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Random Coding Techniques for Nonrandom Codes channel coding theorem of [7] and [8], in several restricted families
. of codes. In some cases, the error exponent of the restricted family of
Nadav ShulmanStudent Member, IEEEand Meir FederFellow, IEEE  codes equals the random-coding error exponent. Detailed examples
for the application of these techniques in some interesting structured
) ) ) . ensembles of codes is given in [14].

Abstract—This work provides techniques to apply the channel coding |, the second part of the correspondence we consider an extreme
theorem and the resulting error exponent, which was originally derived . ] .
for totally random block-code ensembles, to ensembles of codes with exa_mple of a restrictive class of codes; an ense"_‘ble that contains
less restrictive randomness demands. As an example, the random codinga single code. Using the tools developed in the first part, we can
technique can even be applied for an ensemble that containssinglecode.  sometimes get an exponential bound on the error probability of this
For a specific linear code, we get an upper bound for the error probability, -ode. For a linear binary code, this exponential bound is given by
which equals Gallager’'s random-coding bound, up to a factor determined Gallager’s random-coding error bound. times a term that depends on
by the maximum ratio between the weight distribution of the code, and g e A g ! . p >
the expectedrandom weight distribution. the deviation of the code’s spectrum from the random-like binomial
spectrum. Specifically, if the weight distribution {s4;} and the
expected, random, weight distribution of a code with the same

parameters ig B, }, than this term isnax;(A;/By).

Index Terms—Bounds on the error probability, code ensembles, code’s
spectrum, error exponent, linear codes, random coding.

|. INTRODUCTION Il. RANDOM CHANNEL CODING—A BRIEF REVIEW

Shannon’s charmel coding theorem [1,3] ha§ been proven In-many, his preliminary section, we briefly review Gallager's random
ways. The classical proofs are of Feinstein [3], [4], Elias [_z]coding proof of the channel coding Theorem. Along this review we
Wolfowitz [18], and Gallager [7]. Some of these proofs also prowdget the notations and prepare the setup for our resuits.
an exponential upper bound on the error probability as a functionCOrlsider a random ensemble of codesvhere each code in the
of the code complexity, or more correctly, the code length. Mot semble had/ words of lengthV, i.e., its rate isR = log M/N.

of these proofs, however, considerandom choice of codeboqks. We denote byPr (¢(i) = z) the probability that the randomly selected
Hence, these proofs (as well as the nonrandom proof by Feinstelp) . 4eword equals, and, similarly, Pz (c(i') = 2'|e(i) = @) is

are not constructive, and cannot F’e used to pomF out a specific g(fﬂg conditional probability, induced by the random selection strategy,
code, or even a good small family of codes. Still, there are a fetWat thei'th codeword i’ given that theith codeword ise.

interesting structured families of codes, e.g., linear codes, that arg ot the channel be defined by transition probabilitis (y|z)

Iargg and diverse enough so that taadom codlng_;argume_nt can be wherex andy are vectors of lengthV corresponding taV-blocks
app!led to them,_see, €g. [12]. In some otht_ar_lnterestlng cases, (5??nput and output to the channel. It is shown in [8, pp. 136-137]
family of codes is extended (sometimes artificially) so that randof,¢ the maximum-likelihood decoder, when the transmitted codeword

(_:odlng argumgnts can be applied to it. For examP'e' the (_:Iass“q&ex is chosen uniformly, achieves an average error probability over
linear convolutional codes was enlarged to the classnoé-varying the ensembleP., bounded by

convolutional codes on which the random coding proof can be easily

applied [16], [17]. _ M
When the goal is to find and analyze specific codes, coding» < % > Prie(m)==2) Y Py(yle)/'*"
theory usually does not use the channel coding theorem proof, but ~ ™=' ¢ 4
applies instead combinatorial and algebraic techniques. One example g
is Poltyrev’s bound [11] for the error probability of a linear code 1 D2 DT Pr(elm’) = a'le(m) = 2)Px(ylz') /'
in a binary-symmetric channel (BSC) that depends on the weight m/#Em !
distribution (spectrum) of the code. A similar combinatorial analysis (2)

that deals with a broader class of channels is given in [5], but this
analysis is less powerful as it provides interesting results only at Id@r any 0 < p < 1.

rates (below the cutoff rate). It turns out, as shown later in this work, SUPPose now that each word is seleciedependentlywith the
that random coding techniques, which are used in the derivation @gtribution @~ (z), i.e.,

the coding theorem and can be applied for any rate up to capacity, Pr(e(m) =z) = O () @)
can lead to an exponential upper bound on the error probability of , , , ,
a specific linear code in terms of its spectrum. Other information- Pr(e(m’) =2'le(m) = z) = Qn(2'),  form #m (3)
theoretic methods that have been previously used to bound speqiflijc

codes, see, e.g., [10], are applicable only at rates below the cutoff raterthermore, let the channel be discrete and memoryless (DMC), i.e.,

This correspondence consists of two parts. In the first part, we N \
address the general problem of applying the channel coding theorem Py(ylz) = H P(yn|zn) 4)
for structured code families. Following some simple observations we n=1

show several techniques to apply the random coding proof of th&q choose
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where and
1+p

) . logy
Eo(p.Q) 2 ~log 37 |30 QPG| (@) By=Jm v
] k

J

Thus the random-coding exponent is attained with the relaxed as-
sumptions on the ensemble of codesvif3, and~ do not increase
E.(R) A hax max {Eo(p,Q) — pR} 8) exponentiall_y withN. In any case we sti!l get an exponential error
Q 0<p<l bound, but it may be exponentially inferior than the random coding
and, as shown in |8, pp. 140-144], it is positive fBr< C' where bound. _ _
C is the channel capacity. Another general technique to derive an upper bound on the
expected error probability for a restricted ensemble of codes is to
build from the given ensemble a bigger, more random new ensemble
of codes whose average performance is the same as that of the
The assumption in the proof above that the ensemble of codesifginal ensemble. Suppose that on the new ensemble the random
large and that codes should be drawn in total randomness cancBeling proof, maybe with the extensions above, can be derived. This
relaxed. This enables us to deal with ensembles of codes that hawglies the same result for the original ensemble. The new ensemble
very specific structure, and are far from being totally random. Ong “artificial” in the sense that it provides a tool to prove some
observation that was already noticed and utilized by Gallager [§roperties of the original ensemble, but as an ensemble on its own,
p. 207], Dobrushin [1], and Gabidulin [6] is that it is sufficient toit has no interesting structure.
consider the pairwise distribution of any two codewords, and requireThe simplest way to enlarge the ensemble ismoyd permutation
only pairwise independencéo get the random-coding upper boundyhen we are interested in thveord error probability, and not in the
above. bit-error rate (BER) or other fidelity criterion, the specific assignment
It turns out that even when the codewords are not pairwisgf the information messages to codewords is not important. Thus
independent or when the marginal distribution of the codewordstise ensemble performance is invariant to permutations that change
not as in (2), we can still derive expressions for the error exponetiie order of the words. More precisely, assume that the codeword
provided that there are upper bounds on the marginal and conditioft@lex is chosen uniformly. Lef be an ensemble of codes and let
probabilities. Specifically, suppose that for some3 > 1 andQ~, ¢ be a larger ensemble that contains all the codes ffoamd their

The random coding exponetibr DMC's is defined as

Ill. REDUCED RANDOMNESS ASSUMPTIONS

we have for anyi # j,z, andz’ word permutation. Clearly and £ have the same average error
o) = 2 o) = ) <o N ) Do (el 1) — probability.
Pr(e(i) =« "C(j.) z) —(/l Pr(e(i) =2)-Pric(j)=2) () For memoryless channels, the ensemble can also be enlarged by
Pr(e(i) =) <3 - Qn(x). (10)  symbol permutatioriThe error probability of two codes in which each

PRI o . deword in one code is sonfiged permutation of that codeword in
Then by substituting in (1) the error probability will be bounded by°
y gin() P y }{:he other code, is the same. Thus the average error probability of the

1+p . . e
_ v codes in an ensembtgis the same as the average error probability of
al+ N R 1/(1+ . s . ;
P.<afB P 20NN TQn (@) Pu(yle) /UL (11) 5 bigger ensemblé that contains all the codes obtained by symbol
v L= permutations of the codes of.
In addition, if the channel is DMC or “almost” DMC For symmetric binary-input channels such as the BSC the error
N probability of a code does not change by addiagconstant binary
Py (ylz) < ~ - H Plynlan) (12) vector to all its codewords. The reason is that this addition does not

change the distance between the codewords.

An example that demonstrates how the observations above can be
applied to upper-bound the average error probability of a restricted
ensemble of codes is given by the following lemma.

n=1

for some~ > 1, then, using@x~(x) from (5), the expected error
probability will be bounded as
D al+p_  o—N[Eg(p,Q)—pR] . i
P <a’37 0y -2 o e (13) Lemma 1: Let £ be an ensemble of binary codes with the property

Notice that sinceé) < p < 1, « > 1, and3 > 1, we get the upper that for any: # j andz we have

bound Pr(c(i) B e(j) =x) < a2™V, 17)

P. < ap?~- 9~ NE(I) (14) . C
Then, the average error probability ov@rfor a symmetric binary-
In general,«, 3, and v can depend oV and on other parametersinput channel is bounded by

of the code. Now, from (13) b < wpy-NEo(pQ— T 18)
B, < By 27 N (Folp.Q)=p(R(og(ap)/N)), (15) c =
where @ is the uniform distribution.
Proof: We define a new ensemblé€, which contains all the
codes fromE with an added random vector, i.e.,

Optimizing (15) with respect tp, 0 < p < 1, yields a lower bound
on the reliability function

. 1 = B )
Jim -y lesFe 2 En(R+ Ro & Ry) = Rp = Ry (16) E={covlcesve o1} (19)
where whereC & v = {e(l) @ v,---,e(M) & v} with the probability
B — lim log a assignmentPr (C @ v) = 2=V Pr(C). As noted above irf the
T Neoo N average error probability is the same agifTo calculate the expected
. log
Rz = lim

N—oo N 1Addition of two binary vectors is their bitwise exclusive—or.
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error probability in€ we observe that the marginal and conditionalvhere
distributions in the new ensemble satisfy 4, oN

“ TS 2K 1 (Y

. (23)
Pr (c(i):a:)zz 27 N Pr(e(i)=zv)=2"" (20)
v Proof: We first generate an ensemkfé from the given code

Pr(c(i)=zle(j)=y= > 27N Pr(e(i)=2 D vle(j)=y D v) by choosing with uniform distribution a permutatianc $»; of the
v order of the codewords. Far# j we have in&’
=Y 27V Pr(e(iz @ e() B ylv=c(j) S y) 1
o P ()= ¢ () =2) :w;_ M =1) (e(m) & ey =2)
:Z 27N Pr(e(y=2de(j) B y) B ) i
<(4) B { S if z€C
! = . R (24)
< Z 9N o N — o N 1) 0, if 2¢C
(4) wherew; denotes the index thatis mapped to after permutation

~ We now generate an even larger ensemfiileby choosing ran-
WiRSinly with a uniform distribution a permutation € Sy of the
order of the symbols in the codewords. 8 we thus have

Thus we have the same bounds as in (9) and (10) on the pair
distribution, with 3 = 1 and Qn(-) = 27V, implying that the
average error probability fof and€ can be bounded by (18), which

is the same as (13) or (14) with these valuesadnd QN (-). O Pr (c”(,;) oe'(j) = x) _ % Pr (C/(i) () = J(x))
In the examples above, a new, more random, ensemble of codes 7E€SN )

was formed by generating from each code in the original ensemble a — 4 1 N 25)

set of codes with the same performance. To ensure that the average M-1 N!

error probabilities of the new and original ensembles are the samMhere; = Wy (2) and o(z) = (10, -, 2s,) is the symbol

we implicitly assumed that in the new ensembl_e _the probability {ermutation ofr defined bys (). This implies that the ensemb#’
choose a code from a set generated by some original code equalssisfies (17) with am given in (23). Thus Lemma 1 can be applied

probability of choosing that original code in the original ensemblgg; ¢ |eading to the bound (22) on the average error probability in
We note, however, that even if this assumption is not true, and the \hich is also a bound of.(C). O

probability assignment on the new ensemble is different implying o
that the average error probability of both ensembles are different, the_ooking at the resulting bound, we note t@@ is the probability
average error probability on the new ensemble is still interesting. The select a vector with Hamming weigHt under the uniform
construction used in the discussion above assures that there exisigsgibution assumption, anﬁ'i% is the same probability under the
code in the original ensemble whose performance is at least as gagdumption that we choose randomly one of the (nonzero) words
as the average error probability of the new ensemble. in the code. Hence, if the code’s spectrum is close to the spectrum
In summary, in this section we have presented techniques that allexpected in a random code, i.e., A = 21"*‘“’(‘7 , then we get
the derivation of the channel coding theorem, and the determinatigie well-known result [2] that the error probability of that code the
of error exponents for code classes that are not necessarily large gfitiom-coding exponential bound.
completely random. In the next section we show how these techniquessallager, in [9, pp. 30—36], presented a bound that can be used for a
can be used to upper-bound the error probability of a specific co@pecific code in terms of its spectrum. This bound is exponentially the
A more detailed discussion of these results and additional examp#sne as our bound given in Theorem 1 above, but our result is tighter
of their usage in several interesting restricted classes of codes lgyeanO(+/IV) factor. Interestingly, our bound derived from the bound
given in [14]. in [7] that was developed for a random ensemble is tighter that the
bound in [9] that was developed directly for specific ensembles and
specific codes.

Theorem 1 can also be extended to consider general, nonlinear

We now use the methods described above to obtain a bound on e |n this case, instead of the spectrum we should use the average
error probability of a binary linear code, used in a BSC, that dependgmper of codewords in a given distance, i.e.

on its weight distribution (spectrum).

We use the technique above and generate from the given code a A = i|{(7;, P d(ai.x;) =1} (26)
random ensemble of linear codes by permuting randomly the order of M '
the codewords, and then permute randomly the order of the symbgigere | 5| denote the size of a set and d(-,-) is the Hamming
in the codewords. We then show that the resulting random ensem§igtance.

satisfies the condition of Lemma 1 which leads to an error exponentas another extension, suppose we have the following channel over

IV. THE ERROR EXPONENT OF A SPECIFIC LINEAR CODE

expression for the original code. a larger alphabet of size:
Theorem 1: Let C be a particular (N, K) binary linear code, 1—¢ r=y
i.e., it containsM = 2 codewords and its rate i&/N. Let A, Pyle) = eflg—1) x#y 2,y € {1, q} @7

1=0,1,---, N be its weight distribution, i.e., ) ) ] N
Codes over this channel were considered in [5]. The additional

A =i Wy (e(d) =1} symmetry in the channel allows to introduce the following general
operation that preserves the performance: the value assignment for
where Wy (v) is the Hamming weight o#. Then P.(C), its error each symbol in the codeword can be permuted, and this permutation
probability, is upper-bounded as can even be different for each symbol. A special case of this operation
is to add (modulgy) a vector to each codeword. Thus we can follow
P.(C) < 2~ NE-(Hllog a/N) (22) the derivation above and get an exponential error bound fpagy
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linear code with a given spectrum, operating over the channel (27)3] C. E. Shannon, “A mathematical theory of communicatiddell Syst.

The resulting bound is given by (22) where now Tech. J, vol. 27, pp. 379-423, July 1948 and pp. 623—656_,_Oct. 1948.
N [14] N. Shulman, “Coding theorems for structured code families,” M.Sc.

A q thesis, Dep. Elec. Eng.,—Syst., Tel-Aviv Univ., Tel-Aviv, Israel, Sept.

@ = max (28)

o<isn M -1 ('\’)(q -1 1995. o
t [15] N. Shulman and M. Feder, “Improved error exponent for time-invariant

and M = 2V% is the number of codewords. Unlike our result, the  and periodically time-variant convolutional codetZEE Trans. Inform.

. . . . . Theory to be published.
combinatorial technique presented in [S] can be applied only for ratﬁ%] A. J. \%terbi, “gonvolutional codes and their performance in commu-

below the CU_tOff rate. _ _ ) _ nication systems,IEEE Trans. Commun. Technokol. COM-19, pp.
For binary-input symmetric channels, the combinatorial technique 751-772, Oct. 1971.
of [5] was refined by Poltyrev [11] by using the union bound17] A.J. Viterbi and J. K. OmureRrinciples of Digital Communication and
adequately (applying the union bound in a straightforward way is t Coding New York: McGraw-Hill, 1979. o
hv the bound in [5] i lid onl bel h 8] J. Wolfowitz, “The coding of message subject to chance errdifsbis
reason wl y_t e bound in [5] is valid only at rate; elow the cut_o J. Math vol. 1, pp. 591-606, 1957.
rate). It is interesting to note that for a code with a random-like
spectrum, Poltyrev's bound is actually tighter (by a nonexponential
term) than Gallager's random-coding bound. Thus for linear codes
over a BSC, Poltyrev’'s bound is also tighter than our bound of

Theorem 1. Still our bound, derived by a noncombinatorial approach

from the basic random-coding expression, is more general as it is The Asymptotic Redundancy of
easily extended and leads to useful bounds in many cases, e.g., the Bayes Rules for Markov Chains
g-ary case above.

Finally, the general techniques presented in this correspondence Kevin Atteson,Member, IEEE

are useful in many interesting structured families of codes [14]. One
recent direct application of these techniques is given in [15] where

the error exponent ofime-invariantconvolutional codes has been, APstract—We derive the asymptotics of the redundancy of Bayes rules
derived for Markov chains of fixed order over a finite alphabet, extending the

work of Barron and Clarke on independent and identically distributed

(i.i.d.) sources. The asymptotics are derived when the actual source is the
ACKNOWLEDGMENT class of ¢-mixing sources which strictly includes Markov chains. These

results can be used to derive minimax asymptotic rates of convergence for

The authors wish to thank the anonymous reviewers and tHeiversal codes when a Markov chain of fixed order is used as a model.
associate editor, A. Barg, for useful comments and for pointing out|ndex Terms—Asymptotics, Bayesian statistics, Markov chains, univer-

previous work on the subject. sal coding.
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