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Parameter Estimation of Superimposed Signals Using 
the EM Algorithm 

MEIR FEDER AND EHUD WEINSTEIN 

Abstract-We develop a computationally efficient algorithm for pa- 
rameter estimation of superimposed signals based on the EM algo- 
rithm. The idea is to decompose the observed data into their signal 
components and then to estimate the parameters of each signal com- 
ponent separately. The algorithm iterates back and forth, using the 
current parameter estimates to decompose the observed data better 
and thus increase the likelihood of the next parameter estimates. The 
application of the algorithm to the multipath time delay and to the 
multiple source location estimation problems is considered. 

I. INTRODUCTION 
HE general problem of interest here may be charac- 
terized using the following model: 

K 
T 

y ( t )  = S k ( t ;  0,) -k n ( t )  
k =  1 

where 0, are the vector unknown parameters associated 
with the kth signal component and n ( t )  stands for the 
additive noise. This model covers a wide range of prob- 
lems involving superimposed signals. The specific prob- 
lem we have in mind is multiple source location estima- 
tion; in that case, ( t ;  0,) are the array signals observed 
from the kth source, and 0 k  are the unknown source lo- 
cation parameters. 

In this paper, we develop a computationally efficient 
scheme for the joint estimation of e , ,  - , OK based 
on the Estimate Maximize (EM) algorithm. The idea is to 
decompose the observed data y ( t )  into its signal compo- 
nents and then estimate the parameters of each signal 
component separately. The algorithm iterates back and 
forth, using the current parameter estimates to decompose 
the observed data better and thus improve the next param- 
eter estimates. Under the stated regularity conditions, the 
algorithm converges to a stationary point of the likelihood 
function where each iteration cycle increases the likeli- 
hood of the estimated parameters. 
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The results developed in this paper can be viewed as a 
generalization of the results presented by the authors in 
[l] and [2]. We note that the idea of iteratively decom- 
posing the observed signal and estimating the parameters 
of each signal component separately has been previously 
proposed in several applications (e.g., [3]-[5]). How- 
ever, in most cases, the approach is ad hoc, and there is 
no proof of convergence of the algorithm. As will be 
shown, the EM method suggests a very specific way of 
decomposing the observed signals, leading to a numeri- 
cally as well as statistically stable algorithm. 

The paper is organized as follows. In Section I1 the EM 
method is represented following the derivation in [6]. In 
Section I11 the EM method is applied to the parameter 
estimation of superimposed signals, and the basic algo- 
rithm is developed for deterministic (known) signals and 
for stationary Gaussian signals. In Section IV the algo- 
rithm is applied to the multipath time-delay estimation, in 
Section V the algorithm is applied to the multiple source 
angle of arrival estimation, and in Section VI we sum- 
marize the results. 

11. MAXIMUM LIKELIHOOD ESTIMATION V I A  THE EM 
ALGORITHM 

The EM algorithm, developed in [6], is a general 
method for solving maximum likelihood (ML) estimation 
problems given incomplete data. The considerations lead- 
ing to the EM algorithm are given below. 

Let Y denote the observed (incomplete) data, possess- 
ing the probability densityfy( y; 0 )  indexed by the param- 
eter vector 0 E 8 C R K ,  and let X denote the “complete” 
data, related to Y by 

H(X) = Y (1 )  

where H (  ) is a noninvertible (many-to-one) transfor- 
mation. Express densities 

f a x ;  0 )  = f x / Y = y ( x ;  0 )  * f r (y ;  0)  v H ( x )  = Y 

( 2 )  
where f x ( x ;  0 )  is the probability density associated with 
X and f X l y = y  (x; 0 )  is the conditional probability density 
of X given Y = y. Taking the logarithm on both sides of 
(2) 9 

lOgfy(Y; 0 )  = logfx(x; 0)  - logfx/Y=y(x; 0 ) .  ( 3 )  
Taking the conditional expectation given Y = y at a 
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parameter value e’, 
logfy(y; 0)  = E{logfx(x; e ) / Y  = Y; e’} 

- E{logfx/y=y(x; e ) / Y  = y; O r } .  

( 4 )  

L ( e )  = logfy(Y; e >  ( 5 )  

u(e, e l )  = E {  iogfx(x; O ) / Y  = Y; o r }  ( 6 )  

v(e, e!) = E{ iogfx/y=y(x; e ) /y  = Y; e r  } .  ( 7 )  

~ ( e )  = u(e, er )  - q e ,  o r ) .  ( 8 )  

Define, for convenience, 

and 

With these definitions, (4) reads 

We identify L ( 8 ), the log-likelihood of the observed 

cannot be found, and thus the computation of U ( e ,  O r )  
at each iteration cycle generally requires multiple integra- 
tion. Appendix A has importance of its own since it cov- 
ers a wide range of problems. 

We note that the EM algorithm is not uniquely speci- 
fied. The transformation H (  ) relating X to Y can be any 
noninvertible transformation. Obviously, there are many 
possible “complete” data specifications X that will gen- 
erate the observed data Y .  However, the choice of “com- 
plete” data may critically affect the complexity and the 
rate of convergence of the algorithm, and the unfortunate 
choice of “complete” data may yield a completely use- 
less algorithm. 

In the next section, it will be shown that for the class 
of problems involving superimposed signals, there is a 
natural choice of “complete” data, leading to a surpris- 
ingly simple algorithm to extract the ML parameter esti- 
mates. 

data, as the function we want to maximize. Invoking the 
Jensen’s inequality, 

(9)  

111. PARAMETER ESTIMATION OF SUPERIMPOSED 
SIGNALS IN NOISE 

The general problem of interest here may be character- v(e, e l )  5 v(er, e r ) .  
Hence, if ized using the following model: 

u(e, e r )  > u(w, e r )  
then 

~ ( e )  > q w ) .  (10) 

The relation in (10) forms the basis for the EM algo- 
rithm. The algorithm starts with an arbitrary initial guess 
6“’, and denote by the current estimate of 8 after n 
iterations of the algorithm. Then, the next iteration cycle 
can be described in two steps, as follows: 

E step: Compute 

u(e, 6 ( n ) ) .  (11) 

(12)  

M step: 

Max U ( 0 ,  6‘”)) + 6(”+’) .  
0 

If U ( 0 ,  e‘) is continuous in both 8 and O r ,  the algo- 
rithm converges to a stationary point of the log-likelihood 
function [7] where the maximization in (12) ensures that 
each iteration cycle increases the likelihood. Of course, 
as in the case of all “hill climbing” algorithms, the con- 
vergence point may not be the global maximum of the 
likelihood function, and thus several starting points may 
be needed. The rate of convergence of the algorithm is 
exponential, depending on the fraction of the covariance 
of the “complete” data that can be predicted using the 
observed (incomplete) data [6], [8]. If that fraction is 
small, the rate of convergence tends to be slow, in which 
case one could use standard numerical methods to accel- 
erate the algorithm. 

In the Appendix we derive a closed-form analytical 
expression for U (  8, O r )  for the case where X and Y are 
jointly Gaussian, related by a linear transformation. We 
note that in general a closed-form analytical expression 

K 

where Ok are the vector unknown parameters associated 
with the kth signal component and n ( t )  denotes the ad- 
ditive noise. This model covers a wide range of problems 
arising in array and signal processing, including multitone 
frequency estimation, multipath time-delay estimation, 
and multiple source location estimation. 

Given observations of y ( t ) ,  we want to find the ML 
estimate of e l ,  e*, * - * , 0 K  jointly. We shall now con- 
sider the cases of deterministic (known) signals and sto- 
chastic Gaussian signals separately. 

A. Deterministic Signals 
Consider the model of (13) under the following as- 

sumptions. 
1) Thes,( t ;  Q k ) ,  k = 1, 2,  * - , K, are conditionally 

known up to the vector parameters O k .  
2) The n ( t )  are vector zero-mean white Gaussian pro- 

cesses whose covariance matrix is E { n ( t )  n* ( a) } = Q 

Under these assumptions, the log-likelihood function is 
- 6 ( t  - a). 

given by (e.g., see [9]) 

K 

Q-’[y( t )  - k =  1 ~ d t ;  e,)] dt (14) 

where = 1 if n ( t )  is real-valued, X = 2 if n ( t )  is com- 
plex-valued, and c is a normalizing constant. In the case 
of discrete-time observations, L ( 8 )  is still given by (14) 
where the integral is replaced by the sum over all discrete 
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points t E T. Thus, to obtain the ML estimate of the var- 
ious Ok’s, one therefore must solve 

In that case, the log-likelihood of the complete data x( t)  
is 

K * A - ’ [ x ( t )  - s ( t ;  e ) ]  dt 
Q-’[Y(t) - C S k ( t ;  e k ) ]  d t ] .  (15) 

= d + s * ( t ;  e )  A - ’ x ( t )  dt k- I 

2 T  This is a complicated multiparameter optimization 
problem. Of course, brute force can always be used to 

coarse grid to locate roughly the global minimum and then 

+ l x*(t) A - ’ s ( t ;  e )  dt solve the problem, evaluating the objective function on a 2 T  

applying the Gauss method, the Newton-Raphson, or - 1 J s* ( t ;  e,  A - ~ s ( t ;  e )  dt ( 2 2 )  
some other gradient-search iterative algorithm. However, 2 T  
when applied to the Problem at hand, these methods tend where d contains all the terms that are independent of 0. 

s (t; 0 )  and A are the mean and the covariance matrix of 
x(t) given, respectively, by 

to be computationally complex and time consuming. 
Having the EM algorithm in mind, we want to simplify 

the computations involved. To apply the algorithm to the 
problem- at hand, the first step is io specify the “com- 
plete” data. A natural choice for the “complete” data 
x ( t )  is obtained by decomposing the observed data y ( 1 )  
into its signal components; that is, 

1 . 1  \ I  

where 

Xk(t) = sk(t; e k )  + nk(t) (17) 

where the s(t) are obtained by arbitrarily decomposing 
the total noise n ( t )  into the K components, so that 

where the notation in (24)  indicates that A is a block-di- 
agonal matrix. Taking the conditional expectation of (22) 
given y ( t ) at a parameter value O f ,  

K 

From (13), (17), and (18), the relation between the 
“complete” data x ( t )  and the incomplete data y ( t )  is 
given by 

K 

y ( t )  = C xk(t) = H ’ X(t)  (19) k =  1 

where 

L ( 2 0 )  H = [ Z  Z . * * Z ] .  
v 

Kterms 

We shall find it most convenient to let the nk( t)  De sta- 
tistically independent, zero-mean, and Gaussian with the 
covariance matrix E{ nk(t) nk*(u)} = QkS(t - a) where 
Qk = &Q and the &’S are arbitrary real-valued scalars 
satisfying 

s*( t ;  e)  A - ’ i ( t )  dt 

* A - ’ [ i ( t )  - s ( t ;  e)]  dt ( 2 5 )  

where 

f ( t )  = E{x(t)/y(t); O f }  ( 2 6 )  

and e is a constant independent of 8. Since x ( t )  and y ( t )  
are jointly Gaussian, related by the linear transformation 
y ( t )  = Hx(t), then using (A7) of the Appendix, 
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Substituting (23) and (24) into (25) and following 
straightforward matrix manipulations, we obtain 

X K  w e ,  e') = e - ,zl S, [w - sk(t ;  e,)] * 

Q i ' [ % ( t )  - s , ( t ;  e , ) ]  dt (28) 
where the a,( t )  are the components of P ( t )  given by 

i , ( t )  = s , ( t ;  ett) + O , [ y ( t )  - k =  i 1 S k ( t ;  e;)]. (29) 

Observing that the maximization of V ( 0 ,  e')  with re- 
spect to 8 is equivalent to the minimization of each of the 
terms in the k sum of (28) separately, the EM algorithm 
assumes the following form. 

Estep: Fork  = 1, 2,  - , K ,  compute 

i :" ' ( t )  = s, ( t ;  ep) + 0, [ y ( t )  - ,Il c s , ( t ;  e r n ) ) ] .  

( 30 )  

Mstep:  Fork  = 1, 2,  * - * 7 K ,  

min j [ i f ' ( t )  - sk(t; e , ) ]*  
e k  T 

Q - ' [ i r ' ( t )  - sk( t ;  e,)] dt -+ @ F + l ' .  (31) 
We observe that @p+" is, in fact, the ML estimate of 

8, based on a:"' ( t ) .  The algorithm is illustrated in Fig. 1 .  
We note that in the case of discrete observations, the in- 
tegral in (31) is substituted by the sum over all points t E 
T. 

The most striking feature of the algorithm is that it de- 
couples the complicated multiparameter optimization into 
K separate ML optimizations. Hence, the complexity of 
the algorithm is essentially unaffected by the assumed 
number of signal components. As K increases, we have 
to increase the number of ML processors in parallel; how- 
ever, each ML processor is maximized separately. Since 
the algorithm is based on the EM method, each iteration 
cycle increases the likelihood until convergence is accom- 
plished. 

We note that the 0,'s must satisfy the constraint stated 
in (21), but otherwise they are arbitrary free variables in 
the algorithm. The 0,'s can be used to control the rate of 
convergence of the algorithm and possibly to avoid the 
convergence to an unwanted stationary point of the algo- 
rithm. These considerations are currently under investi- 
gation. 

B. Gaussian Signals 
Consider the model of (13) under the following as- 

sumptions. 
1) n ( t )  and s , ( t ;  e,), k = 1, 2,  * - , K ,  are mutually 

uncorrelated, wide-sense stationary (WSS), zero-mean 
Gaussian vector stochastic processes whose spectral den- 
sity matrices areN(w) andSk(w; e,), k = 1, 2, * - * , K ,  
respectively. 

- 
, , " + / I  

4:"' fil") 
81 

Fig. 1 .  The EM algorithm for deterministic (known) signals. 

2) The observation interval T is long compared to the 
correlation time (inverse bandwidth) of the signals and the 
noise, Le., WT/2n >> 1 .  

Fourier analyzing y ( t ) ,  we obtain 

Under the above assumptions, y (  t )  is WSS, zero-mean, 
and Gaussian. Thus, for WT/27r >> 1 ,  the Y ( w l ) ' s  are 
asymptotically uncorrelated, zero-mean, and Gaussian 
with covariance matrix P ( w l ;  e )  where P ( w ;  0 )  is the 
spectral density matrix of y ( t )  given by 

K 

P ( W ;  e)  = C e,) + N(u). (33) 
k =  1 

The log-likelihood function given the Y (  q ) ' s  is there- 
fore given by 

q e )  = - C  [logdet rp (wl ;  e)  
1 

+ Y*(Wl)  P - ' ( q ;  0) y ( 4 ]  (34) 

where the summation in (34) is carried over all wI in the 
signal frequency band. In the case of discrete observa- 
tions y ,  = y (iAt), the log-likelihood is still given by (34) 
where the Y ( w l ) ' s  are the discrete Fourier transform 
(DFT) of the y l ' s .  To obtain the ML estimate of the var- 
ious Ok's,  we therefore must solve 

min [T  [logdet P(w,; e) 
81,82,' ' ' ,8k 

+ Y * ( ~ , )  P - ' ( ~ ~ ;  e)  Y ( ~ ~ ) ]  . (35) I 
We want to use the EM method to bypass this compli- 

cated multiparameter optimization. Following the same 
considerations as in the deterministic signal case, let the 
"complete" data x (  t )  be given by 

where 

T l  
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and the n , ( t )  are chosen to be mutually uncorrelated, 
zero-mean, and Gaussian with respective spectral density 
matrices Nk(  w )  = 0, - N (  w )  where the &'S are arbitrary 
real-valued constants subject to (2 1). 

Following the same considerations leading to (34), the 
log-likelihood of the "complete" data is given by 

logfx(x; e )  = -C [logdet T A ( ~ , ;  e)  
1 

+ X * ( 4  0) X(4] 
= - 7 [logdet T A ( u [ ;  0) 

+ tr (A-'(ai;  0) X ( w i >  X * ( w 1 ) ) ]  (38) 

where 

(39) 

Exploiting the block-diagonal form of A ( w ;  e),  (43) 
becomes 

where P ( w l ;  e )  is defined in (33). Observing that the 
maximization of U (  8, e') with respect to 8 is equivalent 
to the minimization of each of the terms in the k sum of 
(46) separately, the EM algorithm assumes the following 
form. 

(40)  

Mstep:  Fork = 1, 2, 

min C [ logdet A,( w l ;  e,) 
, K ,  

A,(@; 0,) = &(w;  0,) + P k  ' N ( ' " ) .  (42)  
Taking the conditional expectation of (38) given Y (  w l )  

at a parameter value e', 
8' I 

We observe that 6?+" is the ML estimate of 0, where 
the sufficient statistic X,( w,) X,* (or) is substituted by its 

current estimate X k ~ l ) ' n ' .  The algorithm is il- 
lustrated in Fig. 2. The most attractive feature of the al- 
gorithm is that it decouples the full multidimensional op- 
timization (35) into optimizations in the smaller-dimen- 
sional parameter subspaces. Thus, as in the deterministic 
signal case, the complexity of the algorithm is essentially 
unaffected by the assumed number of signal components. 
As K increases, we have to increase the number of ML 
processors in parallel; however, an ML processor is max- 
imized separately. Since the algorithm is based on the EM 
method, each iteration cycle increases the likelihood until 
convergence is accomplished. 
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$"I A i " )  -, 
Fig. 2.  The EM algorithm for stochastic Gaussian signals. 

IV. APPLICATION TO MULTIPATH TIME-DELAY 
ESTIMATION 

Let the observed signal y ( t )  be modeled by 

K 

y ( t )  = kzl a k s ( l  - rk) + n ( t ) .  (50 )  

This model characterizes multipath effects where the 
transmitted signal s ( t )  is observed at the receiver through 
more than one path. We shall concentrate here on the case 
where s ( t )  is a deterministic known signal. The extension 
to the case where s ( t )  is deterministic but unknown, and 
to the case where s ( t )  is a sample function from a Gauss- 
ian random process, can be found in [ l l ]  and [l] ,  respec- 
tively. We suppose that the additive noise n ( t )  is spec- 
trally flat over the receiver frequency band. The problem 
is to estimate the pairs (q, rk), k = 

The direct ML approach requires 
(1511 

1 , 2 ,  e - .  , K .  
the solution to [see 

This optimization problem is addressed in [lo], where 
it is shown that, at the optimum, the (Yk's can be expressed 
in terms of the Tk's. Thus, the 2 K-dimensional search can 
be reduced to a K-dimensional search. Howeyer, as 
pointed out in [lo], for K 2 3 the required computations 
become too involved. Consequently, ad hoc approaches 
and suboptimal solutions have been proposed. The most 
common solution consists of correlating y (  t )  with a rep- 
lica of s ( t )  and searching for the K highest peaks of the 
correlation function. If the various paths are resolvable, 
i.e., the difference between Tk and T~ is long compared to 
the temporal correlation of the signal for all combinations 
of k and 1, this approach yields near-optimal estimates. 
However, in situations where the signal paths are unre- 
solvable, this approach is only distinctly suboptimal. 

We identify the model in (50) as a special case of (13). 
Therefore, in correspondence with (30) and (31), we ob- 
tain the following algorithm. 

Estep: Fork = 1 ,  2, * , K, compute 

$ ' ( t )  = &u:"'s(t - $') 

1 + bk[ y ( t )  - 5 &l"'s(t - ?I"') . (52) 
I =  1 

M s t e p :  Fork = 1 ,  2, * , K, 

(53)  

Assuming that the observation interval T is long com- 
pared to the duration of the signal and the maximum ex- 
pected delay, the two-parameter maximization required in 
(53) can be carried out in two steps as follows: 

(54) 

where E = j T  I s ( t )  I dt is the signal energy and 
P 

(56) &r) = JT i l " ' ( t )  s * ( t  - r )  dt. 

We note that gp'( r )  can be generated by passing if'( t )  
through a filter matched to s ( t ) .  The algorithm is illus- 
trated in Fig. 3.  This computationally attractive algorithm 
decreases iteratively the objective function in (5 1 )  with- 
out ever going through the indicated multiparameter op- 
timization. The complexity of the algorithm is essentially 
unaffected by the assumed number of signal paths. As K 
increases, we have to increase the number of matched fil- 
ters in parallel; however, each matched filter output is 
maximized separately. 

If the number K of signal paths is unknown, several 
criteria for its determination are developed in [ 121. These 
criteria are based on the ML parameter estimates and can 
therefore be easily incorporated into the algorithm. 

To demonstrate the performance of the algorithm, we 
have considered the following example. The observed 
signal y ( t )  consists of three signal paths in additive noise 

3 

y ( t )  = c (.kS(t - 7 k )  + n ( t )  
k =  I 

where s ( t )  is the trapezoidal pulse 

O ~ t < 5  

s(t) = 1/4 5 j t 5 1 5  [i:: 10)/20 15 < t 20. 

The actual delays are 

71 = 0 7 2  = 5 7 3  = 10, 

and the amplitude scales are 

(Yk = 1 K = 1 ,  2, 3. 

The additive noise is spectrally flat with a spectral level 
of N = 0.025 (so that the postintegration signal-to-noise 
ratio (SNR) per pulse is approximately 16 dB). The ob- 
served data consist of 100 time samples, as illustrated in 

l ' - 1  1 1  
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I S E L E C T O R k a '  "I -- 
Y ill I SIGNAL I 

n ( " t l )  ("*I! 
'K , T K  

MATCHED PEAK 
FILTER SELECTOR 

Fig. 3.  The EM algorithm for multipath time-delay estimation. 

Fig. 4. In Fig. 5 we have plotted the matched filter output 
as a function of delay. As we can see, the conventional 
method cannot resolve the various signal paths and esti- 
mate their parameters. 

First, we have computed the ML estimates by direct 
minimization of the objective function in (51) using ex- 
haustive search. We obtain 

?I = 0.0117 ?2 = 5.0031 ?3 = 9.9884 

& I  = 1.1511 &2 = 0.7799 &3 = 0.9471, 

and the value of the objective function at the minimum 
(corresponds to the value of the log-likelihood function at 
the maximum) is 

J = 0.45879. 

We have also computed lower bounds on the root mean 
square (rms) error of each parameter estimate using the 
Cramer-Rao inequality. We obtain 

a(?l)  = 0.028 a(?2) = 0.030 a(?3) = 0.028 

~ ( & 1 )  = 0.076 ~ ( & 2 )  = 0.079 ~ ( & 3 )  = 0.076. 

a (  ? k )  denotes the minimum attainable rms error in the 
Tk estimate, and ( T ( & k )  denotes the minimum attainable 
rms error in the (Yk estimate. 

We now apply our algorithm. In Fig. 6 we have plotted 
the matched filter response to the various signal paths, as 
they are evolved with the iterations. In Fig. 7 we have 
tabulated the results using several arbitrarily selected 
starting points as indicated by the first line of each table. 
We see that after 10-15 iterations, the algorithm con- 
verges within the Cramer-Rao lower bound to ML esti- 
mates of all the unknown parameters, regardless of the 
initial guess. We note that the small differences in the fi- 
nal estimates result from the finite grid used for the opti- 
mization. 

Using the asymptotic efficiency and lack of bias of the 
ML estimates, we can claim with some confidence that 
the rms error performance of the algorithm is the mini- 
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I 
-40 -30 -20 -10 0 10 20 30 40 50 60 

Fig. 4 .  The observed data. 

Fig. 5 .  The conventional matched filter response. 

-80 -60-40-20 0 20 40 60 80 

-+: i I :  I 
-80-60-40-20 0 20 40 60 80 

mum attainablk characterized by the- Cramer-Rao lower Fig. 6.  The matched filter response to each signal path 

bound. 

V. PASSIVE MULTIPLE SOURCE LOCATION ESTIMATION 
The basic system of interest here consists of K spatially 

distributed sources radiating noise-like signals toward an 

propagation conditions in the medium, and ignoring am- 
plitude attenuations of the signal wavefronts across the 

array, the actual waveform observed at the mth sensor 
Output is 

K 

array of M spatially distributed sensors. Assuming perfect y m ( t )  = S k ( f  - T k m )  + n r n ( f )  
k =  I 

m = 1,2, , M  (57) 
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where sk ( t )  is the kth source signal, n, ( t )  is the additive 
noise at the rnth sensor output, and Tkm is the travel time 
of the signal wavefront from the kth source to the rnth 
sensor. 

Information concerning the various source location pa- 
rameters can be extracted by measuring the various Tkm. 

In the passive case, one can only measure the travel time 
differences, obtainable by selecting one sensor as a ref- 
erence and comparing its output to that of every other sen- 
sor. If we let sensor M be the reference and set 7km = 0,  
then Tkm measures the travel time difference of the kth sig- 
nal wavefront to the ( m ,  M ) sensor pair. 

To simplify the exposition, suppose that the various 
signal sources are relatively far-field so that the observed 
signal wavefronts are essentially planar across the array. 
If we further suppose that the array sensors are colinear, 
then 

where d,  is the spacing between sensors m and M, c is 
the velocity of propagation in the medium, and d k  is the 
angle of arrival of the kth signal wavefront relative to the 
boresight. 

Substituting (58) into (57) and concatenating the var- 
ious equations, we obtain 

where 

where yrn = d , / c .  
Suppose that the various sk ( t )  and the various n, ( t )  are 

mutually independent, WSS , zero-mean Gaussian random 
processes with spectral densities & ( w )  and N, (w) ,  re- 
spectively (the cases where the sk( t )  are deterministic 
known/unknown signals are presented in [2] and [ 1 11, re- 
spectively). We want to find the ML estimates of e l ,  &, 
. . .  , 

Assuming that the observation interval T is long com- 
pared to the correlation time (inverse bandwidth) of the 
signals and the noises, the direct ML approach requires 
the solution to [see (35)] 

given observations of y ( t ). 

T '  

min c [logdet P ( q ;  0) + Y * ( q )  
Bt,el,. . ,eK 1 

- P-'(wl; e )  Y ( w , ) ] .  (61 1 
where Y (  w I )  are the Fourier transform coefficients [or the 
DFT in the discrete case of y ( t ) ]  and 

K 

P ( w ;  8 )  = c s k ( w )  v(w; 0, )  v*(w; 6,) + N ( w )  
k =  1 

(62) 
where 

and 

1 

This is a complicated multiparameter optimization 
problem in several unknowns. Consequently, numerous 
ad hoc solutions and suboptimal approaches have been 
proposed in the recent literature (e.g., [13]-[18]). Still, 
the most common approach consists of beamforming and 
searching for the K highest peaks. If the various signal 
sources are widely separated, this approach is nearly op- 
timal. However, if the source signals are closely spaced, 
we are likely to obtain poor estimates of the various 0 k ' s .  

Identifying the model in (59) as a special case of (13), 
the algorithm specified by (48) and (49) is directly appli- 
cable, where 

Ak(w; e,) = & ( w )  V ( w ;  8,)  v*(w; 6, )  + P k N ( W ) .  

( 6 5 )  
Now, 

1 
det & ( W ;  0,)  = 1 + - s k ( W )  v*(Cd; 6,)  [ P k  
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Substituting (66) and (67) into (49) and ignoring the 
terms that are independent of e,, the M step can be further 
simplified. The resulting algorithm is as follows. 

X m ) ' " )  = &(al; 8:"') - Ak(wl; 8:"') 
* P-'(  4; 6'"') A,( q ;  8:"') 
+ &(a1; 8:"') P - ' ( q ;  e'"') 

E step: For k = 1, 2 ,  , K ,  compute 

Y ( 4  Y " ( 4  (68) 

P-'(  w l ;  e'"') A,( w l ;  e ? ) ) .  
Mstep:  Fork = 1, 2 ,  * 9 K ,  

. N - ' ( ~ / )  e )  -+ a:"+? 
We note that the objective function in (69) is the array 

beamformer, where the product X, ( w , )  Xz (q) is substi- 
tuted by its current estimate X k m l ) ( " ) .  The al- 
gorithm is illustrated in Fig. 8. This computationally at- 
tractive algorithm decreases iteratively the objective func- 
tion in (61) without ever going through the indicated mul- 
tiparameter optimization. The complexity of the algorithm 
is essentially unaffected by the assumed number of signal 
sources. As K increases, we have to increase the number 
of beamformers in parallel; however, each beamformer 
output is maximized separately. 

To demonstrate the performance of the algorithm, we 
have considered the following example. The array con- 
sists of five colinear and evenly spaced sensors. There are 
two far-field signal sources at bearings 

el  = 00 e2 = 100 

relative to the boresight. The array-source geometry is 
shown in Fig. 9. The signals and the noises are spectrally 
flat with S, ( w )  = S and N,,, (a) = N over the frequency 
band [ - W / 2 ,  W/2]. We assume that S I N  = 1 and that 
WT/2n = 20 (so that the postintegration SNR per chan- 
nel is approximately 23 dB). The array length is taken to 
be L = 6X where X is the wavelength associated with the 
highest frequency in the signal band. 

In Fig. 10 we have plotted the array beamformer re- 
sponse as a function of the bearing angle. As we can see, 
the conventional beamformer cannot resolve between the 
signal sources and estimate their bearings. 

The ML estimates, obtained by direct minimization of 
the objective function in (61), are 

8, = -0.0563 8 2  = 10.4556, 

and the value of the objective function at the minimum 
(corresponds to the value of the log-likelihood function at 
the maximum) is 

J = 159.0137. 

B O  

Fig. 9. Array-source geometry. 

t 

I 1  * 
-90 -72 -54 -36 -18 o 18 36 54 72 90 8 

Fig. 10. The conventional beamformer. 

We have also computed the Cramer-Rao lower bound 
on the rms error of each parameter estimate. We obtain 

. (el)  = 0.2680 ~ ( 8 , )  = 0.2722. 

We now apply our algorithm. In Fig. 11 we have plot- 
ted the beamformer response to the various signal sources 
as they are evolved with iterations. In Fig. 12 we have 
tabulated the results using several arbitrarily selected ini- 
tial guesses. We see that in all cases, after 5-10 iterations, 
the algorithm essentially converges, within the Cramer- 
Rao lower bound, to the ML estimates of all the unknown 
bearing parameters simultaneously, and the various signal 
sources are correctly resolved. 

VI. DISCUSSION 
We have presented a computationally efficient algo- 

rithm for ML parameter estimation of superimposed sig- 
nals based on the EM method. The algorithm is developed 

r i  I I I  I I  
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Fig. 11. The beamfonner response to each signal source. 
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for the case of deterministic (known) signals and for the 
case of stationary Gaussian signals. The most striking fea- 
ture of the algorithm is that it decouples the full multidi- 
mensional search associated with the direct ML approach 
into searches in smaller-dimensional parameter sub- 
spaces, leading to a considerable simplification in the 
computations involved. The algorithm is applied to the 
multipath time-delay and multiple source location esti- 
mation problems; in both cases, we demonstrate the per- 
formance of the algorithm in a given example and show 
that the algorithm converges iteratively to the exact ML 
estimate of all the unknown parameters simultaneously 
where each iteration increases the likelihood. 

We finally note that the derivation of the EM algorithm 
for the linear-Gaussian case (the Appendix) has impor- 
tance of its own since it covers a wide range of applica- 
tions. 

APPENDIX 
DEVELOPMENT OF THE EM ALGORITHM FOR THE 

LINEAR-GAUSSIAN CASE 

Suppose the "complete" data X and the observed (in- 
complete) data Yare related by the linear transformation 

Y = HX ('41) 

where H is a noninvertible matrix and X possesses the 
following multivariate Gaussian probability density: 

where h = 1 if X is real-valued and 
valued. Taking the logarithm of (A2), 

= 2 if X is complex- 

x 
2 

= c - - [logdet A ( 8 )  + m * ( 8 )  A-' (8 )  

. m ( e )  - x*A-'(e) m ( e )  

- m * ( e )  A-'(e)x + tr ( ~ ( ~ ) x x * ) ]  

(A3 1 
where c is a constant independent of 8. Taking the con- 
ditional expectation of (A3) given Y = y at a parameter 
value e', 

x 
2 

u(8, e') = c - - [logdet a(e) 

+ m * ( e )  P ( e  
- m * ( e )  P ( 8  

where 

f = E{x/Y 

and 

= y; 8 ' )  

XX* = E{XX*/Y = y ;  8 ' ) .  (A61 

Since X and Y are related by a linear transformation, 
they are jointly Gaussian, and the conditional expecta- 
tions required in (A5) and (A6) can be computed by a 
straightforward modification of existing results. We ob- 
tain 

R = m ( w )  + n(w) H*[HA(W)H*]-' 
[Y  - Hm((3 ' ) ]  (-47) 

* H A ( € ) ' )  + if*. ('48) 

xx* = A ( 8 ' )  - A(8 ' )  H * [ H A ( e ' ) H * ] - '  

Note that if we set 8' = 8, (A7) and (A8) are the well- 
known formulas for the conditional expectations in the 
Gaussian case (e.g., [19]). 

Substituting (A7) and (A8) into (A4), the function U( 8, 
8')  required for the EM algorithm is given in a closed 
form. We observe that U( 8, 8 ' )  and log f x ( x ;  8 )  have 
the same dependence on 8. Maximizing U( 8, 8 ' )  with 
respect to 8 is therefore the same as maximizing logfx(x; 
8 )  with respect to 8. Hence, the EM algorithm essentially 
requires the ML solution in the X model, which might be 
significantly simpler than the direct ML solution in the Y 
model. 

In correspondence with (1 1) and (12), the EM algo- 
rithm for the linear-Gaussian case is given by the follow- 
ing. 

E step: 
$"' = m(@"') + A(@"') 

* H * [ H A ( 0 ' " ' ) H * ] - ' [ y  - H m ( 8 ' " ' ) ]  

(A91 

( A10 ) 

&*(") = A (  e (") )  - A(  e(")) H* [ H A (  ( j ( " ) ) H * ]  -' 
. HA( e ( " ) )  + f(n)f(n)*. 

M step: 

e 
min {logdet A ( 8 )  + m * ( 8 )  

- n-'(e) m ( e )  - d " ) * A - ' ( e )  m ( e )  

- m * ( e )  +(e)  2'") 

+ tr (A-'(e)&*('))} + W+l). ( A l l )  
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