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A Strong Version of the Redundancy-Capacity 
Theorem of Universal Coding 
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Abstract-The capacity of the channel induced by a given class 
of sources is well known to be an attainable lower bound on the 
redundancy of universal codes with respect to this class, both 
in the minimax sense and in the Bayesian (maximin) sense. We 
show that this capacity is essentially a lower bound also in a 
stronger sense, that is, for “most” sources in the class. This result 
extends Rissanen’s lower bound for parametric families. We 
demonstrate the applicability of this result in several examples, 
e.g., parametric families with growing dimensionality, piecewise- 
fixed sources, arbitrarily varying sources, and noisy samples of 
learnable functions. Finally, we discuss implications of our results 
to statistical inference. 

Index Terms- Universal coding, minimax redundancy, mini- 
mum description length, channel capacity, arbitrarily varying 
sources, random coding; 

I. INTRODUCTION 

N the traditional probabilistic setting of the problem of I universal lossless source coding with respect to a given 
class of information sources, the objective is to design a single 
data compression scheme that performs well, in some sense, 
for every source in the class. The sources in this class are 
usually assumed to be indexed by some variable 6’ E A (e.g., 
a parameter vector). The performance of a given code, with a 
length function L( . ) ,  is judged on the basis of the redundancy 
function R,(L, e ) ,  which is defined as the difference between 
the expected code length of L( . )  with respect to a given source 
in the class Po and the nth-order entropy of Po normalized by 
the length n of the input vector to be encoded. 

There are several notions of universality that were first 
defined by Davisson 161. Two important ones are the maximin 
universality and the minima universality. In the former, there 
is a Bayesian approach: the universal encoder treats the index B 
as a random variable whose probability distribution is assumed 
worst in the sense of maximizing the minimum expected 
redundancy, i.e., the maximin redundancy. In the latter, the 
variable 0 is considered deterministic and the goal is to find a 
code that minimizes the worst case redundancy supe R,(L. B ) ,  
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namely, to achieve the minimax redundancy. (See also 121, 131, 
171, 191, [14], and others). 

Several years after Davisson’s paper [6] it was established, 
first by Gallager 11 11, and then independently by Davisson and 
Leon-Garcia [SI, Ryabko 1191, and others, that the minimax 
and the maximin redundancies are equivalent and that they 
are both equal to the capacity of the “channel” whose input 
is 6’ and whose output is the random source vector xn = 
(xl,. . . , z,) to be encoded, i.e., the channel defined by the 
set of conditional probability measures Po(z”), of xn given 
6’. This interesting result (which will be discussed in detail 
in Section II), has greatly contributed new insight into the 
theory of universal coding because it has been linked to the 
well-established theory of channel capacity. In particular, for 
parametric families of sources, that is, for the case where 6’ is a 
k-dimensional parameter vector, the minimax redundancy, and 
hence also the maximin redundancy, and the capacity of the 
corresponding channel, was shown to be given by 0.5k log nln 
plus higher order terms, under certain regularity conditions 
(see, e.g., [71). 

Rissanen 1161, [ 171 has strengthened the notion of univer- 
sality with respect to parametric families by showing that 
0 .5klognln is not only an achievable lower bound in the 
minimax sense or the Bayesian sense, but also a lower bound 
for “most” sources in the class. Here by “most” sources we 
mean every point 6’ except for a subset of points whose volume 
(Lebesgue measure) vanishes as n grows. Rissanen’s proof, 
however, relies heavily on the structure of the parametric 
family and essentially the main insight that can be gained 
from his work is that the redundancy is strongly related to 
the richness of the class, which in the parametric case is 
proportional to the dimension k of the parameter vector. 

The question that arises now, in the light of these facts, 
is whether Rissanen’s stronger notion of universality can be 
extended to the general case where the class of sources is 
not necessarily a parametric family. To make the question 
more concrete, what would be the analog measure of richness 
of a general class? Is it again the capacity of the channel 
corresponding to the given class of sources? 

It turns out, as we show in this paper, that generally 
speaking, the answer to the latter question is yes. Specifically, 
we show in Section I1 that the Shannon capacity of the 
induced channel is a lower bound on the redundancy that holds 
simultaneously for all sources in the class except for a subset 
of points whose probability, under the capacity-achieving 
probability measure, is vanishing as 71 tends to infinity. This 
means that the minimax redundancy and the lower bound 
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essentially coincide for most choices of 0. Weighting the index 
0 by the capacity-achieving prior makes sense for reasons that 
will be explained in Section 11. Moreover, if there exists an 
asymptotically capacity-achieving probability density that is 
positive almost everywhere (Lebesgue), as is normally the 
case in parametric families; the above result holds also for 
most sources in the Lebesgue measure sense and therefore 
Rissanen' s result for parametric families can be obtained as 
a special case. 

The proof of the bound in Section I1 is completely different 
and considerably simpler than Rissanen's proof [ 161. However, 
it does not allow a free choice of any prior, other than the 
capacity-achieving prior, that might be reasonable as well for 
weighting the set of points that violate the bound. In Section 
111, we provide another variant of our result which permits any 
prior on the index set, but then the random coding capacity 
of the induced channel rather than its Shannon capacity is 
obtained as a lower bound. Here the random coding capacity 
refers to the normalized logarithm of the maximum number 
M of randomly chosen points 01, . . . , OM (corresponding to a 
random channel code), which form, with high probability, a set 
of distinguishable sources Pel, . . . , Po,. Strictly speaking, this 
result is slightly weaker than the former because the random 
coding capacity might be smaller than the Shannon capacity 
in some cases (e.g., nonergodic channels). However, for most 
cases of practical interest in the context of universal coding (as 
we demonstrate in Section IV), the Shannon capacity and the 
random coding capacity are equivalent and hence the resulting 
bound is virtually as tight. We believe that another advantage 
of this random coding capacity result is that it may add 
some new insight about the relation between redundancy and 
capacity. Specifically, in the proof of this result the redundancy 
is linked directly, not only to the mathematical notion of 
capacity as the maximum mutual information, but also to 
the operational notion of capacity as the maximum attainable 
transmission rate that still enables reliable communication. 

We would like to point out that although we formulate our 
results in the context of universal coding, their interpretation 
need not be limited to this application alone. The broader 
significance is that of the universal probability assignment 
problem (see, e.g., [4], [18], [21]). Given a class of probability 
measures {Po, 0 E A}, we wish to find a single probability 
measure &(.) that is simultaneously "close" to every source 
in the class in the sense that the information divergence 
D(Pell&) is as small as possible for every 19. Our main result, 
therefore, is that the divergence must be essentially at least as 
large as the channel capacity for most sources. This viewpoint 
of universal probability assignment is more general in two 
respects. First, it allows other applications, such as universal 
gambling, learning, and prediction; and in general, it may 
suggest guidelines to the statistician about a reasonable choice 
of a statistical model in the presence of uncertainty (see, e.g., 
Bernard0 [I]). For example, when 0 is unknown, one may use 
the "representative" probability measure & to make inferences 
on the statistical behavior of future outcomes. Secondly, the 
probability assignment problem has a natural extension to the 
continuous alphabet case, unlike the lossless data compression 
problem. 

To summarize, in our view, the main contribution of this 
work is primarily the redundancy-capacity Theorem in its 
stronger setting for most sources. This result both strengthens 
the earlier minimax and maximin notions of universality, and 
at the same time, extends Rissanen's notion of universality to 
families of sources that are not necessarily parametric. 

11. THE SHANNON CAPACITY LOWER BOUND 

We first define some notation. Let 5" = (zl,...,~") 
denote a given string of symbols from a finite set A .  The 
space of n-sequences will be denoted by A". A random 
vector in A" will be denoted by X" = ( X I , . . .  , X n ) .  Let 
{Po, 19 E A} be a class of probability mass functions (PMF's) 
of n-sequences in A", where the index set A, along with an 
appropriate set of subsets of A (i.e., a sigma-field), form a 
measurable space. For instance, A can be either a finite, a 
countable, or an uncountable index set whose members are 
either numbers, vectors with fixed or variable dimensionality, 
functions, combinations of these entities, and so on. Let EB { .} 
denote the mathematical expectation with respect to Po and the 
nth-order entropy of Pe is defined as 

HB(X")  = -E6 log pe(x") (1) 

where logarithms throughout the sequel will be taken to the 
base 2 unless specified otherwise. A uniquely decipherable 
(UD) encoder for n-sequences maps each possible source 
string zn to a binary word whose length will be denoted by 
L(z") ,  where by Kraft's inequality, 

a--") < - 1. ( 2 )  
x" EA" 

The redundancy associated with a given encoder for n- 
sequences is defined as 

(3) 

For the sake of convenience, and essentially without any 
effect on the results, let us ignore the integer length constraint 
associated with the length function L( .) and allow any function 
from A" to the nonnegative reals such that the Kraft inequality 
is satisfied. The minimax redundancy is defined as 

(4) 

To define the maximin redundancy, let us assign a probability 
measure w(-) on A and let us define the mixture source 

1 R,(L,B) - [EeL(X")  n - HQ(x")]. 

R: = minsup R,(L, 19). 
BE.\ 

The average redundancy associated with a length function 
I,(.), is defined as 

(6) 

The minimum expected redundancy for a given w (which is 
attained by the ideal code length with respect to the mixture, 
L(z")  = -logP(z")) is defined as 

(7) &(w) = min RR(L, w). 
L 
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Finally, the maximin redundancy is the worst case minimum 
expected redundancy among all priors w, i.e. 

R, = sup R,(w). (8) 
W 

While the minimax redundancy has the simple interpretation 
of worst case redundancy, in the definition of maximin re- 
dundancy, one can think of the index variable as a random 
variable 0 governed by the worst prior w(.) in the sense of 
maximizing the minimum average redundancy. It is easy to see 
[6] that the maximin redundancy is identical to the normalized 
capacity of the channel defined by the conditional probability 
measures Pe(xn), i.e. 

1 
(9) 

Cn R, = - = SUP - Iw(@;  X") 
n w n  

Proofi For a given length function L and E > 0, con- 
sider the set B = (6' : Rn(L,6') < ( 1  - c)Cn/n}.  Since 
Rn(L,6') I: (1 - c)Cn/n for every 8 E B, afortiori the 
minimax redundancy within B cannot exceed (1 - c)Cn/n. 
By Assumption A, Gallager's redundancy-capacity Theorem 
[ 1 11 is applicable to the subset B,  and hence the unnormalized 
minimax redundancy within B is equal to the capacity CB of 
the channel from B to X", i.e., the highest mutual information 
that can be attained by a prior w that is supported by B. Thus 
the idea of the proof is to show that since C, 5 (1 -t)Cn, then 
B cannot weigh "too much." Let 2 denote a binary random 
variable that indicates the event 0 E B where the random 
variable 0 is governed by wt, namely, Pr { 2 = l} = w:(B). 
Since 2 + 0 + X" is a Markov chain, we have 

where Iw(O;  X") is the mutual information induced by the C" = Iw:, (0; X") = I ( 2 ;  X") + I ( @ ;  X"l2) 
joint measure w(8) . PB(x"), i.e. = I ( 2 ;  X") + I ( @ ;  X"I2 = 1) . Pr (2  = I} 

+ I ( O ; X " I Z = O ) . P r { Z = O } .  (14) I w ( @ ;  X") = I,, w(d6') 
However, I ( @ ;  X"I2 = 1) never exceeds CB, which in turn, 
is upper-bounded by (1 - E)C,, and I(@; X " I 2  = 0) cannot 
be larger than C, (by definition of Cn). Therefore, we have 

Pe (xn) 
. C ~ e ( z " ) l o g  ,(dp)pe,(,n). 

xnEAn B'EA 

(10) 

Gallager [ l l ]  was the first to show that if PB(z") is a 
measurable function of 8 for every x" then R; = R$ 
and hence they are both equal to Cn/n.  This means that 
the normalized capacity is an attainable lower bound on the 
redundancy both in the minimax sense and in the expected 
redundancy sense. We shall henceforth refer to the above 
assumption on the measurability of Po(zn) as Assumption A. 

Suppose that the capacity C, is attained by some prior wt. 
Our first main result strengthens the above results by stating 
that C n / n  is also essentially a lower bound on R,(L, 6') for all 
8 E A except for a subset of points whose probability under 
wt vanishes as n -+ 00 provided that C, -+ 00 (which is 
normally the case). The price paid for this stronger statement 
is that the lower bound is reduced by a factor 1 - E, so it 
becomes meaningful only asymptotically as n --+ 00 where an 
arbitrarily small E is allowed. 

Theorem 1: Under Assumption A, for any length function 
L of a UD code and every E > 0 

(1 1 )  
Cn &(L, 0) > (1 - E ) ;  

for all 8 E A except for points in a subset B c A where 

w;(B) 5 e .  2pECn (12) 

w;(B) being the probability of B under wt. 

probability measure Q, 
Another interpretation of Theorem 1 is that for every fixed 

for every 6' E A - B. This is true because, without loss 
of optimality, we may restrict ourselves to length functions 
that satisfy the Kraft inequality with equality, and hence 
Q(x") = 2TL("") is a probability measure. This in turn 
implies that n . R,(L, 6') D(PellQ). 

C" 5 I ( 2 ; X " )  + (1 - E)C". w;(B) + C" . (1 - W;(B)) 
I H ( 2 )  + ( 1  - E)C". w;(B) + C" . (1 - w;(B)) 

(15) 
where H ( 2 )  = h(wt(B)) is the entropy of 2, h(.)  be- 
ing the binary entropy function. A straightforward algebraic 
manipulation of (15) yields h(w;(B))/wE(B) 2 tCn, or, 
equivalently 

1 l-wt(B) 
log ~ + > EC,. (16) w;(B) w;(B) log 1 - w;(B) - 

The proof is completed by observing that the second term on 

Discussion: We would like to point out several aspects of 
the significance and the interpretation of Theorem 1. 

More general alphabets: Theorem 1 in the formulation 
of (13) extends to classes of sources with infinite alphabet 
(countable and uncountable) provided that C,, < 00 and that 
the class of sources is sufficiently regular so that redundancy- 
capacity Theorem [8], [ I l l ,  [19] remains valid. In general, 
the regularity conditions should permit the interchange of 
summation (or integration) over the infinite alphabet with 
derivatives and with limit operations. For the special case 
of parametric families of continuous alphabet sources, Clarke 
and Barron [4] have studied the redundancy-capacity Theorem 
under suitable regularity conditions on the smoothness of 
the class of probability density functions. This extension to 
infinite alphabet sources is important because Rissanen [ 161 
has also allowed infinite alphabets, and so Theorem 1 can 
now completely cover the setting studied by Rissanen. 

Priors that almost achieve capacity: In certain situations 
it might happen that there is no prior that attains the capacity. 
However, there must be a sequence of priors {wi}i>l (where 
the subscript n is omitted for brevity) such that for a given 
n, Iw, (O;X")  -+ C, as i + 00. In this case, the assertion 

the left-hand side of (16) is never larger than log e. 
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of Theorem 1 holds for every 6' outside a set B such that for 
every i 

Of course, if i is sufficiently large the numerator of the latter 
expression tends to unity, while the denominator tends to 
infinity provided that C, -+ cc. This upper bound on wi(B)  
is obtained from (15) by using the fact that H ( 2 )  5 1. 

In other situations, the capacity-achieving prior wz might 
be discrete for every finite n, although A is a continuum (see, 
e.g., the parametric case described in Example A below). In 
this case, Theorem 1, as stated, is not very meaningful because 
it does not rule out "bad" points that are not in the support 
of w;. It seems appropriate to restate Theorem 1 as follows: 
Suppose there exists afued  prior w with the property 

lim I w ( O ; X R ) / C ,  = I 
n-3o 

(e.g., Jeffrey's prior in the parametric case [4]). Then, similarly 
to the above argument, for every sufficiently large n the 
assertion of Theorem 1 holds for every point 6' outside a set 
B such that 

w ( B )  5 [I + Cn - I w ( @ ;  X " ) ] / [ t C n ] .  

Again, the last expression tends to zero if Cn ---f co. 
The uniform prior versus the capacity-achieving prior: 

While Rissanen's lower bound [16] holds for the parametric 
case for most sources in the uniform measure sense, our 
result holds in the sense of the capacity-achieving prior wz, 
or the asymptotically capacity-achieving Jeffrey's prior. At 
first glance, the Lebesgue measure formulation seems more 
plausible because there is no apparent reason to consider some 
parameter values as more important than others and hence, 
when scanning all points 6' E A and judging the performance 
of L at each point, every such point should weigh equally. 

A closer look, however, tells us that this approach is not 
always justified and in some cases it might yield misleading 
or meaningless results. Consider the following extreme ex- 
ample. The index set is A = { 1 ,2 ,  . . . , M 2 } ,  and suppose 
that the sources PI, P 2 ,  . . . , Pl~l can be distinguished with a 
vanishingly small probability of error, upon observing X " ,  
although M -+ co as n -+ co. The remaining sources 
P h l f l r  Pnf+2,. . . , P,,, are all copies of PM. In this case, C, 
is nearly log M + E, but if we choose the length function L 
of the Shannon code with respect to Pill, then the redundancy 
is never larger than 1/n << Cn/n for M ( M  - 1) sources out 
of the M 2  sources, i.e., most sources in the uniform counting 
sense. 

In contrast, if the indices { 1, . . . , M 2 }  are weighted by the 
capacity-achieving prior, which tends to assign a mass 1/M 
to all sources i = 1 ,2 . .  . . . M - 1 and a total mass of 1/M to 
the remaining sources, there is a natural adaptation to the fact 
that there are effectively only M different sources. The general 
conclusion is that this happens because the capacity-achieving 
prior assigns higher probability to regions of A where there 
is a better discrimination among the sources {Po} (and hence 
X" is more informative about e) ,  and smaller probabilities 

to "noisier" channel inputs where the sources of the class are 
closer to each other. In these noisier regions there is a weaker 
justification for treating the sources as distinct. 

Another advantage of the capacity-achieving prior is its 
invariance under one-to-one mappings of 6'. The assertion of 
Theorem 1 should not change under different representations 
of the index set. If q = f (0 )  then the capacity-achieving prior 
with respect to 6' induces on q a probability measure that attains 
the capacity of the channel from q to X n .  This requirement is 
not satisfied, in general, by the uniform prior: If 0 is a uniform 
random variable on [0,1], then O3 is, of course, not uniform. 

In spite of these facts, we shall demonstrate in Section IV 
that Rissanen's result with uniform weighting can be obtained 
as a special case of Theorem 1 .  This happens because in the 
parametric case, the density of w; is normally strictly positive 
almost everywhere (Lebesgue), so a small probability of B 
under w t  implies also a small probability under the uniform 
probability measure. 

Achievability: In many examples it is known that a good 
choice of a universal code is a mixture code, i.e. 

J A 

for some weight function w(. )  that integrates to unity. This 
turns out to be generally true in a fairly strong sense: For any 
universal code (i.e., independent of 6') L(z") there exists a 
mixture code L'(z") such that for every 6' E A, R,(L',O) 5 
R,(L, 19). This statement follows straightforwardly from cer- 
tain properties of projections of probability measures on con- 
vex sets [ 5 ] .  Specifically, assume that K(z")  = 2 - L ( z n )  is 
a probability measure of n-vectors. Now construct L1(zn)  = 
-logQ(z") where Q is the I-projection of 
of all possible mixtures 

w ( d B ) P 8 ( x " )  

i.e. 

Q = argminpEED(PI IK) 

and the minimizer is unique (if existent) 
convexity of E. Now, by [5, Theorem 2.21, 

K on the set E 

because of the 

D(PIIK0 2 D(PIIQ) + D(QIIK) 2 D(PIIQ) (17) 

for every P E E and hence, in particular, for every P = 
PO, 0 E A. But D(PellK) and D(PellQ) are exactly the 
unnormalized redundancies n . R,(L, 6' )  and n . R,(L', d ) ,  
respectively, and thus the claim follows. This means that when 
seeking universal codes, one can restrict himself to mixture 
codes without loss of optimality, virtually in any reasonable 
sense. Therefore, the minimax redundancy must take the form 

which is known under Assumption A to coincide with Cn. 
Consequently, the mixture code L* corresponding to the best 
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choice of w guarantees that Rn(L*, 8) 5 Cn/n for every 
0 E A, namely, the upper bound and lower bound meet for 
almost every 8. 

Partitioning: There are situations where it is natural to 
partition A into disjoint regions and to consider the perfor- 
mance in each region separately. In such cases, the lower 
bound on the redundancy might depend on 8 via the region to 
which 6' belongs. This is different from the usual lower bound 
for parametric families which is independent of 6'. We shall 
see that in the example of the arbitrarily varying source (AVS) 
there is a natural partitioning of the underlying state sequences 
(according to their types) and the bound depends explicitly on 
the underlying state sequence. 

111. THE RANDOM CODING CAPACITY LOWER BOUND 

In this section, we develop a variant of Theorem 1, in 
which the lower bound on the redundancy is given in terms 
of the random coding capacity; namely, the logarithm of the 
maximum number of randomly chosen points {Oi}  that form 
a set of distinguishable sources. This capacity depends on 
the probability distribution w(.) under which the points are 
chosen, and the bound holds for all 8 E A except for a set 
whose measure vanishes with respect to w(.). As mentioned 
in the Introduction, here, unlike in Theorem 1, w(.) can be any 
probability distribution, not necessarily the capacity-achieving 
distribution. 

The derivation of the bound follows from an analysis of a 
special case where A = { 1 , 2 ,  . . . , M }  and M is a finite integer 
being either fixed or growing with n. In other words, our class 
contains M known information sources PI, . . . , PM. Let fli 
denote the decision region associated with the ML rule, i.e. 

where ties are broken arbitrarily, and let the probability of 
error be defined as 

. M  

where the superscript c denotes the complementary set. Sim- 
ilarly to the notation in Section 11, R,(L, i) will denote the 
redundancy of L with respect to Pi. 

Theorem 2: For every t > 0, and every UD code 

for every 1 5 i 5 M except for a subset of indices B where 

IBI < P e l o g M + 2  - 
M - t l o g M  . 

The Theorem tells us that if M --f 00 (or just if M is very 
large) but still Pe --f 0 as n -+ 00, then the redundancy is 
essentially lower-bounded by n-' log M for all M sources 
except for a negligibly small fraction of them. Generally 
speaking, this is a special case of Theorem 1 above because 
the capacity of the induced channel is about l ogM when the 
sources are well distinguishable (small P,) and the uniform 
prior is nearly optimal, so the probability of B under the 
uniform prior (which is the same as IBI/M) is small. 

Proof of Theorem 2: For a uniform prior w = p on 
A = { 1, . . . , M }  we have by Fano's inequality 

I p ( O ; X " )  = H p ( 0 )  - HCL(OIX") 
2 (1 - P,)logM - h(Pe)  (23) 

where H p  (0) log M ,  and H p  (0 IX") are the unconditional 
and conditional entropies of 0, respectively. Now apply (15) 
with w* replaced by p. where C, is lower bounded by 
(1 - P,) log M - h(Pe) on the left-most side, and upper 
bounded by log M on the right-most side. This results in 

( l - P . ) l o g M - h ( P e )  I h ( p ( B ) ) + ( l - ~ ) ~ ( B ) l o g M  
+ (1 - p ( B ) )  log M.  (24) 

The proof is now completed by using the facts that h(p (B) )  5 
1 and h(Pe)  5 1. 

We next show how Theorem 2 can be used to derive the 
more general desired result. Let us return to the general class 
of information sources {PO, 8 E A} satisfying Assumption A. 
Let w(.) be an arbitrary probability measure on A and let 
01, . . . , 0~ denote M independent random points selected 
from A under the probability measure w. Suppose, without 
loss of generality, that 01 has generated X". Let P e ( M ,  n, w) 
denote the average error probability; namely, the probability 
that 01, . . . , O M  and X" are such that for some 2 I i 5 M ,  
Pe, (X") Pel ( X n ) .  In the mathematical language, 

Now let M ( n ,  6, w) be the largest integer M such that 

P e ( M , n , w )  I 6 
and finally, define the random coding 6-capacity with 
to w as 

A 
CR(71,6, w) = log M ( n ,  6,w). 

Theorem 3: Let {Po, 8 E A} satisfy Assumption A 
w be any probability measure on A. Then for 
0 < 6 < 1, and every UD code 

for every 8 E A except for a subset of points B' 

SCR(n, 6, w) + 2 
tCR(n, 6, w) ' 

w(B') I 

every 

E A such that 

(29) 

Equation (29) is of course meaningful if 6 is kept very 
small compared to E and if C R ( ~ ,  6, w) + 00. The tightest 
lower bound results from optimization of w in the sense 
of maximizing C R ( ~ ,  6, w). The resulting maximum denoted 
C R ( ~ ,  S), and henceforth referred to as the random coding 6- 
capacity, is essentially the lower bound for every 6' except for 
a set whose probability under the optimal prior is small. This 
result is in the same spirit as in Theorem 1. 
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Proof of Theorem 3: The idea of the proof is the follow- 
ing. Consider a two-step procedure of randomly selecting a 
point in .A, where first, we select M independent random 
points 01, . . . , 0h.l under w(.), and then, we randomly select 
an index 1 5 i 5 M of 8i with equal probabilities. On one 
hand, this is obviously equivalent to a direct random selection 
of 0, under w(.) .  On the other hand, under the above described 
two-step random selection, it will be convenient to show (using 
the result of Theorem 2), that the lower bound holds for most 
choices of 0,. 

For a given set of M = M ( n ,  6, w) randomly chosen points 
01, . . . ,@hf, let P e ( O r )  denote the error probability associ- 
ated with optimal hypothesis testing (channel decoding) among 
the M sources PO,, . . . , PO, similarly as in (20). By Theorem 
2,  the redundancy associated with each of the resulting sources 
{PO,} is lower-bounded by (1 - t ) C ~ ( n ,  6, w) /n  except for 
a fraction of sources less than 

Pe(O: f )cR(n ,  6, w) + 2 
tCR(n, 61 w) 

Since w(B ' )  is identical to the average probability of the 
exceptional indices, we have 

where the second inequality follows since 

E{Pe(@?)} P , (M,n ,w)  5 5 

by definition of M ( n ,  S. w ) .  This completes the proof of 
Theorem 3. 

Bounds for most sources in the uniform measure sense: 
Since the measure w in Theorem 3 is arbitrary, one can obtain 
a lower bound in the uniform measure sense and thereby 
extend more directly Rissanen's result [ 161. This can be done 
by redefining C R ( ~ ,  6) as the supremum of C R ( ~ ,  6, w) over 
all priors w whose densities are bounded away from zero, 
i.e., all w such that dwldp 2 A > 0, where dwldp is the 
Radon-Nykodim derivative of w with respect to the uniform 
probability measure p. In this case, Theorem 3 holds, with 
C ~ ( n , 6 , w )  as a lower bound, outside B' with 

Several comments about Theorem 3 are in order. 

6cR(n. 6, TU) + 2 
pL(B') tAC~(rr. 6, w) 

However, the restriction to w's that are uniformly bounded 
away from zero might result in a strictly smaller random 
coding capacity. 

More general random coding distributions: The proof of 
Theorem 3 would continue to hold if rather than using M inde- 
pendent copies of a random variable governed by w, one would 
use any joint probability measure of (01, . . . , OM) with the 
property that the mixture of its marginals, M-' E,"=, w,(.), 
agrees with w(.). In this case, one should modify accordingly 
the expression for P,(M, n, w )  instead of using (25), which 
has been derived under the assumption that (0,) are drawn 

independently. For instance, let A = [0,1] and consider the 
grid 8, = Z/M, z = 0. .  . . , M -  1. Now, let 0, = 8,+a, where 
a is uniformly distributed in [0, l/M]. Then, the mixture 
of marginals of (0,) is uniform on [0,1]. This might be 
useful when the evaluation of the capacity is easier with this 
constellation than with that of Theorem 3 (see Examples A 
and B in the next section). In spite of this fact, we preferred 
to formulate Theorem 3 with independent selections of { O,} 
because this is in the spirit of conventional random coding 
techniques. 

Lower bounds on M ( n ,  6, w):  In some cases it will be 
easier to use Theorem 3 by computing a lower bound on 
M ( n ,  6, w) rather than trying to compute it precisely. This can 
be done by using upper bounds on pe(M,  n, w). One simple 
upper bound is the union bound associated with the painvise 
error probabilities PO, {PO, ( X n )  2 PO, ( X n ) } .  Specifically, 
by the union bound the average probability of error defined in 
(25) is upper bounded by 

Pe(M, 71, w )  I ( M  - 1) . W ( ~ Q )  

. P~(T")w{Q'  : Pef(zn) 2 Pe(xn)} 
I" E '4" 

(31) 
and so 

M ( n ,  6, w )  
6 ' '+ J w ( d ~ )  ~ 8 ( z " ) w { ~ '  : P O ( ( X ~ )  2 pe(zn)} 

1 I n  €An 

(32) 
Thus C R ( ~ ,  6, w) is essentially lower-bounded by the negative 
logarithm of the average painvise error probability. Another 
bound (which can be combined with the first one) results from 
replacing the ML decision rule by a suboptimal decision rule 
that is easier to analyze. 

IV. EXAMPLES 

In this section we demonstrate the applicability of our results 
in several specific examples of classes of sources. We start 
from the case where {PO, B E A} is a parametric family 
and obtain Rissanen's lower bound [I61 as a special case. 
Later on, we study two important cases where the model class 
attempts to deal with nonstationarity. One is the case of an 
abrupt change in the statistics of the source (i.e., piecewise- 
fixed sources), and the other is the AVS. Finally, we discuss 
the problem of universal coding of noisy versions of outputs 
of binary functions given the inputs as side information, and 
relate the necessary and sufficient conditions for the existence 
of universal codes to the learnability of these binary functions. 

A.  Parametric Families 

Let {PO, 8 E A} be a parametric family, where A is a 
compact subset of the k-dimensional Euclidean space. For 
parametric families of memoryless sources Clarke and Barron 
[4] have derived the following refined expression for the 
unnormalized redundancy: n . R, (w.  8) of the mixture code 
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with respect to w at 0. - + o(1) (33) 
k n  
2 27re dw( B)/dB 

n ‘ R,(w, 0)  = - log - + log 

where the o(1) term is uniformly small on compact subsets 
interior to A [4], and I ( 0 )  is the one-sample Fisher information 
matrix given by 

I ( 0 )  = E(?[dlogPe(z)/dB]2. (34) 

Averaging with respect to w yields 

k n  
n . R,(w) = Iw(O; X ” )  = - log ~ 

2 27re 

There is no closed-form expression for the exact maximizer 
of (35) for any finite n. However, by Jensen’s inequality the 

to that of the proof of Theorem 3, if we show that Theorem 
2 is applicable to ( 0 1 :  . . . , O M }  for every q, then this will 
imply that the lower bound holds for most points in A in 
the Lebesgue measure sense. This, in tum, is immediate if 
we consider the suboptimal decision rule which picks the 
ith source if 0 falls in the cube whose center is 0;. Since 
this rule is suboptimal its average error probability is greater 
than the average error probability associated with the ML rule 
P,(M,n ,w) ,  but smaller than € ( e )  for every q, as observed 
from (37). However, € ( e )  in tum, can be made smaller than 
6 if c is sufficiently large. Since the number of grid points is 
proportional to nkI2 the desired result follows. 

Another advantage of the above technique is that it is easy to 
generalize to some parametric models where the dimension of 
the parameter vector I C ,  grows with n. Consider, for example, 
a source whose output results from very fine quantization of 
the process 

middle term (which depends strongly on w )  is maximized for k ,  

2,  = C U , ~ , ( r ) + w , , L = l : ” , n  (38) 
Jzqq ,=1 

(36) - - 
dw*(0)  

where I C ,  5 n, { 4, (.)}yZl is a complete set of orthonormal 
d@ s J-dO’ 

6°C 1 

which is known as Jeffrey’s prior. It is well known (see, 
e.g., [4]) that Jeffrey’s prior asymptotically attains capacity 
in the sense of the second comment after Theorem 1 (second 
paragraph). A point to observe is that dw*/dO is a monotonic 
function of det I ( 0 )  which is in agreement with the intuition 
that w* puts more mass on values of 0 that are easier to 
estimate (see, Discussion of Section 11). However, if det I (B)  
is positive almost everywhere (Lebesgue), then a small proba- 
bility of B under w* (according to Theorem 1) implies a small 
probability under the uniform measure as stated in [ 161. 

The limitation of the above derivation of Clarke and Barron, 
however, is that the required smoothness conditions about Po 
are considerably demanding. In particular, these conditions are 
more restrictive than Rissanen’s condition, which requires the 
existence of an estimator d = d(xn) for 8, such that for every 
0 E A, every c > 0 and every n 2 n ~ ( c )  

sequences 

and {w;} are i.i.d zero-mean Gaussian random variables with 
variance 0’. Here the ML decision rule picks the source 
(parameter vector) that minimizes 

which is equivalent to the selection of the source that mini- 
mizes 

where 
where 1 1  . 1 1  denotes the Euclidean norm (or the maximal n 

component norm) and € ( e )  + 0 as c -+ x. 6. J - - r l - l  CZi4i(j). 
We next show that the existence of such an estimator implies i=l 

that for the given parametric family, the maximum number of 
distinguishable randomly chosen points in A is proportional 
to nk/’ and hence this condition is weaker than Rissanen’s 

By a derivation similar to the above, it is not difficult to show 
that for every S > 0 the leading term of C R ( ~ ,  6, p)  is given by 

condition for the validity of the lower bound 0.5k log 71/72. 

In this case it is easier to apply Theorem 3 by using uniform 
grids with random offsets 01. . . . . O M ,  rather than by indepen- 
dent random selection of the A4 points (see second comment 
after Theorem 3). Specifically, let G,, = {01 . .  . . .Bn r }  be 
the grid of k-dimensional vectors 0, E A whose compo- 
nents are all integer multiples of 2c/f i .  In our random set 
( 0 1 ,  . . . , O1ti} let every 0, be given by 0,fq E A where q is a 
random vector uniformly distributed within the k-dimensional 
cube all sides of which are 2c/f i .  By an argument similar 

-log l + - . -  . 
kn 2 ( z kl,) (39) 

This agrees with the well-known results in two extreme cases: 
If k ,  = k is fixed, this expression is dominated by 0.5klogn 
as before, and if k,  = an for some fixed 0 < a 5 1, we 
get (as expected) the capacity of a discrete-time band-limited 
Gaussian channel whose bandwidth is a fraction a of the entire 
Nyquist bandwidth. Thus (39) bridges these two extremes for 
any sublinear growth rate of IC,. 
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B. Piecewise-Fixed Sources 

Let Q1 and Q2 be two given distinct probability assignments 

(40) 

where xj denotes the substring (xi,. . . , x3) for i 5 j and the 
empty string for i > j .  The probability of the empty string 
(under both Q1 and Q2) is defined as unity. 

This is a very simple model of a single abrupt change from 
one probability law to another, where the two (stationary) 
segments xi and xy+l are assumed independent. The boundary 
point i is assumed unknown to both encoder and decoder. 
We shall show that if Q1 and Q2 are sufficiently "distant" 
the capacity associated with the class {Pi, i  = 0,1, . . . ,  n}  
behaves like logn. 

More precisely, assume that Q1 and Q2 are such that for 
every t > 0, Ii - j l  > n' implies that 

on data sequences, and for i = 0,1, . . . , n let us define 

Pi(2") = Q i ( x i )  . Qz(xr++1) 

Pz{x, : Pj(Zn) > Pz(z")} = o( l /n) .  

(For instance, if Q1 and Q2 are memoryless sources then 
Pi{xn : Pj(x") > Pi(x")} decays exponentially with li - j l  
and the assumption definitely holds). Again, in this example, 
it is easier to estimate the capacity by using its operational 
significance rather than to calculate the mutual information. 
We shall use again the idea of a random grid as in Example 
A. 

Fix t > 0 and select M = nl-' integers i j  = 1 + ( j  - 1) .ne, 
j = 1, . . . , M ,  where 1 is uniformly distributed on the integers 
( l , . . . , n ' }  . Since { i l , . . . . i ~ }  are such that l i j  - i k l  2 ne 
for every j # I C ,  then by the union bound, the probability of 
error is less than 

( M  - 1) max Pi, {Pi, (z?) > P,, (xn)} 
{ k : I i - z , l > n ~ }  

5 n Inax Pi,{Pi,(x") > Pi,(xn)} (41) 
{ k : l i k  - 2 ,  I>"'} 

which vanishes with n (independently of 1) under the above 
assumption. Therefore, C, > (1 - t) log n. A similar result 
has been derived in [ 151 by using a more direct extension of 
Rissanen's bound and by parametrizing the transition point 
i as i = In . aJ where N E ( 0 , l ) .  The bound was then 
shown to hold for almost every a. The bound is achievable 
by an encoder that seeks the best partitioning of the data 
in the sense of minimizing the total Shannon code length 
[-logQl(x";]+[-10gQ2(x~+~)] and adds logn bits to encode 
the best choice of i .  

C. Arbitrarily Varying Sources 

The memoryless arbitrarily varying source (AVS) is defined 
by 

n 

t = l  

where sn = (s l , .  . . , s,). The variable st ,  which is referred to 
as the stute of the source at time t ,  is assumed to take on values 
in some finite set S. If we scan all possible state sequences sn,  
we can view the AVS as a class of sources indexed by 6' = sn 

and the index set A is S". Thus the problem of universal 
coding for the AVS is that of efficient data compression in the 
absence of knowledge about the underlying state sequence. 

The AVS can be viewed also as a memoryless channel with 
transition probabilities { ~ ( Z I S ) } ~ ~ , + ~ S ,  where the input is sn 
and the output is IC". Therefore, the notion of capacity is more 
natural in this example than in the other examples. In order 
to use Theorem 1 in a meaningful manner in this example 
let us partition the state sequence space S" into equivalence 
classes defined by the compositions (types) of the different 
state sequences. The type T(s" )  of a state sequence S" is 
the set of all state sequences on E S" for which the number 
of occurrences of every element s E S in is equal to the 
number of occurrences of the same element in sn. The relative 
frequency of s in sn will be denoted by i ( s ) .  

Now, if we treat every given type T(s" )  as a separate 
index set, the best prior w* is the uniform distribution ,LL on 
T (  sn) which asymptotically achieves the per-symbol mutual 
information 

where the dependence on sn expresses the fact that q depends 
on sn. Thus asymptotically C,/n is never less than I ( s n )  and 
hence, by Theorem 1, the normalized redundancy is lower- 
bounded by (1 - t)I(sn) for almost every state sequence in 
T ( s n ) .  This bound can be shown to be achievable for every 
S" by a mixture code (see [lo]). 

D. Noisy Samples of Learnable Functions 

An interesting special case of the AVS occurs when the 
the state variable s, is given by some binary function f of 
another variable z,  E 2, i.e., s, = f ( z , ) .  For simplicity, let us 
assume that the channel corresponding to p(xJs) is additive, 
namely, x, = f (zz )+w2,  where w, is a binary random variable 
with Pr(w, = 1) = p and the summation is modulo 2. Here 
21,. . . , z,  is some fixed sequence and the index set A is a 
certain class F of allowable binary functions f .  

This model has been widely studied in the context of 
computational learning theory where the problem is to learn 
a function f E F given a sequence of pairs { ( z , ,  x2)}~z l  that 
serve as examples of inputs and noisy outputs of this function, 
and learnability means the ability to predict reasonably well 
(based on past examples) the next output xn+l upon seeing 
the next input zn+l. One way to assess the predictability of 
future outcomes is to measure their compressibility (see, e.g., 

It turns out that there is a relation between the learnability 
of functions in F and the existence of universal codes for 
the noisy labels { x 2 }  given { z , }  as side information. This 
happens because both these properties are connected to the 
capacity (or the Vapnik-Chervonenkis (VC) dimension) of F 
which is defined as the length n of the longest existing input 
sequence zl ,  . . . , z ,  for which all 2" possible binary sequences 
( f (z l ) ,  . . . , f(z,)) are obtained when f scans F .  

Following [20] the maximum number of binary sequences 
( f ( z 1 ) .  . . . , f (z , ) }  that can be obtained by a class F whose 

[121, ~ 3 1 ) .  
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VC dimension is d, is 2” for n 5 d and upper bounded by 

d 

n ! / [ k ! ( n  - k)!] = O(nd) 
k=O 

for n > d. Thus following Example C, the best attainable 
normalized redundancy Cn/n is given by 1 - h ( p )  for n < d, 
and upper-bounded by (1 + o(l))dlogn/n for n > d. In 
other words, universal coding (in the sense of approaching 
the entropy) is possible if and only if the VC dimension of F 
is finite, and if this is the case the least attainable redundancy is 
essentially never larger than d log n/n. For many parametric 
families the VC dimension d agrees with the dimension k 
of the parameter vector. Nevertheless, the upper bound on 
the redundancy is in general given by the factor d and not 
d/2 (as opposed to Example A) because here there are no 
assumptions on the smoothness of the parametric family. For 
instance, Example B corresponds to a class of step functions 
{ f }  parametrized by the location a of the transition, so the VC 
dimension is d = 1, and the upper bound is tight in this case. 
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