Dusty Plasmoids Ejected from Silicon by Localized Microwaves - Reflection Analysis

Y. Meir and E. Jerby*
Faculty of Engineering, Tel Aviv University, Ramat Aviv, Israel.
* E-mail: jerby@eng.tau.ac.il

This paper presents an experimental and theoretical investigation of plasmoids, in forms of fireballs and fire-columns, obtained by directing localized microwaves (~0.8 kW at 2.45 GHz) into a solid substrate (e.g. silicon) in a microwave cavity. The plasmoid is blown up from the hotspot created in the silicon substrate to the air atmosphere within the microwave cavity. The experimental diagnostics utilize the microwave reflections from the dusty plasmoid in order to estimate its effective permittivity. Taking into account also prior measurements by optical spectroscopy and small-angle X-ray scattering, the electron density is estimated as \(n_e \sim 3 \times 10^{18} \text{ m}^{-3} \) within the fireball.

Keywords: Ball lightning, plasmoids, microwave plasma, atmospheric plasma, silicon spheres.

INTRODUCTION

The ejection of fireballs by localized microwaves from solid substrates and their buoyancy in air [1] has been demonstrated for various substrate materials, e.g. glass, germanium, silicon, salty water, and also for copper (forming of a fire-column-like plasma) [2]. Borosilicate-glass fireballs have also been investigated by small-angle X-ray scattering (SAXS), which revealed the presence of nanoparticles with diameters and number densities of \(\sim 50 \text{ nm} \) and \(\sim 10^{15} \text{ m}^{-3} \), respectively, within these fireballs [3,4]. In view of the significant presence of dust grains compared to electrons and ions, these fireballs are considered as complex (dusty) plasmas, such as in [5]. In the present study, we analyze the microwaves reflected from the plasmoid in order to characterize its properties. Accompanied with an optical spectral analysis, which reveals the plasmoid's temperature, the microwave reflection analysis provides a measure for the plasmoid's complex permittivity and consequently for its electron density.

MATERIALS AND METHODS

The plasmoid investigated in this study is obtained by directing localized microwave power by a moveable electrode into a vertically positioned slice of silicon. A hotspot is created, from which the plasma is ejected and lifted up into the air atmosphere as a buoyant fireball within the microwave cavity [1]. The experimental setup depicted in Fig. 1a consists of a microwave cavity made of a WR340 waveguide with additional openings (in microwave cutoff) for diagnostics. These include video imaging and optical spectroscopy (Avantes, Avaspec-3648) in a 200-1000 nm range with 0.3 nm resolution. The microwave power is generated by a 2.45-GHz, 1-kW magnetron unit, fed by a controllable switched-mode power supply (MagDrive-1000, Dipolar Ltd.). The microwave is delivered to the chamber via an isolator and an impedance auto-tuner (Homer, S-Team Ltd.). The auto-tuner enables adaptive impedance matching and optimal transmission of microwave power to the fireball chamber, and it also provides real-time measurements of the complex load impedance.

The hotspot evolves at the contact point between the moveable electrode and the substrate (see Fig. 1a) by a thermal-runaway process [6]. This localized-heating effect leads to melting of the substrate in a \(~1 \text{ mm}\) region near the electrode. Further heating of the hotspot results in evaporation and ionization of the substrate material. A fire column is ejected from the hotspot, and evolves as a buoyant luminous body floating stably in the air in a self-organized manner [1] as shown in Fig. 1b.

RESULTS AND DISCUSSION

A significant increase in the microwave power absorption at 2.45 GHz was observed after the fireball ignition. This effect is displayed by the reduction of the reflection coefficient \(\Gamma = \rho \exp(j\theta) \) in the scalar and vectorial representations in Figs. 2a-d. The scalar microwave reflection shown in Fig. 2a is significantly decreased (from \(~0.9\) to \(~0.5\)) at the fire-column ignition. The reflection is decreased
Further at the fireball stage, while bouncing around ~0.3 and attracted by the Smith-chart origin as shown in Figs. 2b-d. The corresponding power reflection is reduced further to ~10% at this stage, hence the plasmoid tends to interact with its microwave generator as a nearly perfect load. These results reveal the adaptive impedance-matching effect, which dictates the plasmoid’s autonomous evolution. The fluctuations observed in the fireball stage in Fig. 2d are attracted by the origin of the Smith chart (at which $\rho = 0$) in an oscillatory manner. This self-tuning mechanism tends to adaptively maximize the microwave power absorbed by the fireball, by an optimization of its intensity, position and size.

Silicon lines are identified in the optical spectrum [7] as well as chromium impurities. In addition, spectral emissions of nitric oxide (NO) and hydroxyl (OH) radicals are observed. When using a graphite electrode, cyano (CN) radicals are also generated within the plasmoid. The radicals’ spectra are used to estimate the rotational temperature by fitting the line shape to the LifBase simulation [8]. The OH and CN radicals result in mean temperatures of 0.34 ± 0.04 eV and 0.40 ± 0.11 eV, respectively. The Boltzmann plot method applied on silicon lines reveals an excitation temperature of ~1 eV. Chromium impurities, probably originating from the electrode, yield an excitation temperature of ~0.3 eV in a similar manner (the better accuracy in this instance compared to that obtained with silicon is attributed to the larger number of chromium spectral lines, the partial overlap of the silicon lines and NO radical emission, and the relatively low spectral resolution and sampling available). From SAXS measurements [3, 4], the mean particle radius r is ~60 nm, their number density n_d is ~$10^{15} - 10^{16}$ m$^{-3}$, and their maximum volume fraction is ~10^{-6} within the fireball.

The measured microwave reflections enable us to estimate the effective plasmoid impedance, and consequently to find its relative dielectric permittivity, ε_r. The latter consists of the plasma permittivity $\varepsilon_p = \varepsilon'_p - j\varepsilon''_p$ and the dust conductivity, σ_{ed}, thus the total effective permittivity is given by $\varepsilon_r = \varepsilon_p - j\sigma_{ed}/\varepsilon_0\omega$ where ε_0 is the vacuum permittivity and ω is the angular frequency.
The dielectric permittivity of the dusty plasma is determined by
\[\omega_p = \sqrt{\frac{2e^2n_e}{m_e\varepsilon_0}} \] and \(\nu \), the plasma and collision frequencies, respectively. Therefore, the dusty plasma conductivity given by [5] is
\[\sigma_{dd} \approx \frac{n_e n_d (r^2 e^2 \omega)}{m_e} \left[\frac{\omega^2 - \omega \nu_{ch}}{\omega^4 + \nu_{ch}^2 (\omega^2 + \nu^2)} + j\omega \frac{\nu + \nu_{ch}}{\omega^2 + \nu_{ch}^2 (\omega^2 + \nu^2)} \right], \] (1)
where \(n_e \) and \(n_d \) are the electron and dust grain densities, respectively, \(e \) and \(m_e \) are the electron charge and mass, respectively, and \(k \) is the wave wavenumber. The electron effective collision frequency is \(\nu = V_{Te} \sigma_n N_n \), where \(V_{Te} = (kT_e/m_e)^{1/2} \) is the electron thermal velocity, \(\sigma_n \) and \(N_n \) are the neutrals cross-section and density, respectively, \(T_e \) is the electron temperature, and \(\nu_{ch} \) is the dust charging frequency. Assuming \(\nu \nu_{ch} \ll \omega^2 \) and \(\nu_{ch} \ll \omega \) in (1), the dielectric permittivity is further reduced to
\[\epsilon_r = 1 + \frac{\omega_p^2}{\omega^2 + \nu^2} \left[-1 + \frac{\nu}{k l_{dd} \omega} - j \left(\frac{\nu}{\omega} + \frac{1}{k l_{dd}} \right) \right] g, \] (2)
where \(l_{dd} = 1/\pi r^2 n_d \) is defined here as the mean free path for electron-dust collisions, and \(g \) is a spatial profile distribution function. The model illustrated in Fig. 3a is employed using COMSOL MultiPhysicsTM in order to estimate the corresponding permittivity of the plasmoid, \(\epsilon_r \), from the reflection coefficient measurements, \(\Gamma \), as in Fig. 2d. A Gaussian profile \(g \) is taken for the plasmoid with a 1-cm and 1.6 cm radii of its core in the radial and axial dimensions, respectively. A ~1 mm sheath barrier is assumed between the plasmoid and the waveguide ceiling. The complex \(\epsilon_r \) space is scanned numerically in order to find the conditions that satisfy \(\rho \leq 0.33 \) as experimentally observed.

The amplitude profile of the displacement field \(\mathbf{D} = \epsilon_0 \epsilon \mathbf{E} \) along the waveguide is presented in Fig. 3a for \(\epsilon_r = 0.2 - j20 \) (in which the reflections attain \(\rho \leq 0.33 \)). The corresponding reflection coefficients are shown in Fig. 3b as functions of the axial position (i.e. as indicated in Fig. 3a) for several values of \(\epsilon_r \). A nearly perfect impedance matching (no reflection) is observed for \(\epsilon_r = 0.2 - j20 \) at 35 mm axial position. Other positions or higher dielectric losses of the plasmoid decrease its microwave absorption. This effect is illustrated also by the Smith-chart presentation in Fig. 3b, which maps the complex relation between \(\epsilon_r \) and the microwave reflection coefficient \(\Gamma \), in various positions. The area within the dashed Red circle marks the \(\rho \leq 0.33 \) region, with less than 10% microwave power reflection. A longitudinal periodicity of about half a wavelength is notable.

The electron temperatures in the range of 0.3–1.0 eV, yield an electron thermal velocity of \(V_{Te} \approx 2.3 \cdot 10^5 \text{ ms}^{-1} \) hence the collision frequency is \(\nu \approx 10^{10} \text{ s}^{-1} \) (assuming \(\sigma_n \approx 4.4 \cdot 10^{-20} \text{ m}^2 \) and \(N_n \approx 10^{24} \text{ m}^{-3} \) for a weakly ionized dusty plasma in air atmosphere [5]). The SAXS measurements yield a mean free path for electron-dust collisions of \(l_d \approx 10^{-2} \text{ m} \). In these conditions, for \(\omega \approx 1.6 \cdot 10^{10} \text{ s}^{-1} \), the real part in Eq. (2), \(-1 + \nu/k l_d \omega - 0\), is significantly smaller than the imaginary part, which plays the dominant role in the microwave absorption by the plasmoid. Hence, the plasma frequency results in \(\omega_p \approx 10^{11} \text{ s}^{-1} \) with corresponding electron density of \(n_e \approx 3 \cdot 10^{18} \text{ m}^{-3} \) in this case.

CONCLUSIONS
The fireball studied here is categorised as a partially ionized complex (dusty) plasma, as indicated by the low electron density estimated, the low temperatures measured, the lack of atomic ionization spectral lines, and the presence of nanoparticles forming the dusty plasmoid (\(n_e \approx 3 \cdot 10^{18} \text{ m}^{-3} \), \(n_d \approx 10^{15} \text{ m}^{-3} \)). The measured electron density is slightly lower than the limit derived by Griem’s criterion [9] for local thermal equilibrium (LTE); however, it may satisfy the partial-LTE (pLTE)
condition [10]. In atmospheric-pressure plasmas, the LTE assumption may be valid in the core of the plasmoid, but not on its periphery [11]. The equilibrium may exist since the higher pressure in the core increases the collision rate between the electrons and heavy particles, hence the energy transfer becomes more effective for a given electron density.

\[\varepsilon_r = 0.2 - j \omega. \]

The contributions of the electron and dust components to the total value of \(\varepsilon_r \) in Eq. (2) are comparable, hence the dust particles play a non-negligible role in the microwave absorption by the plasmoid. The fireball attraction to the Smith-chart origin is observed experimentally as the self-impedance-matching effect presented in Fig. 3b. This is an oscillatory effect since once the fireball is perfectly matched, more power is absorbed, which increases the electron density (e.g. along the blue curve in Fig. 3b). The consequent increase in the plasmoid conductivity violates the perfect matching condition, causing the system to bounce back and forth around its equilibrium state, as was also observed experimentally.

ACKNOWLEDGEMENTS

This study is supported by the Israel Science Foundation (ISF) under grant No. 1639/11.

REFERENCES

