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THE AXIAL-VELOCITY DISTRIBUTION FUNCTION AND THE LONGITUDINAL
SUSCEPTIBILITY OF AN e-BEAM IN A PLANAR WIGGLER FEL

E. JERBY
Faculty of Engineering, Tel-Aviv University, Ramat-Avw, 69978, Israel

This paper introduces a development of a normalized axial velocity distribution function and a susceptibility term for an electron
beam m a planar wiggler FEL. The model includes the independent contributions of the energy spread and the angular spread, the
ennttance and the betatron motion, to the axial velocity distribution function.

In the case of an emittance dominated spread, the resulting distribution function is a skewed, asymmetrical function. The e-beam
susceptibility is described in thus case by the first derivative of the complex error function (the plasma dispersion function), convolved
with a decaying exponent .

The "exact" distribution function and the susceptibility integral that are represented in thus paper may be used m any linear,
kinetic FEL model to improve its accuracy m cases where the angular spread, the emittance or the betatron motion, are dominant
spread sources .

1 . Introduction

Kinetic, linear models of the free electron laser interaction [1-4] are usually involved with a susceptibil-
ity integral that has a typical form as follows
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where s and w are the complex wave number and the angular frequency of the electromagnetic wave, pz
and v, are the axial momentum and velocity, averaged over z, of a single electron . The wiggler wave
number is k w and n is the harmonic order . f(pz) is the e-beam distribution function of the averaged axial
momentum component of the electrons . In the cold beam limit, f(pz) = 8(p, - Po, ), the pole so + ikw -
iw/vo, = 0 represents the full synchronism condition of the FEL interaction, i .e . the phase velocity of the
ponderomotive wave vp = iw/(so + ikw ) equals the e-beam velocity vo , . In a realistic case, the distribution
function f(pz) has a finite width, hence the susceptibility integral represents a continuous spectra of
synchronism conditions between the EM wave and the various components of the e-beam . The "spreading"
of the susceptibility poles due to the finite e-beam distribution function leads to an inhomogeneous
broadening of the FEL spontaneous emission and to a reduction of its stimulated amplification [7-13] .

Various functions have been chosen for the e-beam longitudinal momentum distribution function
f(p.) . These are the "window" function [7] and the Lorentzian function [9], both provide easy analytical
solutions for the susceptibility integral, and the Gaussian function [3,10,11,13] that leads to the complex
error functions representation (the plasma dispersion function) of the susceptibility integral X,(s, ca) .
These distribution functions are symmetrical and can be useful to describe the energy spread effect, or any
other symmetrical spread effect . However, the emittance (the angular spread multiplied by the e-beam
width) and the betatron motion [5] are e-beam spread causes that are substantially asymmetrical, i .e . the
electron that propagates on-axis determines the maximum value of pz for the longitudinal momentum
f( p,) while the other electrons, that are subjected to an angular spread, contribute a tail of lower pz values
of the distribution function . This effect of the emittance was demonstrated numerically by Goldstein et al .
[12] and has been recently discussed by Colson et al . [13] . The present paper describes in detail a
development of expressions for the normalized axial velocity distribution function and the longitudinal
susceptibility of an electron beam in a planar wiggler FEL .
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2 . The normalized axial-velocity distribution function

A normalized axial-velocity distribution function for an e-beam, propagating in a planar wiggler field, is
developed in this section . The axial velocity is considered as a random variable that is a function of two
other random variables, the electron energy ymc2 and the generalized electron off-axis angle (p . This axis
integrates the spread contributions of the transverse phase-space components TO, q),o , xo, yo and of the
betatron motion . The fundamental random variables y, Tro , ,,,O, xo, yo are considered as independent
Gaussian distributed random variables . Using the known formulae of the probability theory, the distribu-
tion function of the generalized random variables 0 and ü, are developed .

The average axial momentum p_ of an electron can be related to its randomal initial values y, po 1 and
p,3, by [5]

P_ =
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C2-IPwl
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where ymc2 is the initial energy of the electron, po 1 is its initial canonical momentum and pß is the
transverse momentum component of its betatron motion, all are considered as random variables . The
transverse momentum of the wiggling motion, p w1 , is related to the wiggler strength aw , by âw
_ ~'J Pwl I /mc, and p_ is conserved along z . The canonical angles of the electron trajectory are defined
as
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and eq . (2a) becomes
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where kß, and kßl are the betatron wave numbers in the X and y directions, respectively . The variables xo
and yo are the initial off-axis coordinates of the electron . The relation

	

I P1ß
12 = (y2 - 1)m2c2(k22,X2 +13 0

kß, yo) that is given in ref . [5] was used to obtain eq . (2d) . The variables y, cpXO, cp,o , xo, yo are assumed to
be independent random variables and a new generalized random variable that integrates the angular
deviation of the electron, is defined as

92Xo + (P~o + kßx xô + kßi,yô

In general, a distribution function of a random variable z that is a function of two other independent
random variables x and y (i .e . z = g(x, y)) is related to the distribution functions fx(x) and f,(y) as

f (z) =

	

Y- ffr(x)f (Y� (X, z))
ay� (â , z)
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n=1

where the inverse function, y(x, z), can be in general a multivalued function that satisfies

4(P2
<< 4y/Y,

34P2 - 4Y .
Y_ Y

(2a)

(2b,c)

(2d)

(4a)

z=g(x . YI) = g ( x, Y2) =
. . . = g(x, YN)*

	

(4b)
In practice, the contribution of the energy spread to the axial-momentum spread is much greater than the
contribution of the angular spread, since

(5a)

while for a practical electron beam, the angular spread and the energy spread contributions to the
axial-velocity spread are typically of the same order,

(5b)
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where the average axial velocity uz is given by
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Eq. (6b) yields
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Eq. (9a), expanded to the second order in

and similarly
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The argument (Y _ 70)2/,IY2 in eq. (8c) becomes
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Hence, in order to properly evaluate the effect of the angular spread, the axial-velocity distribution should
be examined. Using eq. (4a), a relation between the axial-velocity distribution and the axial-momentum
distribution is obtained as follows

E=r1_Y z
)c

2
(1 _4)2 )_Y

_2âwc 2 .	( 6b)

The axial-velocity distribution is written, using eq. (4a), as
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and an assumption is taken that the energy spread is described by a Gaussian distribution function
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In practice 402 « 1, thus eq. (7a) becomes
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where the normalized random variable, u, is defined as

1+âwu =
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The energy spread contribution to the axial-velocity spread, i .e . the standard deviation of the axial-velocity
distribution due only to the energy spread, is deduced from eq . (6a) and is defined as

d
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where yo, is given by
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and eq . (8c) is written in the form
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The normalized distribution function fu (u) is related to f. (v,) by

fu( u ) = fv_( U_)

	

>

and the derivative dv,/du is obtained from eq . (Ila) as
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The normalized distribution function gets the form
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It can be easily verified that in a case of zero emittance, i .e . when

fO OP) = S($)>

eq . (14) is reduced to a normalized Gaussian distribution function

as expected .
An ideal planar wiggler field is described by
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In a case where no means are taken to focus the e-beam in the x-z plane, one may assume that

4T, >> aq)x ,

	

kpx = 0 .
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and therefore eq . (3) becomes
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The distribution function for oy is given by eq . (9a) as
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It should be noted that the singular point oy = q)y. (due to the electrons with yo = 0) is considered as a
removable singularity for a particle e-beam . Assuming that cpyo and yo are both Gaussian-distributed with
standard deviations of Aq)yo and A yo , respectively, and both have zero means, eq. (17a) becomes
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Changing variables, (py o = $y sin a, the integral is represented by

2 toy

	

exp

	

- (

	

1

	

+

	

1

	

)O
z
/2 Io ~ (

	

1

	

-

	

1

	

)
$z/2)

,
4g )yo kßy4 Yo

	

44?yo kßy4Yz
y

	

4c),0 kßv~Yz
y

where 10(x) is the modified Bessel function of order zero, generated by

I° (x) =
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It is previously known that the e-beam width, A yo , and the angular spread, 4$,� are optimized with the
betatron oscillation wave number, kßy� when the electron beam is represented on the phase space, y-o_,�
by a circle that its radius is conserved along the wiggler axis [5] . The width of the e-beam is given in this
case by

d(Pyo
A Yo =

	

kßy
(19a)

Consequently the argument of the Bessel function in eq. (18b) becomes zero in this case . Substituting
I° (0) = 1, and kpyAy° = dgzy° , into eq . (18b), it becomes a Rayleigh density function as follows

z
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Substituting eq. (19b) into eq . (14), the normalized distribution function becomes
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Changing variables, ~ 2 = 0, results in the integral
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of which the standard solution is given by

f,(u) = 4z expl
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where the complementary error function, erfc(p), is defined as
x
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The ratio U = Sy/4gP
z
o gives a measure for the relation of the contributions of the energy spread and the

angular spread to the axial-velocity spread . It can be related to the e-beam emittance

E L, = 7Fa yoam,0

by the expression

ST

	

V Sy

Finally, the normalized distribution function for the axial velocity in a planar wiggler is given simply by

f�(u) = Uexp[U(U+2u)] erfc(U+u) .

	

(22a)

The normalized variable u, given in eq . (Ila), can be approximated to the first order in v_ by

v_ - ) ozu -_

	

(22b)
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thus it relates the axial-velocity deviation of an electron to the standard deviation of the axial velocity due
only to the energy spread .

60F
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Fig. 1 . Curves of the normalized axial velocity distribution function fu(u)=U exp[U(u +2U)] erfc(U+ u), eq . (22a).
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Fig. 1 shows curves of the noralized distribution function f,,(u) for various values of the ratio U. It is
shown that for U >> 1, when the energy spread is dominated over the angular spread, the distribution
function tends to be a Gaussian, as expected . In the other extreme, for U<< 1 when the angular spread is

the dominant spread effect, the normalized distribution function becomes asymmetric . The positive slope
of the curve is more moderate than the negative slope and this may further reduce the gain in the
warm-gain regime.

3. The e-beam longitudinal susceptibility and the FEL parameters

The longitudinal susceptibility integral eq . (1) is solved in this section, using the normalized distribution
function eq . (22a) that brings into account the energy spread, the emittance and the betatron motion
effects. The solution of the susceptibility integral leads to the definition of the FEL parameters ; the
synchronism parameter B, the space-charge parameter Bp and the thermal-spread parameters .

The longitudinal susceptibility X,(s, co), given in eq . (1), can be written in terms of FZ, using eq. (6a), as
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Curves of fu (u) for various values of U are shown in fig. 2. These curves can be related to the FEL gain in
the warm-beam limit [3] . Substituting eq. (24a) into eq . (23b) results in

and Z(~) is the complex error function that is also known as the "plasma dispersion function" [6]. It is
defined as

ZM = 1 f
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or in a normalized form, using eqs. (13a,b), as
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The normalized integral in eq. (23b) is sometimes defined as G'(~) [3] and maintains

G'(~)
d f(u)= f df(u)/du du= du (23d)

The first derivative of the normalized distribution function fu(u) (eq. (22a)) is :

dfu(u)=2Uz exp[U(U+u)] erfc(U+u)- 2Uexp(-u 2 ) . (24a)
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where cop, the relativistic plasma frequency, is defined as
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Using the identity
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Fig . 2 . Curves of df�(u)/du, eq . (24a), for various U values .

Using the definition for erfc(p) (eq. (20b)) and changing variables, eq . (24b) becomes
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Changing the order between the integrals over u and y leads to
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The inner integral (over u) is replaced now by Z(~ +y) (eq . (24d)), and eq . (25b) becomes
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and integrating eq . (25c) by parts, one obtains an expression for the e-beam susceptibility as follows

(25d)
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(26)
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In practice, the FEL interaction of an electromagnetic wave with a wiggling e-beam is not strong
enough to change the wave number of the EM wave substantially . Thus the s variable in eq . (23c) can be
written as [4]

s = ikoz + i8k

	

(27a)



where koZ is the longitudinal wave number of the central component of the angular spectrum of the initial
EM plane-wave group . It is assumed that

The detuning parameter, B", measures the synchronism between an electron of which the axial velocity
equals the average, vz , and the nth harmonic of the ponderomotive wave . The detuning spread parameter,
Oth ', shows the standard deviation of the electrons (due only to the energy spread) from the average
detuning value B" . Another constitutive parameter of the FEL interaction is the space-charge parameter 0,
that is defined as

where J0 is the on-axis e-beam current density .
The FEL parameters, B", 0th' . and Or , multiplied by the interaction length LW , can be interpreted as

phase variables with respect to the ponderomotive wave.
The shifted e-beam susceptibility, Xz" ) = Xz(s + inkW)/EO, that is modulated in the s-plane by +inkW ,

is written in terms of the FEL parameters OP , 0", U and ~(")(B", 0" ) as

X Z" ) -
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complex error function (24d) is Z(~ - oo) = -1/~ and the susceptibility term is further simplified to

(0-Sk)

that represents the angular spread effect, as a tail spreading of the e-beam susceptibility .

(28e)

(29)

One can easily verify that in a case that U >> 1, i .e . in a case that the angular spread is small with
respect to the symmetrical energy spread, eq. (29) is reduced to the known expression [3]

(30a)

In the cold beam limit, 8y - 0, 0te' - 0, and ~ - oo (for any s iL islvoj The infinite limit of the
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The effect of the asymmetrical contribution of the angular spread is seen in the susceptibility integral
(29) . This can be regarded as a convolution of the known Z'(~) solution, with a decaying exponent e - 2U°
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18k 1 « koZ, (27b)

and therefore the shifted ~(") parameter can be written in terms of the FEL parameters as

O - 8k
(28a)0e .sth

where B", the detuning parameter, is defined as

O" = Wlvoz - koZ - nk w , (28b)

The detuning spread parameter due to the energy spread, Bths, is defined as

Oth s = (koZ + nk,,) S-y, (28c)

or in a condition of near synchronism operation, where B" - 0, as

-thOeS-wô Y . (28d)
Voz
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The ratio 0P /(0' ) Z can be related to be Debay wave number which is defined as
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thus the coefficient BP/(Bti,ç ) 2 = (kD/(ko , + kw))2 , appearing in eqs . (29) and (30a), can be regarded as
the ratio between the ponderomotive wave wavelength and the e-beam plasma shielding radius.

The susceptibility integral eq . (30) can be easily computed by any standard integration method . The
convergence of the decaying exponent e-2U`' is determined by U and is typically fast . The computation of
Z'(~) is based on its asymptotic expansions and continued fraction representations [6] and is usually
provided by computer mathematical libraries . The evaluation of the susceptibility term X(n) enables
obtaining solutions for the gain dispersion equation [11] and for its higher-harmonics and three-dimen-
sional versions [4] .
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