References for Table of Nonlinear Binary Codes


Return to main table


\bibitem{allt76}
W. O. Alltop.
Binary codes with improved minimum weights.
{\em IEEE Trans. Inform. Theory}, 22:241--243, 1976.

\bibitem{allt77}
W. O. Alltop.
Personal Communication (see F.J. MacWilliams and N.J.A. Sloane,
1977), 1977.

\bibitem{allt84}
W. O. Alltop.
A method for extending binary linear codes.
{\em IEEE Trans. Inform. Theory}, 30(6):871--872, 1984.

\bibitem{aydi99}
N.Aydin.
E-mail of November 7, 1999.

\bibitem{barg87}
A. Barg, G. Katsman, and M. Tsfasman.
Algebraic geometric codes over curves of low genus.
{\em Problems of Information Transmission}, 23(1):34--38, 1987.

\bibitem{berl68}
E. R. Berlekamp.
{\em Algebraic Coding Theory}.
McGraw-Hill, 1968.

\bibitem{best80}
M. R. Best.
Binary codes with a minimum distance of four.
{\em IEEE Trans. Inform. Theory}, 26:738--742, 1980.

\bibitem{best78b}
M. R. Best, A. E. Brouwer, F. J. MacWilliams, A. M. Odlyzko and
N. J. A. 
SLOANE.
Bounds for binary codes of length less than 25.
{\em IEEE Trans.
Inform. Theory}, 24:81--93, 1978.

\bibitem{bier95}
J. Bierbrauer and Y. Edel.
Personal Communication to A. E. Brouwer, 1994, 1995.

\bibitem{bier97}
J. Bierbrauer and Y. Edel.
New code parameters from {R}eed-{S}olomon subfield subcodes.
{\em IEEE Trans. Inform. Theory}, 43(3):953--968, 1997.

\bibitem{blok84}
A. Blokhuis and C. W. H. Lam.
More coverings by rook domains.
{\em J.
Combinatorial Th.}, Ser. A, 36:240--244, 1984.

\bibitem{bose60}
R. C. Bose and D. K. Ray-Chaudhuri.
On a class of error-correcting binary group codes.
{\em Info. and Control}, 3:68--79, 1960.

\bibitem{bouk95}
I. Boukliev.
A method for construction of good linear codes.
{\em Preprint}, 1995.

\bibitem{brou97}
A. Brouwer.
Personal Communication, 1997.

\bibitem{brou93a}
A. E. Brouwer.
The linear programming bound for binary linear codes.
{\em IEEE Trans. Inform. Theory}, 39:677--680, 1993.

\bibitem{brou90}
A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith.
A new table
of constant weight codes.
{\em IEEE Trans. Inform. Theory},
36:1334--1380, 1990.

\bibitem{brou93}
A. E. Brouwer and T. Verhoeff.
An updated table of minimum-distance bounds for binary linear codes.
{\em IEEE Trans. Inform. Theory}, 39:662--677, 1993.

\bibitem{cace91}
A. C\'aceres and O. Moreno.
On the estimation of minimum distance of duals of {B}{C}{H} codes.
{\em Congressus Numerantium}, 81:205--208, 1991.

\bibitem{cald94}
A. R. Calderbank and G. McGuire.
Construction of a $(64,2^{37},12)$ code.
{\em Preprint}, 1994.

\bibitem{cald96}
A. R. Calderbank, G. McGuire, P. V. Kumar, and T. Helleseth.
Cyclic codes over {Z}$_4$, locator polynomials, and {N}ewton
identities.
{\em IEEE Trans. Inform. Theory}, 42(1):217--226, 1996.

\bibitem{chen70}
C.-L. Chen.
Computer results on the minimum distance of some binary cyclic codes.
{\em IEEE Trans. Inform. Theory}, 16:359--360, 1970.

\bibitem{chen91}
C. L. Chen.
Construction of some binary linear codes of minimum distance five.
{\em IEEE Trans. Inform. Theory}, 37(5):1429--1432, 1991.

\bibitem{chen94}
Z. Chen.
Six new binary quasi-cyclic codes.
{\em IEEE Trans. Inform. Theory}, 40(5):1666--1667, 1994.

\bibitem{chen87}
Y. Cheng.
New linear codes constructed by concatenating, extending, and
shortening methods.
{\em IEEE Trans. Inform. Theory}, 33(5):719--721, 1987.

\bibitem{chen89}
Y. Cheng and N. J. A. Sloane.
Codes from symmetry groups, and a [32,17,8] code.
{\em SIAM J. Disc. Math.}, 2(1):28--37, 1989.

\bibitem{chie75}
R. T. Chien and D. M. Choy.
Algebraic generalization of {B}{C}{H}-{G}oppa-{H}elgert codes.
{\em IEEE Trans. Inform. Theory}, 21:70--79, 1975.

\bibitem{cord67}
J. T. Cordaro and T. J. Wagner.
Optimum $(n,2)$ codes for small values of of channel error
probability.
{\em IEEE Trans. Inform. Theory}, 13:349--350, 1967.

\bibitem{dels75}
P. Delsarte and J.-M. Goethals.
Alternating bilinear forms over ${G}{F}(q)$.
{\em J. Combin. Theory}, 19A:25--50, 1975.

\bibitem{dodu87}
S. M. Dodunekov, T. Helleseth, N. Manev, and O. Ytrehus.
New bounds on binary linear codes of dimension eight.
{\em IEEE Trans. Inform. Theory}, 33(6):917--919, 1987.

\bibitem{doug91}
R. Dougherty and H. Janwa.
Covering radius computations for binary cyclic codes.
{\em Math. Computation}, 57(195):415--434, 1991.

\bibitem{etzi00}
T. Etzion.
Personal Communication, 1992.

\bibitem{fark94}
P. Farkas and K. Bruhl.
Three best binary linear block codes of minimum distance fifteen.
{\em IEEE Trans. Inform. Theory}, 40(3):949--951, 1994.

\bibitem{goet74}
J. M. Goethals.
Two dual families of nonlinear binary codes.
{\em Electronic Letters}, 10:471--472, 1974.

\bibitem{gola49}
M. J. E. Golay.
Notes on digital coding.
{\em Proc. IEEE}, 37:657, 1949.

\bibitem{gold68}
H. D. Goldman, M. Kliman, and H. Smola.
The weight structure of some {B}ose-{C}haudhuri codes.
{\em IEEE Trans. Inform. Theory}, 14:167--169, 1968.

\bibitem{gopp70}
V. Goppa.
A new class of linear error-correcting codes.
{\em Problems of Information Transmission}, 6(3):24--30, 1970.

\bibitem{gron94}
B. Groneick and S. Grosse.
New binary codes.
{\em IEEE Trans. Inform. Theory}, 40(2):510--512, 1994.

\bibitem{gron92}
B. Groneick and S.Grosse.
Personal Communication to A. E. Brouwer, 1992-1995.

\bibitem{gull94}
T. A. Gulliver.
Personal Communication (see A. E. Brouwer and T. Verhoeff, 1993),
1993.

\bibitem{gull97}
T. A. Gulliver and V. K. Bhargava.
New optimal binary linear codes of dimensions 9 and 10.
{\em IEEE Trans. Inform. Theory}, 43:314--316, 1997.

\bibitem{hama88}
H. H\"{a}m\"{a}lainen.
Two new binary codes with minimum distance three.
{\em IEEE Trans. Inform. Theory}, 34(4):875, 1988.

\bibitem{hamm50}
R. W. Hamming.
Error-detecting and error-correcting codes.
{\em Bell. Syst. Tech. J.}, 29:147--160, 1950.

\bibitem{hamm94}
A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane
and P. Sol\'{e}.
The $Z_4$-linearity of Kerdock, Preparata, Goethals and
related codes.
{\em IEEE Trans. Inform. Theory}, 40:301-319, 1994.

\bibitem{hart73}
C. R. P. Hartman and K. K. Tzeng.
On some classes of cyclic codes of composite lengths.
{\em IEEE Trans. Inform. Theory}, 19:820--822, 1973.

\bibitem{hash76}
A. A. Hashim and V. S. Pozdniakov.
Computerised search for linear binary codes.
{\em Electronic Letters}, 12:350--351, 1976.

\bibitem{helg72}
H. J. Helgert.
Srivastava codes.
{\em IEEE Trans. Inform. Theory}, 18:292--297, 1972.

\bibitem{helg74}
H. J. Helgert.
Alternant codes.
{\em Info. and Control}, 26:369--380, 1974.

\bibitem{helg73a}
H. J. Helgert and R. D. Stinaff.
Minimum-distance bounds for binary linear codes.
{\em IEEE Trans. Inform. Theory}, 19:344--356, 1973.

\bibitem{helg73b}
H. J. Helgert and R. D. Stinaff.
Shortened {B}{C}{H} codes.
{\em IEEE Trans. Inform. Theory}, 19:818--820, 1973.

\bibitem{hell89}
T. Helleseth and O. Ytrehus.
How to find a [33,18,4] code.
Technical report, Department of Informatics, University of Bergen,
Norway, 1989.

\bibitem{hoqu59}
A. Hocquenghem.
Codes correcteurs d'erreurs.
{\em Chiffres}, 2:147--156, 1959.

\bibitem{jens85}
J. M. Jensen.
The concatenated structure of cyclic and abelian codes.
{\em IEEE Trans. Inform. Theory}, 31(6):788--793, 1985.

\bibitem{juli65}
D. Julin.
Two improved block codes.
{\em IEEE Trans. Inform. Theory}, 11:459, 1965.

\bibitem{kaba88}
G. Kabatyansky and V. Panchenko.
Packings and coverings of the {H}amming space by spheres of radius
one.
{\em Problems of Information Transmission}, 24(4):3--16, 1988.

\bibitem{kaik97}
M. Kaikkonen.
Codes from affine permutation groups.
{\em Preprint}, 1997.

\bibitem{kaik89}
M. K. Kaikkonen.
A new four-error-correcting code of length 20.
{\em IEEE Trans. Inform. Theory}, 35(6):1344, 1989.

\bibitem{karl69}
M. Karlin.
New binary coding results by circulants.
{\em IEEE Trans. Inform. Theory}, 15:81--92, 1969.

\bibitem{kasa75}
M. Kasahara, Y. Sugiyama, S. Hirasawa, and T. Namekawa.
A new class of binary codes constructed on the basis of {B}{C}{H}
codes.
{\em IEEE Trans. Inform. Theory}, 21:582--585, 1975.

\bibitem{kasa76}
M. Kasahara, Y. Sugiyama, S. Hirasawa, and T. Namekawa.
New classes of binary codes constructed on the basis of concatenated
codes and product codes.
{\em IEEE Trans. Inform. Theory}, 22:462--468, 1976.

\bibitem{kasa69}
T. Kasami and N. Tokura.
Some remarks on {B}{C}{H} bounds and minimum weights of binary
primitive {B}{C}{H} codes.
{\em IEEE Trans. Inform. Theory}, 15:408--413, 1969.

\bibitem{kats87}
G. Katsman, S. Kovalev, and S. Litsyn.
New codes derived by lengthening.
In {\em Error-Correcting Coding and Reliability of Computers}, pages
7--10. Nauka, 1987.
(In Russian).

\bibitem{kerd72}
A. M. Kerdock.
A class of low rate nonlinear codes.
{\em Info. and Control}, 20:182--187, 1972.

\bibitem{klei95}
Y. Klein, S. Litsyn and A. Vardy.
Two new bounds on the size of binary
codes with a minimum distance of three.
{\em Designs, Codes and
Cryptography}, 6:219--227, 1995.

\bibitem{krac83a}
V. Krachkovsky.
{\em Design of Composite Methods of Error Protection and Their
Application in Systems of Information Transmission}.
PhD thesis, Institute of Aviation Equipment, Leningrad, 1983.

\bibitem{krac83b}
V. Krachkovsky.
Two methods of decyclic lengthening.
{\em Problems of Information Transmission}, 19(2):14--22, 1983.

\bibitem{kupp95}
P.W. Kuppens.
Personal Communication to A. E. Brouwer, 1995.

\bibitem{leve61}
V. Levenshtein.
Application of {H}adamard matrices to one problem of coding theory.
{\em Problemy Kibernetiki}, 5:123--136, 1961.

\bibitem{lits98}
Tables of Best Known Binary Codes, in
Handbook of Coding Theory,
(edited V. Pless et al., North-Holland, 1998, to appear).

\bibitem{lits94b}
S. Litsyn and A. Vardy.
The uniqueness of the Best code.
{\em IEEE Trans.
Inform. Theory}, 40:1693--1698, 1994.

\bibitem{loel84}
M. Loeloeian and J. Conan.
A [55,16,19] binary {G}oppa code.
{\em IEEE Trans. Inform. Theory}, 30(5):773, 1984.

\bibitem{macw77}
F. J. MacWilliams and N. J. A. Sloane.
{\em The Theory of Error-Correcting Codes}.
North-Holland, Amsterdam, 1977.

\bibitem{mori93}
M. Morii.
Personal Communication to A. E. Brouwer, 1993.

\bibitem{mori94}
M. Morii and T. Yoshimura.
Personal Communication to A. E. Brouwer, 1993, 1994.

\bibitem{mull54}
D. E. Muller.
Application of {B}oolean algebra to switching circuit design and to
error detection.
{\em IEEE Trans. on Computers}, 3:6--12, 1954.

\bibitem{nord67}
A. W. Nordstrom and J. P. Robinson.
An optimum nonlinear code.
{\em Information and Control}, 11:613--616, 1967.

\bibitem{oste96}
P. R. J. \O sterg\aa rd and M. K. Kaikkonen.
New single-error correcting codes.
{\em Preprint}, 1995.

\bibitem{pire74}
P. Piret.
Good block codes derived from cyclic codes.
{\em Electronic Letters}, 10:391--392, 1974.

\bibitem{pire80}
P. Piret.
Good block codes of length 27 and 28.
{\em IEEE Trans. Inform. Theory}, 26:227, 1980.

\bibitem{ples95}
V. Pless and Z. Qian.
Cyclic codes and quadratic residue codes over {Z}$_4$.
{\em IEEE Trans. Inform. Theory}, 42(5):1594--1600, 1996.

\bibitem{plot60}
M. Plotkin.
Binary codes with specified minimum distances.
{\em IEEE Trans. Inform. Theory}, 6:445--450, 1960.

\bibitem{prep68}
F. P. Preparata.
A class of optimum nonlinear double-error-correcting codes.
{\em Info. and Control}, 13:378--400, 1968.

\bibitem{prom78}
G. Promhouse and S. E. Tavares.
The minimum distance of all binary cyclic codes of odd lengths from
66 to 99.
{\em IEEE Trans. Inform. Theory}, 24:438--442, 1978.


\bibitem{pul82}
C. L. M. van PUL.
On bounds on codes.
{\em  Master's Thesis}, Eindhoven University
of Technology, the Netherlands, 99 pp., 1982.


\bibitem{rodi}
F. Rodier.
On the spectra of the duals of binary {B}{C}{H} codes of designed
distance $\delta=9$.
{\em IEEE Trans. Inform. Theory}, 38(2):478--479, 1992.

\bibitem{roel82}
G. Roelofsen.
{\em On {G}oppa and Generalized {S}rivastava Codes}.
PhD thesis, Dept. Math. and Comp. Sci., Eindhoven Univ. of
Technology, the Netherlands, 1982.

\bibitem{roma83}
A. Romanov.
New binary codes with minimal distance 3.
{\em Problems of Information Transmission}, 19(3):101--102, 1983.

\bibitem{scho92}
D. Schomaker and M. Wirtz.
On binary cyclic codes of length from 101 to 127.
{\em IEEE Trans. Inform. Theory}, 38(3):516--518, 1992.

\bibitem{sema73}
N. Semakov, V. Zinoviev, and G. Zaitsev.
Interrelation of {P}reparata and {H}amming codes and extension of
{H}amming codes to new double-error-correcting codes.
In {\em Proc. 2nd Internat. Sympos. Inform. Theory, Tsakhadsor,
Armenia, 1971}, Budapest, 1973. Acad. Kiado.

\bibitem{shea}
J. B. Shearer.
Personal Communication (see A. E. Brouwer and T. Verhoeff, 1993),
1988, 1992.

\bibitem{shek89}
N. Shekhunova, S. Bezzateev, and E. Mironchikov.
A subclass of binary {G}oppa codes.
{\em Problems of Information Transmission}, 25(3):98--102, 1989.

%\bibitem{lits97}
%S.Litsyn.
% An updated table of best known binary codes.
% {\em Preprint}, 1997.

\bibitem{sloa72b}
N. J. A. Sloane.
A survey of constructive coding theory and a table of binary codes of
highest known rate.
{\em Discrete Mathematics}, 3:265--294, 1972.

\bibitem{sloa72a}
N. J. A. Sloane, S. M. Reddy, and C. L. Chen.
New binary codes.
{\em IEEE Trans. Inform. Theory}, 18:503--510, 1972.

\bibitem{sloa70b}
N. J. A. Sloane and J. J. Seidel.
A new family of nonlinear codes obtained from conference matrices.
{\em Annals N.Y. Acad. Sci.}, 175:363--365, 1970.

\bibitem{sloa70a}
N. J. A. Sloane and D. S. Whitehead.
A new family of single-error correcting codes.
{\em IEEE Trans. Inform. Theory}, 16:717--719, 1970.

\bibitem{sugi76}
Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa.
Further results on {G}oppa codes and their applications to
constructing efficient binary codes.
{\em IEEE Trans. Inform. Theory}, 22:518--526, 1976.

\bibitem{tolh86}
L. M. G. M. Tolhuizen.
New binary linear block codes.
{\em IEEE Trans. Inform. Theory}, 33(5):727--729, 1987.

\bibitem{tilb81}
H. C. A. van Tilborg.
The smallest length of binary 7-dimensional linear codes with
prescribed minimum distance.
{\em Discrete Mathematics}, 33:197--207, 1981.

\bibitem{verh87}
T. Verhoeff.
An updated table of minimum-distance bounds for binary linear codes.
{\em IEEE Trans. Inform. Theory}, 33(5):665--680, 1987.

\bibitem{wagn66}
T. J. Wagner.
A search technique for quasi-perfect codes.
{\em Info. and Control}, 9:94--99, 1966.

\bibitem{weij97}
S. Weijs.
PhD thesis, Dept. Math. and Comp. Sci., Eindhoven Univ. of
Technology, the Netherlands, 1997.

\bibitem{wise83}
J. Wiseman.
New binary codes constructed by an old technique.
{\em IEEE Trans. Inform. Theory}, 29(6):936--937, 1983.

\bibitem{zhi93}
Chen Zhi.
Personal Communication to A. E. Brouwer, 1993.

\bibitem{zino76}
V. Zinoviev.
Generalized cascade codes.
{\em Problems of Information Transmission}, 12(1):5--15, 1976.

\bibitem{zino82}
V. Zinoviev and S. Litsyn.
On methods of codes lengthening.
{\em Problems of Information Transmission}, 18(4):29--42, 1982.

\bibitem{zino84b}
V. Zinoviev and S. Litsyn.
On a general method of increasing the length of codes.
{\em Problems of Control and Information Theory}, 13(2):79--87, 1984.

\bibitem{zino84a}
V. Zinoviev and S. Litsyn.
Shortening of codes.
{\em Problems of Information Transmission}, 20(1):3--11, 1984.

\bibitem{zino84c}
V. Zinoviev and S. Litsyn.
A table of the best known codes.
Technical report, Institute for Problems of Information Transmission,
Moscow, 1984.

\bibitem{zino85}
V. Zinoviev and S. Litsyn.
On the general construction of codes shortening.
{\em Problems of Information Transmission}, 23(2):111--116, 1987.


Return to main table