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Random Coding Techniques for Nonrandom Codes

Nadav Shulman,Student Member, IEEE, and Meir Feder,Fellow, IEEE

Abstract—This work provides techniques to apply the channel coding
theorem and the resulting error exponent, which was originally derived
for totally random block-code ensembles, to ensembles of codes with
less restrictive randomness demands. As an example, the random coding
technique can even be applied for an ensemble that contains asinglecode.
For a specific linear code, we get an upper bound for the error probability,
which equals Gallager’s random-coding bound, up to a factor determined
by the maximum ratio between the weight distribution of the code, and
the expectedrandom weight distribution.

Index Terms—Bounds on the error probability, code ensembles, code’s
spectrum, error exponent, linear codes, random coding.

I. INTRODUCTION

Shannon’s channel coding theorem [13] has been proven in many
ways. The classical proofs are of Feinstein [3], [4], Elias [2],
Wolfowitz [18], and Gallager [7]. Some of these proofs also provide
an exponential upper bound on the error probability as a function
of the code complexity, or more correctly, the code length. Most
of these proofs, however, consider arandom choice of codebooks.
Hence, these proofs (as well as the nonrandom proof by Feinstein)
are not constructive, and cannot be used to point out a specific good
code, or even a good small family of codes. Still, there are a few
interesting structured families of codes, e.g., linear codes, that are
large and diverse enough so that therandom codingargument can be
applied to them, see, e.g., [12]. In some other interesting cases, the
family of codes is extended (sometimes artificially) so that random
coding arguments can be applied to it. For example, the class of
linear convolutional codes was enlarged to the class oftime-varying
convolutional codes on which the random coding proof can be easily
applied [16], [17].

When the goal is to find and analyze specific codes, coding
theory usually does not use the channel coding theorem proof, but
applies instead combinatorial and algebraic techniques. One example
is Poltyrev’s bound [11] for the error probability of a linear code
in a binary-symmetric channel (BSC) that depends on the weight
distribution (spectrum) of the code. A similar combinatorial analysis
that deals with a broader class of channels is given in [5], but this
analysis is less powerful as it provides interesting results only at low
rates (below the cutoff rate). It turns out, as shown later in this work,
that random coding techniques, which are used in the derivation of
the coding theorem and can be applied for any rate up to capacity,
can lead to an exponential upper bound on the error probability of
a specific linear code in terms of its spectrum. Other information-
theoretic methods that have been previously used to bound specific
codes, see, e.g., [10], are applicable only at rates below the cutoff rate.

This correspondence consists of two parts. In the first part, we
address the general problem of applying the channel coding theorem
for structured code families. Following some simple observations we
show several techniques to apply the random coding proof of the
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channel coding theorem of [7] and [8], in several restricted families
of codes. In some cases, the error exponent of the restricted family of
codes equals the random-coding error exponent. Detailed examples
for the application of these techniques in some interesting structured
ensembles of codes is given in [14].

In the second part of the correspondence we consider an extreme
example of a restrictive class of codes; an ensemble that contains
a single code. Using the tools developed in the first part, we can
sometimes get an exponential bound on the error probability of this
code. For a linear binary code, this exponential bound is given by
Gallager’s random-coding error bound, times a term that depends on
the deviation of the code’s spectrum from the random-like binomial
spectrum. Specifically, if the weight distribution isfAlg and the
expected, random, weight distribution of a code with the same
parameters isfBlg, than this term ismaxl(Al=Bl):

II. RANDOM CHANNEL CODING—A BRIEF REVIEW

In this preliminary section, we briefly review Gallager’s random
coding proof of the channel coding Theorem. Along this review we
set the notations and prepare the setup for our results.

Consider a random ensemble of codesE where each code in the
ensemble hasM words of lengthN , i.e., its rate isR = logM=N:
We denote byPr (ccc(i) = xxx) the probability that the randomly selected
ith codeword equalsxxx, and, similarly,Pr (ccc(i0) = xxx0jccc(i) = xxx) is
the conditional probability, induced by the random selection strategy,
that thei0th codeword isxxx0 given that theith codeword isxxx:

Let the channel be defined by transition probabilitiesPN(yyyjxxx),
wherexxx andyyy are vectors of lengthN corresponding toN -blocks
of input and output to the channel. It is shown in [8, pp. 136–137]
that the maximum-likelihood decoder, when the transmitted codeword
index is chosen uniformly, achieves an average error probability over
the ensemble,�Pe, bounded by

�Pe �

M

m=1

1

M
x

Pr (ccc(m) = xxx)
yyy

PN (yyyjxxx)
1=1+�

�
m 6=m xxx

Pr (ccc(m0) = xxx0jccc(m) = xxx)PN (yyyjxxx
0)1=1+�

�

(1)

for any 0 � � � 1:
Suppose now that each word is selectedindependentlywith the

distributionQN(xxx), i.e.,

Pr (ccc(m) =xxx) = QN(xxx) (2)

Pr (ccc(m0) =xxx0jccc(m) = xxx) = QN(xxx
0); for m 6= m0 (3)

Furthermore, let the channel be discrete and memoryless (DMC), i.e.,

PN (yyyjxxx) =

N

n=1

P (ynjxn) (4)

and choose

QN(xxx) =

N

n=1

Q(xn): (5)

Then, substituting in (1) yields

�Pe � 2�N[E (�;QQQ)��R] (6)
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where

E0(�;Q)
�
= � log

j k

Q(k)P (jjk)1=(1+�)
1+�

: (7)

The random coding exponentfor DMC’s is defined as

Er(R)
�
= max

Q
max
0���1

fE0(�;Q)� �Rg (8)

and, as shown in ]8, pp. 140–144], it is positive forR<C where
C is the channel capacity.

III. REDUCED RANDOMNESS ASSUMPTIONS

The assumption in the proof above that the ensemble of codes is
large and that codes should be drawn in total randomness can be
relaxed. This enables us to deal with ensembles of codes that have
very specific structure, and are far from being totally random. One
observation that was already noticed and utilized by Gallager [8,
p. 207], Dobrushin [1], and Gabidulin [6] is that it is sufficient to
consider the pairwise distribution of any two codewords, and require
only pairwise independence, to get the random-coding upper bound
above.

It turns out that even when the codewords are not pairwise-
independent or when the marginal distribution of the codewords is
not as in (2), we can still derive expressions for the error exponent,
provided that there are upper bounds on the marginal and conditional
probabilities. Specifically, suppose that for some�; � � 1 andQN ,
we have for anyi 6= j; xxx; andxxx0

Pr (ccc(i) = xxx
0
; ccc(j) = xxx) �� � Pr (ccc(i) = xxx

0) � Pr (ccc(j) = xxx) (9)

Pr (ccc(i) = xxx) �� �QN(xxx): (10)

Then by substituting in (1) the error probability will be bounded by

�Pe��
�
�
1+� � 2�NR

yyy xxx

QN(xxx)PN (yyyjxxx)
1=(1+�)

1+�

: (11)

In addition, if the channel is DMC or “almost” DMC

PN (yyyjxxx) � 
 �

N

n=1

P (ynjxn) (12)

for some
 � 1, then, usingQN(xxx) from (5), the expected error
probability will be bounded as

�Pe � �
�
�
1+�


 � 2�N[E (�;QQQ)��R]
: (13)

Notice that since0 � � � 1, � � 1, and� � 1, we get the upper
bound

�Pe � ��
2

 � 2�NE (R)

: (14)

In general,�; �; and 
 can depend onN and on other parameters
of the code. Now, from (13)

�Pe � �
 � 2�N(E (�;Q)��(R+(log(��)=N)))
: (15)

Optimizing (15) with respect to�; 0 � � � 1; yields a lower bound
on the reliability function

lim
N!1

�
1

N
log �Pe � Er(R+R� +R�)�R� �R
 (16)

where

R� = lim
N!1

log�

N

R� = lim
N!1

log �

N

and

R
 = lim
N!1

log 


N
:

Thus the random-coding exponent is attained with the relaxed as-
sumptions on the ensemble of codes if�; �; and
 do not increase
exponentially withN: In any case we still get an exponential error
bound, but it may be exponentially inferior than the random coding
bound.

Another general technique to derive an upper bound on the
expected error probability for a restricted ensemble of codes is to
build from the given ensemble a bigger, more random new ensemble
of codes whose average performance is the same as that of the
original ensemble. Suppose that on the new ensemble the random
coding proof, maybe with the extensions above, can be derived. This
implies the same result for the original ensemble. The new ensemble
is “artificial” in the sense that it provides a tool to prove some
properties of the original ensemble, but as an ensemble on its own,
it has no interesting structure.

The simplest way to enlarge the ensemble is byword permutation.
When we are interested in theword error probability, and not in the
bit-error rate (BER) or other fidelity criterion, the specific assignment
of the information messages to codewords is not important. Thus
the ensemble performance is invariant to permutations that change
the order of the words. More precisely, assume that the codeword
index is chosen uniformly. LetE be an ensemble of codes and let
~E be a larger ensemble that contains all the codes fromE and their
word permutation. Clearly,E and ~E have the same average error
probability.

For memoryless channels, the ensemble can also be enlarged by
symbol permutation. The error probability of two codes in which each
codeword in one code is somefixedpermutation of that codeword in
the other code, is the same. Thus the average error probability of the
codes in an ensembleE is the same as the average error probability of
a bigger ensemble~E that contains all the codes obtained by symbol
permutations of the codes ofE :

For symmetric binary-input channels such as the BSC the error
probability of a code does not change by adding1 a constant binary
vector to all its codewords. The reason is that this addition does not
change the distance between the codewords.

An example that demonstrates how the observations above can be
applied to upper-bound the average error probability of a restricted
ensemble of codes is given by the following lemma.

Lemma 1: Let E be an ensemble of binary codes with the property
that for anyi 6= j andxxx we have

Pr (ccc(i)� ccc(j) = xxx) � �2�N : (17)

Then, the average error probability overE for a symmetric binary-
input channel is bounded by

�Pe � �
�2�N [E (�;QQQ)��R] (18)

whereQ is the uniform distribution.
Proof: We define a new ensemble,~E , which contains all the

codes fromE with an added random vector, i.e.,

~E = fC � vvvjC 2 E ; vvv 2 f0; 1gNg (19)

where C � vvv = fccc(1) � vvv; � � � ; ccc(M) � vvvg with the probability
assignmentPr (C � vvv) = 2�N Pr (C): As noted above in~E the
average error probability is the same as inE : To calculate the expected

1Addition of two binary vectors is their bitwise exclusive–or.
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error probability in ~E we observe that the marginal and conditional
distributions in the new ensemble satisfy

Pr (ccc~(i)=xxx)=
vvv

2�N Pr (ccc(i)=xxx� vvv)=2�N (20)

Pr (ccc~(i)=xxxjccc~(j)=yyy=
vvv

2�N Pr (ccc(i)=xxx� vvvjccc(j)=yyy � vvv)

=
ccc(j)

2�N Pr (ccc(i)xxx� ccc(j)� yyyjvvv=ccc(j)� yyy)

=
ccc(j)

2�N Pr (ccc(i) = xxx� ccc(j)� yyy)

�
ccc(j)

2�N�2�N= �2�N : (21)

Thus we have the same bounds as in (9) and (10) on the pairwise
distribution, with � = 1 and QN(�) = 2�N , implying that the
average error probability for~E andE can be bounded by (18), which
is the same as (13) or (14) with these values of� andQN(�):

In the examples above, a new, more random, ensemble of codes
was formed by generating from each code in the original ensemble a
set of codes with the same performance. To ensure that the average
error probabilities of the new and original ensembles are the same,
we implicitly assumed that in the new ensemble the probability to
choose a code from a set generated by some original code equals the
probability of choosing that original code in the original ensemble.
We note, however, that even if this assumption is not true, and the
probability assignment on the new ensemble is different implying
that the average error probability of both ensembles are different, the
average error probability on the new ensemble is still interesting. The
construction used in the discussion above assures that there exists a
code in the original ensemble whose performance is at least as good
as the average error probability of the new ensemble.

In summary, in this section we have presented techniques that allow
the derivation of the channel coding theorem, and the determination
of error exponents for code classes that are not necessarily large and
completely random. In the next section we show how these techniques
can be used to upper-bound the error probability of a specific code.
A more detailed discussion of these results and additional examples
of their usage in several interesting restricted classes of codes are
given in [14].

IV. THE ERROR EXPONENT OF A SPECIFIC LINEAR CODE

We now use the methods described above to obtain a bound on the
error probability of a binary linear code, used in a BSC, that depends
on its weight distribution (spectrum).

We use the technique above and generate from the given code a
random ensemble of linear codes by permuting randomly the order of
the codewords, and then permute randomly the order of the symbols
in the codewords. We then show that the resulting random ensemble
satisfies the condition of Lemma 1 which leads to an error exponent
expression for the original code.

Theorem 1: Let C be a particular (N;K) binary linear code,
i.e., it containsM = 2K codewords and its rate isK=N: Let Al;
l= 0; 1; � � � ; N be its weight distribution, i.e.,

Al = jfi:WH(ccc(i)) = lgj

whereWH(vvv) is the Hamming weight ofvvv: ThenPe(C), its error
probability, is upper-bounded as

Pe(C) � 2�NE (R+(log�=N) (22)

where

� = max
0<l�N

Al
2K � 1

2N

N
l

: (23)

Proof: We first generate an ensembleE 0 from the given code
by choosing with uniform distribution a permutation� 2 SM of the
order of the codewords. Fori 6= j we have inE 0

Pr ccc0(i)� ccc0(j)=xxx =
� 6=�

1

M(M � 1)
Pr ccc(�i)� ccc(�j)=xxx

=
1

M�1 ; if xxx2C
0; if xxx =2C (24)

where�i denotes the index thati is mapped to after permutation�:
We now generate an even larger ensembleE 00 by choosing ran-

domly with a uniform distribution a permutation� 2 SN of the
order of the symbols in the codewords. InE 00 we thus have

Pr ccc00(i)� ccc00(j) = xxx =
�2S

1

N !
Pr ccc0(i)� ccc0(j) = �(xxx)

= Al
1

M � 1

N !l!

N !
(25)

where l = WH(xxx) and �(xxx) = (x� ; � � � ; x� ) is the symbol
permutation ofxxx defined by�(�): This implies that the ensembleE 00
satisfies (17) with an� given in (23). Thus Lemma 1 can be applied
for E 00 leading to the bound (22) on the average error probability in
E 00, which is also a bound onPe(C):

Looking at the resulting bound, we note that
( )
2

is the probability
to select a vector with Hamming weightl, under the uniform
distribution assumption, andA

2 �1
is the same probability under the

assumption that we choose randomly one of the (nonzero) words
in the code. Hence, if the code’s spectrum is close to the spectrum
expected in a random code, i.e., ifAl � 2K�N N

l
, then we get

the well-known result [2] that the error probability of that code the
random-coding exponential bound.

Gallager, in [9, pp. 30–36], presented a bound that can be used for a
specific code in terms of its spectrum. This bound is exponentially the
same as our bound given in Theorem 1 above, but our result is tighter
by anO(

p
N) factor. Interestingly, our bound derived from the bound

in [7] that was developed for a random ensemble is tighter that the
bound in [9] that was developed directly for specific ensembles and
specific codes.

Theorem 1 can also be extended to consider general, nonlinear
codes. In this case, instead of the spectrum we should use the average
number of codewords in a given distance, i.e.,

Al =
1

M
jf(i; j): d(xi; xj) = lgj (26)

where jSj denote the size of a setS and d(�; �) is the Hamming
distance.

As another extension, suppose we have the following channel over
a larger alphabet of sizeq:

P (yjx) = 1� � x = y
�=(q � 1) x 6= y

x; y 2 f1; � � � ; qg: (27)

Codes over this channel were considered in [5]. The additional
symmetry in the channel allows to introduce the following general
operation that preserves the performance: the value assignment for
each symbol in the codeword can be permuted, and this permutation
can even be different for each symbol. A special case of this operation
is to add (moduloq) a vector to each codeword. Thus we can follow
the derivation above and get an exponential error bound for aq-ary
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linear code with a given spectrum, operating over the channel (27).
The resulting bound is given by (22) where now

� = max
0<l�N

Al

M � 1

qN

N

l
(q � 1)l

(28)

andM = 2NR is the number of codewords. Unlike our result, the
combinatorial technique presented in [5] can be applied only for rates
below the cutoff rate.

For binary-input symmetric channels, the combinatorial technique
of [5] was refined by Poltyrev [11] by using the union bound
adequately (applying the union bound in a straightforward way is the
reason why the bound in [5] is valid only at rates below the cutoff
rate). It is interesting to note that for a code with a random-like
spectrum, Poltyrev’s bound is actually tighter (by a nonexponential
term) than Gallager’s random-coding bound. Thus for linear codes
over a BSC, Poltyrev’s bound is also tighter than our bound of
Theorem 1. Still our bound, derived by a noncombinatorial approach
from the basic random-coding expression, is more general as it is
easily extended and leads to useful bounds in many cases, e.g., the
q-ary case above.

Finally, the general techniques presented in this correspondence
are useful in many interesting structured families of codes [14]. One
recent direct application of these techniques is given in [15] where
the error exponent oftime-invariant convolutional codes has been
derived.
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The Asymptotic Redundancy of
Bayes Rules for Markov Chains

Kevin Atteson,Member, IEEE

Abstract—We derive the asymptotics of the redundancy of Bayes rules
for Markov chains of fixed order over a finite alphabet, extending the
work of Barron and Clarke on independent and identically distributed
(i.i.d.) sources. The asymptotics are derived when the actual source is the
class of�-mixing sources which strictly includes Markov chains. These
results can be used to derive minimax asymptotic rates of convergence for
universal codes when a Markov chain of fixed order is used as a model.

Index Terms—Asymptotics, Bayesian statistics, Markov chains, univer-
sal coding.

I. INTRODUCTION

Given data generated by a known stochastic process, methods of
encoding the data to achieve the minimal average coding length
are known [8]. Universal codes [18], [9] encode data such that,
asymptotically, the average per-symbol code length is equal to its
minimal value (the entropy rate) for any source within a wide class.
For the well-known Lempel–Ziv code, the average per-symbol code
length in excess of the entropy, i.e., the redundancy, goes to zero
for the class of all ergodic stochastic processes [18]. In fact, there
is no code for which the redundancy goes to zero uniformly at rate
�(n) for any sequence�(n) = o(1) for the class of all ergodic
stochastic processes [16]. Moreover, it has been observed that the rate
of convergence to zero of the redundancy of universal codes such as
Lempel–Ziv are slow for practical sources of data [3, p. 268]. In this
correspondence we will derive minimax asymptotics, up to terms of
ordero( 1

n
), of the redundancy for stationary Markov chain sources.

For sources having a finite numberk of parameters and satisfying
certain conditions, it has been shown that there is a code for which
the redundancy goes to zero at ratek log n

2n
+ o( log n

n
) which is

the optimum rate [15]. For finitely parameterized independent and
identically distributed (i.i.d.) sources satisfying certain conditions, it
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