} | $\sim3 \times 10^{9}$ m/s | Reference 55 |
| Electron density | n_e | $\sim10^{19}$ m$^{-3}$ | Equation (7) |
The light emitted by the titanium plasma-column, as, for example, in Fig. 2(b), is recorded and analyzed by a calibrated optical spectrometer in the 200–1000 nm spectral range, as shown in Fig. 4. The spectral lines near 445, 453, 482, 517, 590, and 592 nm are identified as titanium lines. However, due to the 0.3-nm sampling resolution, some of these lines are overlapping or weak. The continuum radiation in the 420–440 and 580–620 nm ranges may also indicate the presence of titanium in the form of titanium nitride (TiN). The 750–780 nm range reveals the titanium oxidation according to the \(\gamma \)-system band emission \((A^3\Phi - X^3\Delta) \) from the TiO molecule.

The titanium plasma-column was also investigated by SAXS. The X-ray scattering at small-angles originates from spatial fluctuations of the electron density within the dusty plasma in the form of ionized nanoparticles. A quantitative analysis of SAXS from particulate systems provides the mean size, polydispersity, number density, and degree of aggregation of the particles. The 2D SAXS pattern obtained from the plasma column is azimuthally averaged to yield the one-dimensional scattering curve shown in Section IV.

B. Ex-situ observations

The experimental products of the titanium plasma-column, namely, both the eroded source plate and the deposited collector on the ceiling, were examined *ex-situ* by optical microscopy and by SEM in order to characterize their shape and composition. Figures 5(a) and 5(b) show optical microscopy images and Fig. 5(c) shows the analysis of a titanium layer deposited on a copper substrate employed as a collector. (The image also shows the edge of the deposited layer in order to enable its thickness estimate.) This typical result shows a deposited layer of a \(\sim 55-\mu m \) mean thickness obtained in a 60-s period, which indicates a relatively high deposition rate \((\sim 1 \mu m/s) \) in these conditions) compared to other plasma methods (e.g., Ref. 53 reviews various techniques of atmospheric plasma deposition, of which the highest deposition rate is \(\sim 0.1 \mu m/s \)). The uniformity of the deposit...
is estimated at ~4% (RMS) which is reasonably uniform (note that the uniformity depends here on various conditions which could be further improved).

SEM observations reveal particle morphologies and crystalline forms and show nanoparticles with various interconnected phases over areas of several square micrometers. Figures 6(a)–6(h) show titania morphologies obtained in different experimental runs with a vertical electrode, as observed by SEM on the deposited copper collectors and on the titanium source plate. The titania observed on the collector presents three types of crystalline morphologies, namely, elongated, hexagonal, and spherical, as seen in Figs. 6(a)–6(d), respectively. Those found on the source plate also display three types of morphologies, namely, hexagonal, elongated lamellar, and columns, as seen in Figs. 6(e)–6(h), respectively. Each of these forms shows a specific type of crystalline structure. Figures 6(a)–6(h) exhibit, respectively, structures of (a) interconnected star-like hexagonal and spherical crystalline particles; (b) hexagonal elongated particles arranged in long rows; (c) hexagonal particles deposited in a stratified form; (d) spherical type particles deposited in a rough spatial arrangement; (e) individual hexagonal crystalline particles with various spatial orientations; (f) partially interconnected hexagonal particles creating large plates in a preferred direction parallel to the deposition surface; (g) stratified lamellar plates growing from the surface; and (h) micrometer elongated needle-like columns of about 40-nm in diameter arranged parallel to each other along the surface. The titania particles sizes shown in Figs. 6(a)–6(h) can be divided into the ranges of 40–80 nm for small spherical particles and 80–150 nm for the hexagonal particles. The thickness of the elongated and column shaped particles is 30–50 nm.

Comparing the results shown in Figs. 6(a)–6(h) to data from the literature, one can identify the morphology in Fig. 6(a) as the rutile crystalline phase,41 the ones in Figs. 6(b) and 6(c) as the brookite phase,15,27,33 and in Fig. 6(d) as the anatase phase.19,35–38,40 However, the phases observed on the source plate (Figs. 6(e)–6(h)) exhibit only the brookite and rutile phases, in Figs. 6(e) and 6(f) and Figs. 6(g) and 6(h), respectively. Thus, we assume that the particles observed in Figs. 6(b)–6(f) were obtained at temperatures lower than ~600 °C, and those shown in Figs. 6(a), 6(g), and 6(h) at temperatures higher than 600 °C. Since the rutile phase can be obtained by a thermal treatment of the brookite and anatase phases,27–30 the titania morphology shown in

![FIG. 6. Titania morphologies including rutile, brookite, and anatase phases observed by SEM on the copper collector ((a)–(d)) and on the titanium source plate ((e)–(h)) in different experimental runs. A vertical electrode was used in these experimental runs (rather than the tilted electrode shown in Fig. 1). The various morphologies observed are described in detail in the text.](image-url)
Figs. 6(g) and 6(h) could possibly be formed at temperatures higher than ~600 °C, thus enabling the transformation of the brookite phase into rutile. The titania morphologies presented above are made possible due to the temporal and spatial variations in the plasma temperature, thus creating structural changes in the deposited powders and on the source plate.

SEM observations of titania depositions on copper collectors using a tilted electrode (as shown in Fig. 1) are presented in Figs. 7(a) and 7(b) and Figs. 7(c) and 7(d), for deposition periods of 40 and 60 s, respectively. Figures 7(e)–7(h) present SEM observations of the source plates corresponding to the collectors presented in Figs. 7(a)–7(d), respectively. Only the anatase phase is observed on the collector surface for the inclined electrode case. However, new morphological structures appear now on the source-plate surface. In the magnified Figs. 7(a)–7(d), the titania morphology shows spherical nano-particles typical of the anatase phase. In Figs. 7(e) and 7(g), the morphology observed on the source surface is dendritic, whereas in Figs. 7(f) and 7(h) the morphology exhibits isolated particulate aggregates and extruded ones, respectively. The EDS analysis revealed Ti and O elements in all these samples.

The XRD analysis, presented in Fig. 8, of the titania deposited on copper collectors (with a tilted electrode) further supports the morphological analysis of its various phases. The anatase, brookite, and rutile crystalline phases of titania are identified. However, the most abundant crystalline form detected is the metastable anatase.

IV. ANALYSES

The identified spectral lines of titanium shown in Fig. 4 provide a measure of the plasma temperature. This can be estimated by using a Boltzmann plot of the line intensity, assuming a partial local thermal-equilibrium (pLTE) state of the plasma. The intensity I_{ki} of the transition from the upper k to the lower i energy level is given in the Boltzmann equation

FIG. 7. Titania morphologies deposited on copper collectors of the anatase phase observed by SEM. A tilted electrode was used in these experimental runs for deposition periods of 40 and 60 s (in Figs. 7(a) and 7(b) and Figs. 7(c) and 7(d), respectively). Figures 7(e)–7(h) present SEM observations of the source plates corresponding to the collectors shown in Figs. 7(a)–7(d), respectively. The various morphologies observed are described in detail in the text.

FIG. 8. An XRD diffraction pattern of a TiO$_2$ layer deposited in 60 s on a copper substrate.
The modulus of the scattering vector results of the scattered X-ray intensity analysis program using the unified scattering function.

The curve is modelled with the equation:

\[I(Q) = G \exp\left(-Q^2 R_g^2 / 3\right) + B \left[\text{erf}(QR_g/\sqrt{6})^2 / Q \right]^P, \]

where \(R_g \) is the radius of gyration, \(G \) is a pre-factor depending on the particle number and scattering length densities, \(B \) is a pre-factor depending on the average surface area of the particles, \(\text{erf}(x) \) is the error function, and \(P \) is a power-law exponent. Thus, for compact objects with a sharp interface, \(P = 4 \) (whereas \(3 \leq P \leq 4 \) indicates the surface roughness of the particles characterized by a fractal dimension \(F = 6 - P \)).

The values for the radius of gyration \(R_g \), which depend on the \(G \) and \(P \) parameters, are obtained using the unified fit of the scattered intensity \(I(Q) \), as shown in Fig. 10 for two levels of the fit. In this example, for the small particles, the estimated value \(R_{g1} = 28 \) nm is obtained from the first level fit, whereas for the agglomerated particles it results in \(R_{g2} = 285 \) nm using the second level fit. The particles size distribution shown in Fig. 11 is obtained by the inverse Fourier transform of the scattered intensity \(I(Q) \) using the IRENA-SAXS analysis program. Thus, for a typical titanium plasma-column, the size distribution of the particles is centered around \(\sim 40 \) nm.

The mean radius of gyration \(R_g \) is obtained from the unified fit evaluated by the IRENA SAXS program for 150 samples taken from 9 plasma columns observed. For the particles of titania plasma-columns, \(R_g \) varies from 48 nm for small particles to 275 nm for the agglomerated particles, with a standard deviation of 41% and 9.8%, respectively. From the size distribution analysis of about 130 samples obtained in the range of 10 to 500 s deposition period, the particles number density has a mean value of \(d \sim 3.8 \times 10^{17} \text{ m}^{-3} \) with standard deviation of \(\sim 36\% \), and the particles specific volume has a mean value of \(V \sim 2.9 \times 10^{-7} \) with a standard deviation of 55%.

The SAXS results, combined with the microwave reflections measured at the input port of the cavity, enable us to estimate the effective electron density of the dusty plasma.
evolved.55 By fitting the simulation results to the measured reflections, the relative dielectric permittivity ε_r is found assuming a Gaussian radial distribution. The effective dielectric permittivity ε_r, consisting of the complex plasma permittivity $\varepsilon'_p - j\varepsilon''_p$, and of the dust conductivity σ_{ed}, is given by

$$\varepsilon_r = \varepsilon'_p - j\varepsilon''_p - j\sigma_{ed}/\varepsilon_0\omega,$$ \hspace{1cm} (3)

where ε_0 is the vacuum permittivity and ω is the angular frequency. The dielectric permittivity of the plasma is given by

$$\varepsilon'_p = 1 - \frac{\omega_p^2}{\omega^2 + \nu^2},$$ \hspace{1cm} (4a)

$$\varepsilon''_p = \frac{\omega_p^2\nu}{\omega(\omega^2 + \nu^2)},$$ \hspace{1cm} (4b)

respectively, where $\omega_p = \sqrt{e^2n_e/m_e\varepsilon_0}$ and ν are the plasma and the collision frequencies, respectively, and e, n_e, and m_e are the electron charge, density, and mass, respectively. The dusty plasma conductivity is given in similar conditions55 as

$$\sigma_{ed} = \eta_{ed} \frac{\omega}{k} \left[\frac{\omega^2 - \nu v_{ch}}{(\omega^2 + \nu^2)(\omega^2 + \nu^2)} + j \omega \frac{\nu + v_{ch}}{(\omega^2 + \nu^2)^2} \right],$$ \hspace{1cm} (5)

where

$$\eta_{ed} = \frac{\omega_p^2\nu_{ch}}{l_d}$$ \hspace{1cm} (6)

is the charging factor, $l_d = (n_d\tau_d)^{-1}$ is the dust collision length factor, n_d and τ_d are the dust grain density and the average particle radius, respectively, and k is the spatial angular frequency (the wave’s wavenumber for a uniform plasma). The electron effective collision frequency is given by

$$\nu = V_Te\sigma_n N_n,$$ \hspace{1cm} (7)

where $V_Te = \sqrt{k_BT_e/m_e}$ is the electron thermal velocity, σ_n and N_n are the neutrals cross-section and density, respectively, T_e is the electron temperature, and v_{ch} is the dust charging frequency.

The simulation includes a microwave cavity as in Fig. 1 with a plasma column inside, represented by a dielectric cylinder of $h = 52$ mm height and $d_{PC} = 15$ mm diameter. The simulated Poynting vector and the power dissipation are shown in Fig. 12(a). In a more heuristic transmission-line model, illustrated in Fig. 12(b), the plasma column is represented by a lumped element having admittance $Y_{PC} = G_{PC} + jB_{PC}$ in a transmission line with a characteristic admittance Y_c of the waveguide TE_{10} mode ($Y_c = 2$ mS). The plasma column conductance and susceptance are approximated by $G_{PC} = \omega\varepsilon_0\varepsilon''_p A/h$ and $B_{PC} = \omega\varepsilon_0\varepsilon'_{ch} A/h$, respectively, where A is the effective plasma-column cross-section area. In this analysis (as in Ref. 54), the complex ε_r space is scanned numerically by the electromagnetic (EM) simulation in order to find the conditions that provide the reflections measured in the experiments. The real part of ε_r is initially chosen as 0.2, while the imaginary part is searched between 3 and 1000. The simulated results and the experimental observations are presented in the Smith chart in Fig. 13. The simulated results give an estimate for the effective dissipation factor (including conductivity) as $\varepsilon'_r \sim 300$, where the average experimental reflection is 0.89. This value yields reflection coefficient of 0.88 according to the heuristic 1D model shown in Fig. 12(b). Using the ~ 0.4 eV excitation temperature found by Boltzmann plot and the dust particle size obtained by SAXS analyses above, the corresponding electron density in this case is estimated by

$$n_e \sim \frac{m_e \varepsilon_0 \varepsilon''_p}{\varepsilon^2} \frac{\omega^2 + \nu^2}{\nu + 1/k l_d},$$ \hspace{1cm} (7)

where k is approximated by $\sim \pi/d_{PC}$ for the finite transverse profile of the plasma column. Equation (7) yields...
$n_e \sim 10^{19}$ m$^{-3}$, similarly to other plasma forms at atmospheric pressure in air.56,55

V. DISCUSSION

This work investigated the titanium plasma-column generated by localized microwaves at atmospheric pressure and its products observed as titania nano-powder deposited on copper substrates. The plasma column is created by a titanium electrode brought into contact with a titanium plate while irradiated by microwaves at 2.45 GHz generated by a ~1-kW magnetron.

In experiments conducted with a vertical electrode, the plasma columns lasted for more than a minute and deposited titania nano-powder on copper in various crystalline forms at high rate of ~1 µm/s. Experiments conducted with a tilted electrode configuration yielded a more uniform deposition of mainly anatase phase in deposition periods of 40–60 s. The better uniformity obtained by the tilted electrode is attributed to the more homogeneous unobstructed plasma column in this case. The deposition speed of ~1 µm/s achieved in these experiments is about 10-times faster than reported for conventional plasma deposition in atmospheric pressure.53

For the analysis of the dusty plasma column, the SAXS measurements provide information about the size distribution and density of the nano-particles. The distributed particle size has a peak centered around ~40 nm and a typical mean density of ~3.8 x 1013 m$^{-3}$. SEM observations revealed the structure and morphology of the deposited particles, which consist mainly of the anatase phase. Some rutile and hexagonal brookite phases have also been identified. The existence of these phases is confirmed by XRD observations, showing predominantly the anatase crystalline phase. The SEM observations also show typical morphologies of titania in various aggregated forms, e.g., lamellar plates, elongated columns, and networks of particles.

In view of the possibility of obtaining a variety of crystalline polymorphs of titania in various spatial arrangements, this technique can be considered for the production of titania deposits on various substrates of interest, for applications involving nanometric crystals.

The microwave plasma-column technique can be sustained in an ambient atmosphere at room temperature; hence, it may provide a practical tool for a variety of applications. The titania plasma column generated by localized microwaves in air atmosphere may also be used for metallurgical applications, as well as metal treatments for surface hardening. In other applications, the collector substrates, onto which titanium dioxide is deposited, can be used, for example, in photocatalytic devices.9–14 due to the pertinent titania properties.

The microwave plasma-column technique43 shows potential advantages of controllability and uniformity by a direct and fast deposition of titania. This technique allows thin films to be deposited rapidly at room temperature, in air atmosphere. The low power consumption involved makes it inexpensive, and the nanoparticles can be formed directly from the metal substrate without the need for chemical precursors. As compared to other techniques,31–41 mentioned above, one can conclude that the microwave plasma-column technique provides the required anatase crystalline layer directly with a homogeneous morphology on the substrate in a single step without further heat or annealing treatments. Further studies may aim at the selective synthesis of one particular polymorph with the required crystalline phase (e.g., anatase) on the substrate. It is envisaged that using this technique to deposit titania on glass and similar substrates could be beneficial for applications such as titania based solar-cells and oxygen sensors.

ACKNOWLEDGMENTS

This study was supported by the Israel Science Foundation (ISF) Grant No. 1639/11. The authors also acknowledge Dr. Michael Sztucki for his help with the synchrotron experiment, ESRF for synchrotron beam time, and Mr. Sheferaw Wonde for his technical assistance at TAU.

