
10. Wiener process. Gaussian white noise

Brownian motion (Bt)t≥0, described by the botanist Brown, is known
also as the Wiener process (Wt)t≥0, called in a honor of the mathemati-
cian Wiener who gave its mathematical “design”.

Wiener process is zero mean Gaussian random process, so, as any
zero mean Gaussian process, it is completely defined by the correlation
function. In formulas: EWt ≡ t, with x ∧ y = min(x, y)

EWtWs = t ∧ s. (10.1)

We derive now a few simple properties of Wiener process.
1. EW 2

t ≡ t and W0 = 0.

Proof. The first statement follows from (10.1) with t = s. Particularly,
EW 2

0 = 0 and the second statement holds true. �

2. E(Wt −Ws)
2 = |t− s|.

Proof. Write

E(Wt −Ws)
2 = t + s− 2(t ∧ s) =

 t− s, t > s
0, t = s
s− t, t < s.

�

3. Increments of Wiener process are Gaussian random variables and
are independent for nonoverlapping intervals. Their distributions coin-
cide, if intervals are the same length (homogeneous increments).

Proof. Since (Wt) is Gaussian process, any subvector Wt1 , . . . ,Wtn is
Gaussian random vector. Consequently, also (Wt′′−Wt′), (Ws′′−Ws′), . . .
is Gaussian random vector. Hence, Wt′′ −Wt′ is zero mean Gaussian
random variable with the variance t′′−t′, so that all increments defined
on an interval of the length t′′− t′ have the same distribution. If [s′, s′′]
and [t′, t′′] are nonoverlapping intervals. Then, for instance t′ > s′′, we
find

E(Wt′′ −Wt′)(Ws′′ −Ws′) = s′′ − s′ − s′′ + s′ = 0,

that is these increments are orthogonal. Consequently, they are inde-
pendent (see, Lect. 9). �

4. Paths of Wiener process are continuous functions.

Proof. We apply Kolmogorov’s condition guaranteeing the continuous
of paths of a random process with the continuous time: if for some
γ > 0, β > 0 and any any t, s there is a positive constant C such that

E|Xt −Xs|γ ≤ C|t− s|1+β, (10.2)

then paths of Xt are continuous functions.
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We verify the Kolmogorov condition for γ = 4 and β = 1. To this
purpose, let us recall the following property of zero mean Gaussian
random variables ξ with Eξ2 = σ2:

Eξ4 = 3σ4. (10.3)

Write E|Wt −Ws|4 = 3|t− s|2, i.e. (10.2) holds true with C = 3. �

5. Paths of Wiener process are not differentiable function.

Proof. For h > 0, set ∆(h) = Ws+h−Ws

h
. The random variable ∆(h) is

zero mean Gaussian with E(∆(h))2 = 1
h
. If ∆(h), h → 0 converges

in some sense to a limit, then a sequence of characteristic functions
Eeλ∆(h), h → 0 converge to a limit which is continuous function in the
argument λ. In the case considered, we have (see, Lect. 9)

Eeλ∆(h) = e−λ2/(2h2) −−→
h→0

{
1, λ = 0,

0, otherwise.

Hence, the assumed convergence is lost and the derivative does not
exist. �

Gaussian White Noise

In spite of trajectories of Wiener process are not differentiable, a
generalized derivative exists.

Let us recall a definition of the generalized derivative for a determin-
istic function w(t): for any smooth and compactly supported function
g = g(t) the generalized derivative ẇ(t) of w(t) (not obligatory differ-
entiable function) is defined symbolically∫ ∞

0

g(t)ẇ(t)dt = −
∫ ∞

0

ġ(t)w(t)dt.

For a smooth w(t), when ẇ(t) exists, the above formula is nothing but
“integration by parts” formula.

The generalized derivative Ẇ (t) of Wiener process, defined similarly
to integration by parts with a smooth g(t)

g(t)Wt =

∫ t

0

g(s)Ẇsds +

∫ t

0

ġ(s)Wsds (10.4)

is called “Gaussian white noise”.
We will analyse now main properties of Gaussian white noise.
1. EẆt ≡ 0.

Proof. Taking the expectation from both sides of (10.3), we find

E

∫ t

0

g(s)Ẇsds = 0

and the result. �
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2. A (generalized) correlation function of Ẇt is δ-function.

Proof. Write ∫ t

0

∫ t

0

g(s)g(s′)E
(
ẆsẆs′

)
dsds′

:= E

(∫ t

0

g(s)Ẇsds

∫ t

0

g(s)Ẇsds

)

= E

(
g(t)Wt −

∫ t

0

ġ(s)Wsds

)2

= tg2(t)− 2g(t)

∫ t

0

ġ(s)sds

+

∫ t

0

∫ t

0

ġ(s)ġ(s′)(s ∧ s′)dsds′ := Ψ(t). (10.5)

Further,

dΨ(t)

dt
= g2(t) + 2tg(t)ġ(t)− 2tg(t)ġ(t)

−2ġ(t)

∫ t

0

ġ(s)sds + 2ġ(t)

∫ t

0

ġ(s)sds

= g2(t).

Hence,

Ψ(t) =

∫ t

0

g2(s)ds (10.6)

On the other hand,∫ t

0

∫ t

0

g(s)g(s′)δ(s− s′)ds′ds =

∫ t

0

g2(s)ds.

�

3.
∫ t

0
g(s)Ẇ (s)ds is well defined, if only

∫ t

0
g2(s)ds < ∞. Moreover,

E

∫ t

0

g(s)Ẇ (s)ds = 0

E

(∫ t

0

g(s)Ẇ (s)ds

)2

=

∫ t

0

g2(s)ds.

(10.7)

Proof. Here, a smoothness of g(s) is not obligatory supposed. We as-

sume only that
∫ t

0
g2(s)ds < ∞. The latter assumption allows to choose

a sequence gn(s), n ≥ 1 of smooth functions such that

lim
n→∞

∫ t

0

(
g(s)− gn(s)

)2
ds = 0. (10.8)
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For every n,
∫ t

0
gn(s)Ẇ (s)ds is well defined. Since

∫ t

0
gn(s)Ẇ (s)ds de-

termines a linear transform in gn’s we have∫ t

0

gn(s)Ẇ (s)ds−
∫ t

0

gm(s)Ẇ (s)ds =

∫ t

0

(
gn(s)− gm(s)

)
Ẇ (s)ds.

By (10.5) and (10.6), we have

E

(∫ t

0

gn(s)Ẇ (s)ds−
∫ t

0

gm(s)Ẇ (s)ds

)2

= E

(∫ t

0

(
gn(s)− gm(s)

)
Ẇ (s)ds

)2

=

∫ t

0

(
gn(s)− gm(s)

)2
ds

≤ 2

∫ t

0

(
gn(s)− g(s)

)2
ds

+2

∫ t

0

(
gm(s)− g(s)

)2
ds −−−−→

n,m→∞
0.

Hence, under
∫ t

0
g2(s)ds < ∞ only, by the Cauchy criteria∫ t

0

g(s)Ẇ (s)ds = l.i.m.
n→∞

∫ t

0

g(s)Ẇ (s)ds. (10.9)

Others statements are valid if g(s) is smooth function and inherited
under the convergence in L2-norm. �

Linear differential equation driven by white noise.

We consider now a stochastic differential equation1

Ẋt = a(t)Xt + b(t)Ẇ (t) (10.10)

subject to the initial condition X0 being a random variable (say, with
EX2

0 < ∞) independent of the white noise Ẇ (t), where a(t) and b(t)
are bounded functions. Formally, a solution of (10.10) possesses a form
as, if b(t)Ẇ (t) is a regular function

Xt = e
∫ t
0 a(s)ds

(
X0 +

∫ t

0

e−
∫ s
0 a(s′)ds′

b(s)Ẇ (s)ds
)
. (10.11)

1an integral form Xt = X0 +
∫ t

0
a(s)Xsds +

∫ t

0
b(s)Ẇsds of this equation is

completely legal as well as its solution

Xt =
(
X0 +

∫ t

0

b(s)Ẇsds
)

+
∫ t

0

e
∫ t

s
a(s′)ds′

(
X0 +

∫ s

0

b(s′)Ẇs′ds′
)
ds.
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Since E
∫ t

0
e−

∫ s
0 a(s′)ds′

b(s)Ẇ (s)ds = 0, taking the expectation from
both sides of (10.11) we find

EXt = e
∫ t
0 a(s)dsEX0. (10.12)

Consequently

Xt −EXt = e
∫ t
0 a(s)ds

((
X0 −EX0

)
+

∫ t

0

e−
∫ s
0 a(s′)ds′

b(s)Ẇ (s)ds
)

and then

Var(X0) = e2
∫ t
0 a(s)ds

(
Var(X0) + E

(∫ t

0

e−
∫ s
0 a(s′)ds′

b(s)Ẇ (s)ds
)2
)

= e2
∫ t
0 a(s)ds

(
Var(X0) +

∫ t

0

e−2
∫ s
0 a(s′)ds′

b2(s)ds
)2
)

. (10.13)

Obviously, (10.12) and (10.13) define solutions of differential equations
respectively

ṁ(t) = a(t)m(t)

V̇ (t) = 2a(t)V (t) + b2(t)

subject to m(0) = EX0, V (0) = Var(X0).
In additional, for t > t′ the correlation function K(t,t’) of the random

process Xt is defined as:

K(t, t′) = V (t′)e
∫ t

t′ a(s)ds.

If X0 is a Gaussian random variable, then (Xt))t ≥ 0 is Gaussian
random process.
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