Last modified on August 23, 1999
Table of the best currently known lower and upper bounds on the smallest size of a covering code
Below we present tables with the best known bounds on the size of binary covering codes of length up to 33
and covering radius up to 10. The table is based on Table 6.1 from
G.Cohen, I.Honkala, S.Litsyn, A.Lobstein "Covering Codes", Elsevier, 1997.
Please send any improvements to Simon Litsyn
Go to the table for R= 1,2,3 |
4,5,6 | 7,8,9,10
| Key to the table
Go to the table for R= 1,2,3 |
4,5,6 | 7,8,9,10
| Key to the table
Go to the table for R= 1,2,3 |
4,5,6 | 7,8,9,10
| Key to the table
Go to the table for R= 1,2,3 |
4,5,6 | 7,8,9,10
| Key to the table
Key to Table
All the references below are to theorems, tables and bibliography from
G.Cohen, I.Honkala, S.Litsyn, A.Lobstein "Covering Codes", Elsevier, 1997.
Lower bounds:
a sphere-covering bound
b Corollary 6.1.4
c Theorems 6.2.2, 6.2.5 and 6.2.6 and K(n+1,R)
> K(n,R)+1
d Theorem 6.3.8 and 6.4.4
e Theorem 6.3.14
f Stanton and Kalbfleisch [617]
g Theorem 6.4.5 or Honkala [312]
h Theorem 6.5.9 and (6.5.8), or Zhang [704]
i Zhang and Lo [705]
j Li and Chen [423]
k Habsieger [269] !
!>
m Habsieger [272]
n Honkala [321]
p Blass and Litsyn [85]
q Östergård and Weakley "Classification of binary covering codes", preprint,
1999
r Haas "Binary and ternary codes of covering radius one: several new lower
bounds", preprint, 1998
s Habsieger and Plagne "New lower bounds for covering codes", preprint, 1999
t Blass and Litsyn "Several new lower bounds on the size of codes with covering
radius one," IEEE Transactions on Information theory, vol.44, 5, 1998, pp.1998-2002
Upper bounds:
L linear code, see Table 7.1
P K(n+1,R) < 2 K(n,R)+1
Q amalgamated direct sum
R Theorems 3.4.3 and 3.4.5
S piecewise constant code (Section 3.3)
T matrix construction (Theorem 3.5.1) and local search:
| Hämäläinen, Honkala, Kaikkonen and Litsyn [275]: K(12,3)
< 29,
K(13,3)< 43;
| | Hämäläinen, Honkala, Litsyn and Östergård [276]:
K(16,3) < 193;
| | Östergård [516]: K(12,2) < 79;
| | Östergård [522]: K(14,1) < 1409;
| | Östergård and Hämäläinen [525]: K(13,1) < 737;
| | Exoo in [524], [525], Wille [688]:
K(12,1) < 381
| | Östergård and Kaikkonen [526]: K(18,2) < 2945,
K(17,3) < 321.
U blockwise direct sum:
| | Example 3.6.2, Theorems 4.5.4 and 4.5.6; or
[526]: K(15,2) < 385, K(23,5) < 641;
V from an Hadamard matrix [526]: K(15,4) < 33, K(26,9)
< 57;
W Wille [686], [687], [688]
X Wille [686], [687], Östergård [511]
Y Hämäläinen and Rankinen [278],
Östergård and Hämäläinen [525]
Go to the table for R= 1,2,3 |
4,5,6 | 7,8,9,10
| Key to the table
|