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Abstract—A novel approach is presented for the long-standing character recognition [25], iii) model order selection [1], [21],
problem of composite hypothesis testing. In composite hypothesis for instance, estimating the order of a Markov process [16], and
testing, unlike in simple hypothesis testing, the probability func- 'y niversal decoding in the presence of channel uncertainty [2,

tion of the observed data, given the hypothesis, is uncertain as it L .
depends on the unknown value of some parameter. The proposedCh' 2, Sec. 5], [3], [11], [14], [30]. The latter application, which

approach is to minimize the worst case ratio between the proba- Will receive special attention in this paper, is actually the one
bility of error of a decision rule that is independent of the unknown  that motivated our general approach in the first place.

parameters and the minimum probability of error attainable given We begin with an informal description of the problem and
the parameters. The principal solution to this minimax problem general approach proposed in this paper. To fix ideas, let

is presented and the resulting decision rule is discussed. Since the ider the bi - th h th |
exact solution is, in general, hard to find, anda fortiori hard to im- us consicer the binary case, I.e., the case where there are only

plement, an approximation method that yields an asymptotically two hypothesesdi;, : = 0, 1. Of course, the following discus-
minimax decision rule is proposed. Finally, a variety of potential sion and the main results described will extend to multiple hy-
application areas are provided in signal processing and communi- potheses, and so, this restriction to binary hypothesis testing is
cations with special emphasis on universal decoding. merely for the sake of simplicity of the exposition. As previously

Index Terms—Composite hypothesis testing, error exponents, mentioned, in composite hypothesis testing the probability func-
generalized Iik_elihood ratio Fest, likelihood ratio, maximum likeli-  tion of the observed data given either hypothesis depends on the
hood (ML), universal decoding. unknown value of a certain index, or parameter. Specifically,

for each hypothesi¢f;, i« = 0, 1, there is a family of prob-
|. INTRODUCTION ability density functions (pdfsjpe, (¥|H;), 6; € A;},r where

. _— . = (y1, - .., yn)ISasequence of observations taking on values
‘ .OMPQS.ITE hypothesus te§t|ng ISa Iong—standmg probleﬁq the observation spagé”, 8; is the index of the pdf within the
in statistical inference which still lacks a satisfactory Sq;

el . : . mily (most commonly, but not necessarify,is a parameter
lution in general. In composite hypothesis testing (see, e.g., [

: . ctor of a smooth parametric family), andd is the index set
Sec. 9.3], [27, Sec. 2.5]) the problem is to design a test, ora 4 P y). and

decision rule, for deciding in favor of one out of several hy- TA\ dvecision rule, or a tes® is sought, ideally
potheses, under some uncertainty in the parameters of the p ' ' '
ability distribution (or density) functions associated with the
hypotheses. This uncertainty precludes the use of the opti

likelihood ratio test (LRT) or the maximume-likelihood (ML) de-tWO hypotheses ara priori equiprobable. As is well known,

cision rule. the optimal test for simple hypotheses (i.e., kndymandé,) is

Composite hypothesis testing finds its applications in a Ve ML test. or the LRT denoted* (6o, 6, ), which is based on
riety of problem areas in signal processing and communicatiogs ! ' TR

. ) 2 mparing the likelihood ratio
where the aforementioned uncertainty exists in some way. A few
important examples are: i) signal detection in the presence of Loy = P8 (y|Hy) 1
noise, where certain parameters of the desired signal (e.g., am- ™ pe, (y|Ho) @)
plitude, phase, Doppler shift) are unknown [9], [28], ii) pattern

recognition problems like speech recognition [20] and opticl @ certain threshold (whose value is one in the case of a
uniform prior). The minimum error probability associated with

) ] ) ) Q* (6o, 61) will be denoted byP> (6q, 61).
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be independent of those parameters, namely, a unifornthat of the optimum LRT2*(6g, 61) forall (6y, 61) € Ag X Ay.
most powerful test exists. In other situations, there are tvidore precisely, we seek an optimum decision fuli@ the sense
classical approaches to composite hypothesis testing. Tdfehe competitive minimax

first is a Bayesian approach, corresponding to an assumption

of a certain prioru(6;|H;) on A; for each hypothesis. This oA in omax e, 61 3)
assumption converts the composite hypothesis problem into a " Q (80, 61)€hoxAr P (bo, 01)

simple hypothesis testing problem with respect to (w.r.t.) the ) _ )
mixture densities The ratioP. (2|00, 61)/ P (6o, 61) designates the loss incurred

by employing a decision rul@ that is ignorant ofé,, 6,), rel-
ative to the optimum LRT for thaffy, 6;). To make this loss
p(ylHi) = / pe; (y|Hi) (0| Hi) db, ¢=0,1 uniformly as small as possible acrasg x A, we seek a deci-
' sion rule that minimizes the worst case value of this ratio, i.e., its

and is hence optimally solved (in the sense of the expec@@Ximum'Thi_s idea of competitive (or, relative) minimax, with
error probability w.r.t8, andé;) by the LRT w.r.t. those den- respect to optimum performance for knoé, 6.), has the

sities. Unfortunately, the Bayesian approach suffers from sév—erit of pa”‘a”Y F:omper)sa'ting for the inherently pessimistic
eral weaknesses. First, the assumption that the piid#;) nature of the minimax criterion.

is known, not to mention the assumption that it at all exists,

is hard to justify in most applications. Second, even if existeP rgeanj rfl.ew. Eor exgmplef, thhe Very same gpp(rjoach has b.e en
and known, the averaging w.r.t. this prior is not very appealir’r{;Se to define t e notion of the minimax redundancy in uni-
because oncé; is drawn, it remains fixed throughout the en_versal source coding [3], where a coding scheme is sought that

tire experiment. Finally, on the practical side, the above-defin8YNIMIZes the worst case loss of COd'”Q Igngth beyond the en-
mixture pdfsp(y| H;) are hard to compute in general. tropy of the source. Moreover, even within the framework of

The second approach, which is most commonly used,c:lgmposne hypothesis testing, two ideas in the same spirit have

e genralzed heihond ato et (GLAT) 2, .52, 17 SU4eC1 e Nyman-Peason setngofhepobler. o
the GLRT approach, the idea is to implement an LRT wit 9 y ) '

the unknowng; being replaced by their ML estimates undef> thee_xponential rate optim¢ERO) teSti was proposed first by
. oeffding [10], extended later by Tusnady [26], and further de-
the two hypotheses. More precisely, the GLRT compares the ) : : ) !
generalized likelihood ratio velopedinthe mformatlont_heoryhterature_by Ziv [31], Gutman
[8], and others. In this series of works, it is demonstrated that
there exist tests that maximize the error exponent of the second
ook ben (ylH) kind, uniformly across all alternatives, subject to a uniform con-
W (2)  straint on the error exponent of the first kind across all proba-
Bo€Ag bility measures corresponding to the null hypothesis. The short-
coming of the ERO approach, however, is that there may always
to a suitable threshold. Although in some situations the GLR3ist probability measures corresponding to the alternative hy-
is asymptotically optimum in a certain sense (see, e.g., [29] fpothesis, for which the probability of error of the second kind
necessary and sufficient conditions in a Neyman—Pearson-ltkeds to unity. The second idea, in this spirit of a competitive
setting, [17] for asymptotic minimaxity, and [2, p. 165minimax criterion, is the notion of most stringent tegi.2, pp.
Theorem 5.2] for universal decoding over discrete mem@839-341], where the minimax is taken on the difference, rather
ryless channels), it still lacks a solid theoretical justificatiothan the ratio, between the powers of the two tests.
in general. Indeed, there are examples where the GLRT isThe advantage of addressing the ratio between probabilities
strictly suboptimum even asymptotically. One, rather synthetias proposed herein (3) is that it corresponds to the difference
example can be found in [11, Sec. Ill, pp. 1754-1755]. Ibetween the exponential rates of the error probabilities. As is
another, perhaps more natural, example associated with Wl known, under most commonly used probabilistic models
additive Gaussian channel (see the Appendix), it is shown tifatg., independent and identically distributed (i.i.d.) and Markov
the GLRT is uniformly worse than another decision rule thapurces/channelsf*(6y, ¢1) normally decays exponentially
is independent of. Moreover, in some situations, the GRLTrapidly as a function of., the dimension of the observed data
becomes altogether totally useless. For example, if the twety. Thus, if the value of,, happens to be a subexponential
classes are nested, that isAif C A; andpe, (-|H;) depends on function ofn, i.e.,lim, ., n~!In K,, = 0, this means that,
the hypothesidd; only via#; (¢ = 0, 1), then the generalized uniformly overAo x A;, the exponential rate df,. (2|6, 61),
likelihood ratio (2) can never be less than unity, and Hg, for the(2 that attains (3), is as good as that of the optimum LRT
would always be preferred (unless, of course, the thresholdfas known (8y, 8;). In this casef! is said to be ainiversal de-
larger than unity). cision rule in the error exponent sense
In this paper, we propose a new approach to composite hy-
pothesis testing. According to this approach, we seek a decisioﬁn a recer_1t paper [13], the competitive r_nini_m_ax ap_proach_considered he_zre is
rule that is independent of the unknowm andé;, and whose combined with the ERO approach and this difficulty is alleviated by allowing

’ . = the constraint on the first error exponent to depend on the (unknown) probability
performance is nevertheless uniformly as close as possiblemisure of the null hypothesis.

As a general concept, the competitive minimax criterion is by
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The exact solution to the competitive minimax problem idn such cases, it will be understood thiastands for the set of
in general, hard to find, anal fortiori, hard to implement. For- allowable combinations di,, 61, ..., Op—1).
tunately, it turns out that these difficulties are at least partially A decision rule is a (possibly randomized) m&8p V" —
alleviated if one is willing to resort to suboptimal solutions that0, ..., M — 1}, characterized by a conditional probability
are asymptotically optimal. The key observation that opens tiector function
door in this direction is that in order for a decision rule to be n
universal in the error exponent sense defined above, it need not 2 ={(wOly), -, w(M = 1ly)). y € V")
be strictly minimax, but may only be asymptotically minimaxvith w(4|y) being the conditional probability of deciding in

in the sense that it achieves (3) within a factor that grows subdavor of H; giveny, i = 0, ..., M — 1. Of coursew(ily) is
ponentially withn. A major goal of the paper is to develop andever negative and
investigate such asymptotically minimax decision rules. M-1

The outline of the paper is as follows. In Section II, we first Z wlily) =1, forally € Y".
characterize and analyze the structure of the competitive min- i=0

imax decision rule. We will also obtain expressions for the mirk 5 test is deterministic, then for evegyand, w(ily) is ei-
imax valueK,,, and thereby furnish conditions for the existencgher zero or one, in which cas will designate the subset of
of a universal decision rule in the error exponent sense. As Mgpyectors for whichu(ily) = 1,i = 0, ..., M — 1. For a given
tioned earlier, the strictly competitive minimax-optimal decigecision rule? ando < i < M — 1, let

sion rule in the above-defined sense is hard to derive in general. .

In Section Ill, we present several approximate decision rules P.(Q6;) = / [1 — w(i|y)|pe, (Y| H:) dy

that yield asymptotically the same (or almost the same) error

exponent as this decision rule, but with the advantage of having = / e, (y|H;) dy,
explicit forms and performance evaluation in many important Qf o N
practical cases. In Section IV, we present applications of uni- for a deterministic decision rule  (4)

versal hypothesis testing in certain communications and sigq@.’e (overall) probability of error, for a uniform prior of#;},

processing problems, and elaborate on the universal decoq'@given by
problem in communication via unknown channels. Finally, in
Section V, we conclude by listing some open problems. 1 Mt
Pe(200) = 7 > PAQ)6). ®)
=0

II. THE COMPETITIVE MINIMAX CRITERION
In this section, we provide a precise formulation of the comL-et.Q. (#) = {90(9)’ -1 {2y (0)} denote the optimum ML
. - . : decision rule, i.e.,
petitive minimax approach for multiple composite hypothesis
testing, and then study the structure and general propertie%zo 9 H) > m

! . = : ) F a ) H: s
the minimax-optimal decision rule. ”f< ) y: o (W) 2 #3{ po; (WIH;)

Lety = (y1, ..., yn) denote amm-dimensional vector of i1=0,....,.M—1 (6)
observations, where each coordingte: = 1, ..., n, takes . .
on values in a certain alphabgt (e.g., a finite alphabet, awhere ties are broken arbitrarily, and denote
countable alphabet, an interval, or the entire real line). The PX(6) = P.(2°(6)6). @)

nth-order Cartesian power @Ff, which is the space ofi-se- . )

quences, will be denoted By*. There areM (M > 2-integer) T inally, define

composite hypothesed{y, ..., Hy;—1, regarding the prob- P.(26)

abilistic information source that has generagedAssociated Kn (2, 0) = P(6) (8)
with each hypothesi&l;, ¢ = 0, ..., M — 1, there is a family ¢

of probability measures ofi™ that possess jointly measurableind the competitive minimax is defined as

Radon—Nykodim derivatives (w.r.t. a common dominating K, = inf sup K.(2, 6). 9)
measure), {pe. (y|H,), 6; € A;}, whereé, is the parameter, 2 gcA

or more_generally,_ the index of the probability measure within \wnile in simple hypothesis testing, the optimal ML decision
the family and4; is the index set = 0,..., M — 1. For 16 0*(6) is clearly deterministic, it turns out that in the com-
convenience, will also denotee. = (6o, - -, 91\_471)_ and posite case, the competitive minimax criterion considered here,
A = Ag x---x Ap1. In some situations of practical interestyay vield a randomized decision rule as an optimum solution.
6 may not be free to take on values across the whole Cartesjgitively, this randomization gives rise to a certain compro-

productAg x --- x Ay but only within a certain subset asyise among the different ML decision rules corresponding to

the componenty, 6y, ..., fa—1 may be related to each otheryitterent values oé. The competitive minimax criterion defined
(see, e.g., Section IV-B, where evén= 0, = --- = 0y_1). ip (9) is equivalent to
3The dominating measure will be assumed the counting measure in the dis- M-1
crete case, or the Lebesgue measure in the continuous case. ﬁ > fyn [1 —w(i|y)|pe, (y|H;) dy
=

4This is meant to avoid cumbersome notation when denoting quantities that inf sup

10
depend o, ..., 8,1, such as the probability of error. Q gca Px(6) (10)
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A common method to solve the minimax problem (10) is to use aExample: Consider a binary-symmetric channel (BSC)
“mixed strategy” fold. Specifically, note that (10) can be writtenwhose unknown crossover probabiliy can either take the

as value0 < « < 1/2 or the valuel/2 < 3 < 1, where« and 3
1(d6) are given and known. Let a single bitc {0, 1} be transmitted
Ky = inf SUP/ P (6) across the channel and lgte {0, 1} be the observed channel
poJA e output. The problem of decodingupon observing; under the
M-1 . .
1 Z (1 — w(ily)lpe. (y|H:) d uncertainty of whethef = « or 8 = 3 is, of course, a problem
M — Jyn Y)lpe;\y1i) oy of binary composite hypothesis testing, where according to
= hypothesisHy, + = 0 was transmitted, and according £f ,
2 inf sup Ko (Q, p) (11) « = 1. Inthis case, we have
Q .
pe(y = 0|Ho) =1 —pe(y = 1|Ho) =1 -6
wherey(-) is a probability measure ah (defined on a suitabl
() is a probabilty ( y poly = O\Hy) =1—po(y = 1/H;) =6.  (16)

chosen sigma-algebra af). Note that both: and{2 range over
convex sets (as both are probability measures) andfhas a The ML decoder fol = « acceptsH, for y = 0 and Hy for
convex—concave functional (in fact, affine in both arguments). = 1, whereas fol® = 3 it makes the opposite decisions.
Therefore, if{pe, (-|H;), 6; € A;} are such that: i) the space ofThe resulting error probabilities are, therefaR(«) = « and
decision ruleg{Q} is compact, and ii¥<,,(-, ) is continuous P*(3) = 1 — 3. To describe the minimax decoder, we have
for every ;. (which is obviously the case, for example, wheto specify the weights assigned #oand 3. Let i = pu(a) =

|V| < 00), then the minimax value is equal to the maximin valug — 1(3), and for a given value of, let

[24, Theorem 4.2], i.e.,

AE gy ol g
_ (d6) 4200 a)+1_ﬁ (1-7)
K, =sup inf ” It
TR APF,(Q) :—~(1—a)—|—1—u (17)
1 M-1 q [a%
. n
a1 2 [ Lt 6lH) 4y @) 2 h 1w
=0 V Buzaa—i-m[j
For a givery:, the minimizer2 of K ,,(Q2, ) is clearly given B 1—pn
as follows. Let =ht T 3 B (18)
fily) = / —u(d9)p9{ (y|H7) (13) Denotingwy = w(0|0), w1 = w(0|1), andQ = (wo, w1), and
! A P*(6) settingn = 1, we now have
P o 1
Then,w(i|y) is given by K, 1) = g {5 [(1— a)(1 = wo) + (1l — wy)]
1, It fi(y) > max f;(y) .
. + = +(1-
w(ily) = 0 if fi(y) < max f;(y) g oo+ a)wl]}
arbitrary value in0. 1]. i £:(y) = max f;(v). + i;’; {% [(1= B)(1 — wo) + B(1 — w1)]
JjFE -
(14) .
The last line in the above equation tells us that any probability + 3 [Bwo + (1 — /3)w1]}

distribution w(-|y) over the set of indexe&i} that maximize

f:(y) is a solution to the inner minimization problem of (12). = 1 [A, + B, + (w1 —wo)(4, — B,)]
The maximizing weight function.*(-) (whenever exists) can %
be found by substituting the solution (14) into (12) and maxi- 2 5 [A,+ B, + A(A, — B,)] (29)

mizing the resulting expression oyerThe resulting expression _
is therefore where the last two lines tell us that the performance of the de-

) o coderl(in thehcorS?fetitive mingmax sen.:,]e) depegdsu@ran(rj]
w1 only via the differenceA between them, and so, with a
Sﬁp M /J/ [Z fiy) = max fi(y)| . (15) slight abuse of notation, we will denote the last line of (19) by
=t K (A, p). ifwe canfind a saddle-poitih*, ;*) of K1 (A, i),

Note that (15) is also the minimax value of (11), sinCehen the decision rul* corresponding ta\* would be a min-
the minimax and maximin values coincide. This does N@hax-optimal. As is well known [22, Lemma 36.2], the pair
imply, however, that any maximin decision rule is necessaribN7 1) whereA* minimizesmax,, K1 (A, 1) and where:*
minimax. Nonetheless, whenever there exists a saddle-pQif¥iximizesmin K1(A, 1) is such a saddle-point @f; . Now,

(@, p*) itis both minimax and maximin. In this case, the dethe maximin decision rule (14) estimatedy # using the fol-
sired minimax decision rule is of the form of (14), but wjth= lowing rules:

w* and with certain values ab(i|y) € (0, 1) for randomized X
tie-breaking. We next demonstrate the intricacy of this probleth4. > By, theni = y.
by example. If A, < B, thenz =1—y.
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If A, =B, thus, for everyu, we have
. [0.  with probabilityw, 1 . pe, (Y| H;)
b= { 1, with probability 1 — w,. (20) 3 / Ly 0% ) min Zpop= =1 (24

It then follows (as can also be seen directly from the expressipnview of this, the factor,, can be thought of as arising from
of K1(A, p)) that the performance of this decision rule for anterchanging the order between the minimization ovand
giveny is given by the summation oveh. Sincek,, can also be thought of as the
ratio between the expressions of (23) and (24), we now further
examine this ratio. We start with the left-hand side (LHS) of
(24), which is the denominator of this ratio. Since (24) holds for

The maximum of this expression w.ptoccurswhenl, = B, gny, e may select: to be the uniform distribution and then
(corresponding, in turn, to the previously described randomized

InAinfl(A, p) =min{A,, B,}.

mode of the decoder), which is achieved for z dy Z 14(6) min M
251 2 Jy " & P P()
A (20 —
—— (21) 1 .o, (y|H:)
_ _ — > 3 TviginT e
(1-20)(1—-p)+a(28-1) Z 241 )y dy max min P ) (25)
a_nd so, the maximin value (which is also the minimax value) {5, the other hand, the right-hand side (RHS) of (23) is upper-
given by bounded by
L 8-« 1 / . pe, (y|H:)
K| = ma K (A = .= d; f) — =~
p=manin Ky(A p) = G5 s g 2 S, v 0; O = pegy
Solving now the minima?< problgm df_l(A, ), we obtain after < 1 / dy min max D, (y|Hi). (26)
some standard algebraic manipulations 2 Jym i A PO
. a+ph—-1 Combining (23)—(26), we get
(1-2a0)(1— ) +a(26—1) Jyw dymin max pe, (y|Hi)/ P2 (0)]

Ko <|A| : iy
which is always in—1, 1] and hence can be realized as a dif- Jyn dymaxminpe, (y|H;)/ Pz (6)]
ference Eetween some two numbefsandewyg in [0, 1]. Thus,  Ag can be seen, there are two factors on the RHS The first is the
unlessA™ happens to be equal 10 0, or —1, the minimax de- gje of index set\, which accounts for its richness, and mea-
coder must be randomized. ¢ sures the degree afpriori uncertainty regarding the true value

This example is interesting, not only in that the minimax def the index or the parameter. The second factor is a ratio be-
coder is randomized, but also because the weight fungtion tween two expressions which depends more intimately on the
is such that the test statistig(y) (cf. (13)) has no unique max- Structure and the geometry of the problem. Accordingly, a suf-
imum. It turns out that as grows, and as the index sets be- ficient condition for the existence of universal decision rules
come more complicated, the test statisfi¢y) gives rise to a refers both to the richness of the class and its structure. Note,
larger degree of discrimination among the hypotheses, the né@@articular, that if the minimax at the integrand of the numer-
for randomization reduces, and the weight functigr) has a ator of (27) happens to agree with the maximin at the denomi-
weaker effect on the decision rule and its performance. Furthgator for everyy (which is the case in certain examples), then
more, it becomes increasingly more difficult to devise the exaft. < |A.
minimax decision rule in closed form. Fortunately, as will be In the more general case 81 hypotheses, let us define the
seen in the next section, one can approxinfatg) and the re- following operator over a function whose argument takés
sulting (deterministic) decision rule turns out to be asymptotfalues:

cally minimax under fairly mild regularity conditions. M
We conclude this section by further characterization of the Min; f(¢) = Z f(@) —max f(3). (28)
value of the minimax—maximin game i=1 !

. P.(Q6) . P.(Q]0) In other wordsMin; f(¢) is the sum of all terms except for the
K = igf sup - mf//\“(de) Pr(0) (22) " maximal term off(¢). We then have thak’,, is upper-bounded

@ gen Pr(0) n : : i '
To make the derivation simpler, we begin with the case of twt()y the same expression as in (27) except that the ordinary min-

hypotheses and assume tiats a finite set. By plugging the UM OVer: 1S rep aced byin overs . .
. . . In certain examples, we can analyze this expression and de-
optimum (Bayesian) decoder for a givenwe have

termine whether it behaves subexponentially within which
1 ) pe, (Y| H,) case, a universal decision rule exists in the error exponent sense.
Kn =5 swp / dy min > ji(6) P (6) (23) " s is well known, and will be discussed in Section IV, for the
problem of decoding a randomly chosen block code, in the pres-
where we note that ence of an unknown channel from a sufficiently regular class,
N 1 . there exist universal decision rules (universal decoders) in the
P26y = | dyminpololt) fhere & ( )
i ponent sense.

fCcA
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I1l. A PPROXIMATIONS AND SUBOPTIMAL DECISION RULES and
M-—1

The decoder developed in the previous section is hard to img- Z / [1 — w(ily)] Sup [pa (y|H: )} dy
plement, in general, for the following reasons. First, the m|n- M Pr(0)
imax decoder that attains (10) and has the structure given by M 1
(13) and (14), is not given explicitly as it depends on the least = Z / [1— w(ily) ]fz( ) dy (33)

favorable weight functiop*(-), which is normally hard to find.

Secondly, an exact closed-form expressioP6{é), which is _ N o

necessary for explicit specification of the decision rule, is rareljOte that the expression af,,(<2) is similar to that ofk’,(£2)
available. Finally, even if both* (-) andP*(8) are given explic- except that the supremum owktis interchanged with the inte-

itly, the mixture integral of (13) is prohibitively complicated tod"ation and summation. Therefor,, () < K., (<) for every
calculate in most cases. Q. Note also that while the minimax decision rule minimizes

In this section, we propose two strategies of controlling tl‘g;(m’ the de::rllsmnfrul:ﬂtmlmmlzesKn(-).bThe(I(illotvr\]nng ‘
compromise between performance and ease of implementat'm .22?;%56_r5] thgsceorr?cest't'o g'r‘;]e_n?nqa“pgggsé’“_g te:)mseoftehreor-
The first (Section I1I-A) leads to asymptotically optimal perfor— (i petiive minimax )|

r1otlmal valuek,,.
mance (in the competitive minimax sense) under certain co
ditions. The second strategy (Sections I1I-B, 11I-C) might be Theorem 1:Let (2 be defined as in (31) and let
suboptimal, yet it is easy to characterize its guaranteed perfor- N

mance. L, 2 sup

A. An Asymptotically Minimax Decision Rule

In this subsection, we approximate the minimax decision ruIehen
by a decision rul€2, which is, on the one hand, easier to imple- K, (Q) < L,K,.
ment, and on the other hand, under fairly mild regularity condi-
tions, asymptotically minimax.e., Proof: Combining the two facts mentioned in the para-

(Q‘ ) graph that precedes Theorem 1, we have, for every decision

Fe(Q16) _ rule Q

sup <L,-infsup——-—==L,K, (29)

och  Pr(0) Q gen P2(0)
where the sequencgL,, } grows subexponentially im, i.e.,
lim,, o - In L, = 0. Note that if, in addition <., is subexpo- and the proof is completed by minimizing the rightmost side
nential as well, then so is the product K, and thenP*(Q|9) w.r.t. Q. O
is of the same exponential rate (as a function)és P (6) for
everyd uniformly in A.
Consider the test statistic

K, (Q) <K, (Q) < Ko(Q) < LoKn(Q)  (34)

In view of the foregoing discussion on asymptotic mini-
maxity, Theorem 1 is especially interesting in cases where the
sequence L, } happens to be subexponential. As we shall see
fi(y) = su D (y|Hi)7 i=0,...,M—1 (30) nextin afew examples, this is the case as long as the families

sca  Pr(0) of sources, corresponding to the different hypotheses, are not
too “rich.” While the exact value of.,, might be difficult to
compute in general, its subexponential behavior can still be
established by upper bounds.

and let the decision rul@ = (), ..., Q,_1) be defined by

Q; :{y; fily) > max fj(y)}, i=0,...,M—1 (31)

Examples:
where ties are broken arbitrarily. Observe that this is a variant 1y Finjte Index SetsSuppose that;, i = 0, ..., M — 1,
Qf th_e GLRT ex_cept that, prior tq the maX|m_|zat|on overthe are all finite sets and let 2 A] = HM n |A . Then,
likelihood functions corresponding to the different hypotheses ¢ everyQ
are first normalized by’ (8), thus giving higher weights to pa-
rameter values for which the hypotheses are more easily distin- M- e, (y|H,)
guishable (i.e., wher®* () is relatively small). Intuitively, this Ko ( Z/ [1-w(ily) ]maX P*—W) dy
manifests the fact that this decision rule strives to capture the ‘
relatively good performance of the ML decision rule at these < 1 1— pgi (y|H;) 4
We next establish the asymptotic minimaxity @f To this L ZZOM_I o=l
end, let us define the following two functionals: 1 . pe, (Y| Hi)
g :ZMZ/ [1—W(Z|Q)P*—w)dy
o) — P.(Q6) 6=1 =07V €
(§2) = sup . M-1
Pe (%) P <y|H>
M1 <L -max — Z/ [1—w(i|y)]
= sup — Z / 1 —w |y p0 (y| ) dy (32) gcA n ( )
beA M - S Pr(B) =L K,(Q) (35)
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and so,L,, < L independently of.. Of course, the above hypothesis (see, e.g., [14], [5]). This technique of using
chain of inequalities continues to hold even if the size of a grid was also used in [5] in the context of universal de-
A varies withn. coding. However, in contrast to [5], here the grid is not
Discrete-Valued Sufficient StatisticSuppose that used in the decision algorithm itself, but only to describe
(y|H,) i—0 M1 the sufficient condition. Our proposed decision rule con-
Pe.\YlHi), PN tinues to b&?, independently of the grid. We will further
can be represented as elaborate on this in Section IV.
pe, (Y| H:) = Qi(6;, 9:(y)) Discussion: To gain some more general insight on the condi-
. . - i hichL,, i ial whefh; in-
that is, pe. (4| H;) depends oy only via a sufficient tions under whiclL,, is subexponential whef\; } are contin

uous, observe that the passage from the expressii (2) to
that of K, (2) requires that the maximization ov&rand the in-
tegration ove)™ would essentially be interchangeable. To this
end, it is sufficient that the integral of

statistic functiong,, which is independent d&f. Suppose
further that the supremum @§. (y|H;)/ P () is a max-
imum, and that the range ¢f is a finite set for every,,

e, G, 2 Ho:(y):y € Y'}| < oo. Thisis the case,

for example, with finite-alphabet memoryless sources, fi(?/|9) 2 M

where the sufficient statistig; is given by the empir- Pr(6)

ical probability distribution and the number of distinctoverd € A would be asymptotically equivalent to
empirical probability distributiong7,, is polynomial in Flar) — F(ul6

n. More generally, finite-alphabet Markov chains also 1iw) EICIK 1ilyl6)

fall in this category. Now, observe that singgy) does i the exponential scale, uniformly for evegywith the pos-

not take on more thatr,, distinct values ay exhausts gjp|e exception of a set of points whose probability is negligibly
Y™ (by assumption), then neither does the maximizer @fhall. Since

ps, (y|H;)/ P2 (9). Inotherwords, the cardinality of the set
A, = {argmaxope, (y|Hi)/PX(0):y € V"'}
is at mostG,,. Since

/ Ji(wl6) d6 < Vol(A) - fi(y) (37)

it is sufficient to require that the converse inequality essentially

holds as well (within a subexponetial factor). For the integral of

max po, (Y1) _ po; (Y| Hi) fi(y|6) to capture the maximum of;(y|6), there should be a
PO) ~ 5 PO neighborhood of points i, around the maximizer of;(y|6),

uch that on the one hangi(y|6) is close tof;(y) for every

t the chain of i lities (35) with the finitg". .
lvjrﬁrir;{iiaegve9ebceisiqnt(;klenr$?)l\]/ae;xleslz(ina)ll\;/w the ;STI in that neighborhood, and on the other hand, the volume of

equality in (35) is now replaced by an inequalit becau§ is neighborhpod is nonvanishing. In this case, the_integ_ral of
thqe mail(imlﬁm)ovenn nev[()ar excee{is the s?;preri/]um oveE(yW) over A is lower-bounded by the volume of this neigh-

A. The conclusion, then, is that in this casg< G,,. harhoad multipl_ied t_)y_the mi_nim_um (ﬁ(y|9) within the neigh-
Dense Grids for Smooth Parametric Famili€&ample 1 borh_oo_d, but th's minimum 1S still airly close tb(y)'.

essentially extends to the case of a continuous index set Itis mterestmg 0 p0|r_1t out that the very same 'de? SEIVes
even if the assumptions of Example 2 are relaxed, but thén the basis of asymptotic m(_athods of Laplace integration tech-
the requirement would be thas, (y|H; )/ P*(6) is suffi- niques [4], [23]. We have deliberately chosen to keep the fore-

ciently smooth as a function ét Specifically, the idea is going discussion informal, but with hopefully clear intuition,
to form a sequence of finite grids, = {6* ’ 6v ) rather than giving a formal condition, which might be difficult

¢ € A i=1,...,1,, that on the one hand, becom éo verify in general. . .

dense in\ asn — oo, and on the other hand, its sizgis It should also be pointed out that some of the techniques used
subexponential im 'These WO requirement’s can Simul_in the above examples were essentially used in [17] to show that
taneously be satisfied as long as the classes of sourcestg?eGLRT IS asymptptlcally minimax in the sense of minimizing
not large. Now, if in addition maxgep P.(€2]8). This observation indicates that the GLRT is a

more pessimistic criterion because performance is not measured

N SUD s, (y|Hi)/P:(0) relative to the optimum ML decision rule.
Yp = Sup — < (36)
ycyn X pe, (ylH:)/Fe(6) B. Suboptimal Decision Rules

then again, by a similar chain of inequalities as above, it is Although the decision rul& is easier to implement and more
easy to show thak,, < I,,v,. Thus, the asymptotic min- explicit than the exact minimax decision rule, its implementa-
imaxity of O can be established {fy..} is subexponen- tion is still not trivial. The main difficulty is that it requires an
tial as well, which is the smoothness requirement needéact closed-form expression f () for everyé € A, which
This requirement omy, might be too restrictive, espe-iS, unfortunately, rarely ava!klable. _

cially if I is unbounded. Nonetheless, it can sometimes I SOme situations, wheie? (¢) decays exponentially and the
be weakened in such a way that the supremum in (38}fOr exponent function

is taken merely over a bounded set of very high proba- L 1 "

bility under every possible probability measure of every E(®) = nlggo n In 7(0)
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is available in closed form, thefiy(y) can be further approxi- C. Asymptotic Minimaxity Relative f&*(6)]¢

mated by Returning to the case whef&*(6) (or at least its asymptotic

up M (38) exponentE(f)) is available in closed form, itis also interesting
o exp[—nE(f)] to consider the choicB(6) = [P*(8)]¢ (or B(6) = e~ "¢E®)),
Clearly, as can be shown using the same techniques asVfiereV < & < 1. The rationale behind this choice is the fol-
Section l1l-A, the resulting decision rule inherits the asymptotloWing: In certain situations, the competitive minimax criterion
minimaxity property of{2 provided that the convergence ofV:I:t. ' (¢) might be too ambitious, i.e., the value of the min-
—11n P*(6) to E(6) is uniform across\. imax may grow expon_er_1t|ally wm. Noneth_eless, a reason-
In many other situations, however, even the exact expon@yple_compromlse o_f striving to uniformly acr_ueve only a certain
tial rate functionE(6) is not available in closed form. Sup-fraction¢ of the optimum error exponent, might be achievable.
pose, nonetheless, that there is an explicit expressionugfiger Note that the choice df between zero and unity, gives a spec-
boundB(#) to P*(6), which is often the case in many applicairum of possibilities that bridges between the GLRT on the one

tions. Consider the test statistic extreme(¢ = 0), and the new proposed competitive minimax
B (y|H,) decision rule on the other extrerfie= 1). The implementation
fi(y) = sup o \W14i) (39) of the approximate version of this decision rule is not more dif-
oca  B(0) ficult than that of¢ = 1. The only difference is that the denom-
and letQ = {Qq, ..., Qa_1}, be a decision rule where inator of test statistic (38) is replaced byp{—néE(6)} (or,

in view of Section 1lI-B, Theorem 2, it can even be replaced by
Q= {y: fi(y) > max ﬁ(y)}, i=0,....,M—1 (40) gxp{—n_gEL(_e)} for some kno_wn lower boun&'(6) to E(8),
J#i if E(#) itself is not available in closed form). We propose the
and where ties are broken arbitrarily. Now, define _fqllowmg guideline for the choice ¢f. Note that if the compet-
itive minimax value w.r.t{P*(6)]¢, for a certain value of > 0,
En() 2 sup Fe(€2]6) (41) doesnotgrow exponentially with, then an error exponent of at
o B(#) least{ E(#) is achieved for alb. This guarantees that whenever

and letK” (Q2) be defined similarly ag(,,(£2) but with the de- 12 (6) decays exponentially rapidly (that i&{6) > 0), so does

. N ) AP the probability of error of the (approximate) minimax decision
nominator (¢) being replaced b (6), i.e., /; is replaced by rule competitive tdP*(6)]¢. We would then like to le¢ be the
fi. Finally, let ¢

) K(Q) largest number with this property. More precisely, we wish to
L, =sup =>——. (42) selectt = &, where
o K,(Q)
" . 1
The following theorem gives an upper bound to the error §" = sup {51 1171}:8;19 ~n K < 0} (43)
probability associated witke. and ’
. / P.(Q

Theorem 2: For everyd € A K€ 2 inf sup ( |9). (44)

"7 gen [PI(O)F

In a sense, we can think of the factgras the unavoidable cost

. ) ) _of uncertainty ind. Quite clearly, all this is interesting only for
Note thatl,, can be assessed using the same consideratigages wher¢* > 0. Fortunately, it turns out that at least in

as discussed in Section Ill-A, and therefore, under certain regigme interesting examples of the composite hypothesis testing

larity conditions, it is subexponential similarly fo,. If, in ad- problem, it is easy to show thgt > 0. One such example,

dition, K, is subexponential (i.e., if there exists a universal dgghich is analyzed in the Appendix, is the following communi-

cision rule in the error exponent sense), then Theorem 2 tellsi system. Consider the additive Gaussian channel
us that the exponential decay rate of the error probability as-

sociated with( is at least as good as that of the upper bound Yo = Oxy + 24, t=1,2, ... (45)
B(#). This opens a variety of possible tradeoffs between guar- ) ) N
anteed performance and ease of implementation. Loose bout@§red is an unknown gain parameter, apd },>, are i.i.d.,
typically have simple expressions but then the guaranteed pégfo-mean, Gaussian random variables with variartc€on-
formance might be relatively poor. On the other hand, more sgjder a codebook of two codewords of lengtlyiven by
phisticated and tight bounds can improve performance, but then N N o

the resulting expression &f(#) might be difficult to work with. & = (g, . x,) = ( nl, 0,0, ..., 0)

We shall see a few examples in Section IV. and

Proof: First observe that sincg,(6) < B(6) for all 6, gt =(a1, ..., 2p,) = (0, nP, 0, ..., 0)
thenK,,(2) < K,,(Q) for all 2. Now, similarly as in the proof
of Theorem 1

P (9‘6) < L K.B(6).

where Py and P, designate the transmission powers associ-
o . . . . ated with the two codewords, which may not be the same.
K, (Q) <L, inf K,(Q) <L, inf K,(2)=L,K, It is demonstrated in the Appendix that while the optimum
2 2 .. . .
R error exponent of the ML decision rule is given #6) =
and the desired result follows from the definitionff,(2). O  6*(FP + P1)/(802), there is a certain decoder, independent of
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6, which will be denoted bf2°, that achieves an error exponenbf letters) associated with Let 7, denote the type class corre-
of 2Py P, /[202(P + P1)]. Now, for every sponding ta?, i.e., the set of ath-sequenceg € Y™ for which

2 2 @y = Q. Finally, let Q™ denote the set of all empirical PMFs
&< G LB/ [207 (B + 1)) = 40 (46) of n-sequences ove¥™. Then it is well known [2] that
92(P0+P1)/(80'2) (P0+P1)2
we have po. (Yl Hy) = exp{—n[H(Qy) + D(Qy|IP2)]}  (50)
¢ G(Q0|9) where H(Qy) is the empirical entropy of and D(Qy||Fs,) is
K SUP P 0F (47)  the relative entropy betwee}, and .. Using this and the

well-known fact tha{Z(Q)| = exp{nH(Q})}, we now have

exp{—n[H(Q)+D(Q[|Fs.)]}

which in turn is of the (nonpositive) exponential order of

t< 7(Q | 111 su
4PyP, 7 (Py+ P) Ki< > 1T(Q) min sup -
e {nf” |6 0 V| Vi = oo elner)
= ms i E(8) — D(Q|| Ps,
Therefore, in this case mq}x =01 SgpeXp{n[S ®) (@17, )]y
#2071 = exp4 7 |max min ¢ sup(§E(0)—D(Q|| Fs, )),
&> Bt B > 0. (48) P 1 gp(S (0)—D(Q|| P,))
The conclusion, therefore, is that the approximate competitive SUP(§E(9)—D(Q||P01))H}- (51)
minimax decision rule wit§ = 4P, P, /(Po+P;)? is uniformly 4

at leastas good a2 for all @ in the error exponent sense. Notgor this expression to be subexponentiakinthe following
that for Py = Py, we havel Py P /(Py + P.)? = 1, which im-  condition should be satisfied: For every PNJFover Y, either
plies that™ = 1. This means that(#) is universally attainable ¢ E(6) < D(Q||Ps,) for all 8, or EE(8) < D(Q|| Ps, ) for all .
for orthogonal signals of the same energy. As shown in the Agquivalently

pendix, in this particular case, even the GLRT attdit{8) uni- D(OQ||Py,) D(Q||Py,)

versally. Another example of theoretical and practical interest, ¢ < min max {inf % , inf b } (52)
where¢* > 0 will be discussed in Section IV-A. Q o E) o E0)

In general, it may not be trivial to compute the exact valuand so, the RHS is a lower boundgt Note, that ifAg andA;
of £*. However, it might be possible to obtain upper and lowetre notseparated awayand if 6, andf; areunrelated(in the
bounds from lower and upper bounds &, respectively. sense thatthey may take on valuedirandA, respectively, in-
Upper bounds og* would be interesting for establishing fun-dependently of each other), then there ex@gts Q* for which
damental limitations on uniformly achievable error exponents®th numerators of (52) vanish, yet the denominators are strictly
whereas lower bounds yield positive achievability results.  positive, and sg* = 0. If, however,d, andé, are related (e.g.,

In the foregoing discussion, we demonstrated one way to aly-is some function o), then&* could be strictly positive
tain a lower bound tg* from an upper bound t&§. We now as the denominators of (52) may tend to zero with the numera-
conclude this subsection by demonstrating another method, ttwas. A simple example of this is the class of binary memoryless
leads to a single-letter formula of a lower boundtowhichis sources (Bernoulli) withy = {0, 1}, whereé designates the
tight under the mild regularity conditions described in Exanprobability of “1,” Ay = [0, 1/2), andA; = (1/2, 1]. Again, if
ples 1-3 and the Discussion of Section llI-A. As an examplé, andé, are unrelated, theft* = 0. However, iffy andd, are
consider the class of discrete of memoryless soufé®g$ of a related bydy = 1 — 64, then&* = 1. This is not surprising as
given finite alphabel’, wheref designates the vector of letterthe ML decision rule, which achievés(#), is independent of
probabilities. Assume further that there dre = 2 composite in this case.
hypotheses, designated by two disjoint subs&gsand A;, of
this class of sources. In the following derivation, where we make IV. APPLICATIONS
use of the method of types [2], the notatiop = b, means
that the sequencds:,,} and{b,,} are of the same exponential
order, i.e.,

In this section, we examine the applicability of our approach
to two frequently encountered problems of signal processing
and communications. We will also compare our method to other

lim 1 Inay /b, = 0 com_monly uged meth_ods, i_n particular, the GLRT. As mentione_d
n—oo N e ’ earlier, special attention will be devoted to the problem of uni-
versal decoding that arises in coded communication over un-

Similarl in (23 h
imilarly as |n( ), we have Known channels.

== sup E min daf) Po.\Y1%i) (wlH;)
N — ic{0,1} [Px(0)]¢ A. Pattern Recognition Using Training Sequences
pa (y|H) Consider the following problem in multiple hypothesis
< in sup —————+ (49) . . . . . e
E: 1L p Z testing, which is commonly studied in statistical methods
~ic{0,1} ¢ [PX(0)] S " .
Y of pattern recognition, like speech recognition and optical

where the inequality is tight in the exponential order under tleharacter recognition (see also [31], [8], [15]). There is a
conditions discussed in Section IlI-A. Now, I€t, denote the model of some parametric family of pdfg,(y), ¢ € ¢} (e.g.,
empirical probability mass function (PMF) (relative frequenciesidden Markov models in the case of speech recognition), and



FEDER AND MERHAV: UNIVERSAL COMPOSITE HYPOTHESIS TESTING 1513

M sourcesyy, (+),¢ =0, 1, ..., M — 1, in this class constitute Thus, the computation qﬁ(y), with the denominator approxi-
the M hypotheses to which a given observation sequencemated bye—"(¢0—¢1>2/8, involves maximization of a quadratic
must be classified. For simplicity, let us assume that= 2 function of g and¢:, which can be carried out in closed form.
and the two sources asaepriori equiprobable. Obviously, ib;,  Specifically, the maximizations associated \Af@lﬁy) andf; (¥)

¢ = 0, 1, were known this would have been a simple hypothesige equivalent to the minimizations of

testing problem. What makes this a composite hypothesis 5 5 s M 5
testing problem is that, in practice,, and ¢, are unknown, 12 = doll” + [lzo = ol + ll#1 — ¢ [|° — 1 (d0 = ¢1)

and instead, we are given two independent training sequengaes

xo andx;, emitted byg,, andg,,, respectively. To formalize 2 — ¢1]1 + ||Zo — ol + |21 — b1 ||? — n (o — ¢1)?

this in our framework, the entire data setyis= (z, o, 1), 4

the parameter i8 = (¢o, ¢1) € ®%, and respectively, both over-A, A]?. At this point, it is important
and interesting to distinguish between two cases regarding the

Ho: po(y|Ho) = oo (2)da0 (%0) e (21) relative amount of training data. th > n(v/5 — 1)/4, these
Hi: po(ylHy) = o, (2)q0, (£0) o, (21). two quadratic functions have positive definite Hessian matrices

(independently of the data), and hence also have global minima
In words, undeH; it is assumed that shares the same param-even forA = oc. Therefore, if the absolute values of the true
eter asx;, ¢ = 0, 1. ¢o and ¢, are significantly less thar, then with high proba-

Denote byP’(¢o, ¢1) the minimum error probability asso- bility, these minimizers are also in the interior[efA, AJ%. In

ciated with the simple hypothesis testing problem defined ltlyis situation, the proposed approximate minimax decision rule,
(¢o, ¢1). This is the error attained by LRT, comparing, () similarly to the GLRT, decides according to whether the sample
to ¢4, (2). Based on the above, our asymptotically competitivean ofz is closer to the sample mean =f or to the sample
minimax decision rule will select the hypothedfs for which  mean ofz;. If, on the other handyn < n(v/5 — 1)/4, then the

Hessian matrix of each one of the above mentioned quadratic

Fily) = max L& (#)840(20)5, (1) ., i=0,1,j#i formshasanegative eigenvalue, and so, its minimum is attained
%0, 1 Pe(do, ¢1) always at the boundary ¢f- A, A]2. In this case, the decision
is maximum. This is, in general, different from the Bayesian agtle might be substantially different.
proach [15], where the decision is according tothleat maxi- Because of this “threshold effect,” and the intuition that at-
mizes tainable error exponents must depend on the amount of training
data, this example is an excellent example where it would be
Inilx[qq5(27j)qq5(2)] Tmax gy () advisable to apply an approximate minimax decision rule w.r.t.

[Pr(0)]¢ for some¢ < 1 (cf. Section 11I-C). At the technical
and from the GLRT [31], [8] used under the Neyman—Pearséifle, note that below a certain valuesofdepending omn /n),

criterion, where each of the quadratic forms to be minimized olgs, ¢,) (for
which now the term(¢o — ¢1)?/4 is multiplied by¢) is again
max[%(mo)%(z)]/ [max g (o) max q¢(z)} guaranteed to have a positive definite Hessian matrix. As for a
@ @ @ lower bound tog* for his problem, it is not difficult to show,

is compared to a threshold (independentlyof. using the Chernoff bound, that the GLRT (fdr= <o) attains

As a simple example, consider the case of two Gaussian d@R-error exponent dkp —¢1)?/[8(1+n/(2m)]. Itthen follows
sities given by that, in this case§™ > 1/[1 4+ n/(2m)].

The problem of universal decoding is frequently encountered
in coded communication. When the channelis unknown, the ML
where¢y and¢; take on values in a certain internat A, 4], decoder cannot be implemented and a good decoder is sought
A > 0, and we are given two training sequenagsandz; of that does not depend on the unknown values of the channel pa-

n B. Universal Decoding
4o, (2) = <27r>—"/"‘exp{‘% > (- @)2} . i=o0,1

t=1

lengthm. The exact expression @t (¢q, ¢1) is given by rameters. We first provide a brief description of the problem and
Jn prior work on the subject, and then examine our approach in this
Pr(¢o, ¢1) =Q <7n |po — </>1|> context. _
Consider a family of vector channe{dVy(y|z), 6 € A},
where where x = (x1,...,z,) € A™ is the channel input,
- ¥y=(y1, --., yn) € Y" is the observed channel output, ahd
Q) A / ﬂ o—u/2 is the index (or the parameter) of the channel in the class. A
> V27 block codeC = {z!, ..., "} c A" of lengthn and rateR is

a collection of M = 27% vectors of length, which represent
the set of messages to be transmitted across the channel. Upon
transmitting one of thé/ messages’, a vectory is received
(¢o — ¢1)? at the channel output, under the conditional p&f(-|z?).
E(¢po, ¢1) = — s The decoder, which observesand knowsC, but does not

The asymptotic error exponent associated Wit ¢o, ¢1) is
given by
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know 6, has to decide which message was transmitted. THikis decoder can be further simplified by its asymptotically
is, of course, a composite hypothesis problem with multipquivalent version
hypotheses, where the same parameter valoerresponds to

all hypotheses and log f(.'ti, Y~ mgxx[log We(y|z") + nE.(R, )] (55)

pely|Hy) = Walylz),  i=0,1,..., M—1. where

. 1. =,
It is well known [2] that for discrete memoryless channels En(R, 0) = nlgréo_ﬁ log £7¢(0)

(DMCs) (see also [14] for Gaussian memoryless channels)

o V\%enever the limit exists) is the asymptotic exponent of the
more ge_nerally, for f|n|te-_state (FS) chanr_lels [30], [11], t.hea}agverage error probability (random-coding exponent [6]) asso-
exist universal decoders in thandom codingsense. Specif-

icallv. the exponential decay rate of the average error robci@\ted withWy. The latter version is typically more tractable
Y P Y Y proog ce, as explained earlier, explicit closed-form expressions are

bility of these universal decoders, w.r.t. the ensemble of rap- iiable much more often for the random coding error expo-

domly chosen codes, is the same as that of the average €&t function than for the average error probability itself. For

probability obtained by the optimum ML decoder. Un'versal't¥\xample, in the case of DMCs, Gallager’s reliability function

in the random-coding sense does not imply that for a SPECIHE vides the exact behavior (and not only a lower bound) to the
code the decoder attains the same performance as the opti ﬁﬁom-coding error exponent [7]. It should be kept in mind

ML decoder, nor does it imply that there exists a specific Co%%wever that in the case of DMCs. the maximum mutual in-
for which the universal decoder has good performance. . _formation (MMI) universal decoder [2], which coincides with
In a recent work [5], these results have been extended in Si¥e GLRT decoder for fixed composition codes, also attains
eral directions. First, the universality in the random coding senie(R 8) for all 6, both in the random coding senée and in the
:zlssboesg Qnenir(;irl]llzeegq'_? d[SrLto ?;E;treggégiixfsd g:]as;ﬁjoq[aﬁzagferministic coding sense. Nevertheless, this may no longer be
ObeyIng ' gulanty ” ..._trtue for more general families of channels. It should be stressed,
and richness. Secondly, under somewhat stronger cond|t|0|[]1

referred t ron rabilinin 151, th veraence rat 8\’Never, that the existence of a universal decoder (55) in the
clerred 1o astrong separabilits [5], the CONVETGENCe Tale o terministic coding sense w.r.t. the random coding error expo-
toward the optimal random coding exponent is uniform acro

the index set [5, Theorem 2], namely ﬁ%ntE,,(R, #) does notimply that there exists one with the same
' ' ' property w.r.t. the ML-decoding error exponent of the same se-
P.(Q]6) quence deterministic codesZ that#%;(6|Cy,). _
=0 It is important to emphasize also that the universal decoder
of (55) is much more explicit than the one proposed in [5] as it

whereP. (Q]6) is the random-coding average error probabilitf?0lds the need of employing many decoding lists in parallel,
associated with the universal deco@grand P~ (¢) is the one each one corrgspondmg to one pointina de'nse grid (whose size
associated with the optimum ML decoder #6b. Finally, itwas 9rOWs withn) in the index set, as proposed in [3]. ,
shown that, under the same condition, there exists a sequenc@S @n additional benefit of this result, more understanding
of specific codegCy, n = 1, 2, ...}, for which the universal a0 be gained regarding the performance of GLRT, which is

decoder of [5] achieves the random coding error exponent of 2 c0Ommonly used when the channel is unknown. We have al-
ML decoder uniformly irg. ready mentioned that in some cases (e.g., the class of DMCs) the

The existence of a universal decoder in the error exponéftRT performs equally well as the universal decoder proposed

sense uniformly ir, for both random codes and deterministiQ€r€in- In some other cases, this is trivially so, simply because
codes, obviously implies that both the two decoders coincide. For exampleFf(#) happens to

be independent of in a certain instance of the problem, then

lim sup — log —
n—oo ap n g P:(e)

) P.(Q)6) the GLRT is universal, simply because it coincides with (54).
K = inf " P For example, consider an additive channel with a jammer signal
and ¢ [14] parameterized bg, i.e.,y; = ;42,4 (6), wherez, is ad-
P.(Q06,C,) ditive noise (with known statistics) ang(6) is a deterministic

K[Cn] = inf sup (53)  jammer signal characterized By(e.qg., a sine wave with a cer-
[

tain amplitude, frequency, and phase). Here, whé&nknown,
whereP.(Q6, C,) is the probability of error for a specific code:(#) can be subtracted from, and soP;(¢) is the same as

C,, (in the same sequence of codes as in [5]) are subexponerf@élthe channel;, = x; + 2, which in turn is independent of

in n (that is,&* = 1 for both). Therefore, similarly as in the ¢. Another example, in a continuous time setting, is associated
derivation in Section Il, it is easy to show that the following dewith a constant energy, orthogonal signal set given by sine waves
cision rule is universal (relative to the random coding exponergj different frequencies (frequency-shift keying—FSK), trans-
in both the random coding sense and in the deterministic codifidfted via an additive white Gaussian channel (AWGN) with

sense. Decode the messagfeas the one that maximizes thean unknown all-pass filter parameterized fySince the sig-
quantity nals remain essentially orthogonal, and with the same energy,

‘ even after passing the all-pass filté}; () is the probability of
f(z_i’ y) = max Wi(yl-'l' )' (54) error of an orthogona_l syster_n_m the AWG_N, e_ssen_tlally inde-
6 Px(6) pendently of? (assuming sufficiently long signaling time).

P:(6)
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Perhaps one of the mostimportant models where the univeradlere! is the(k + 1) x (k+ 1) identity matrix,\ is a Lagrange
decoder (54) should be examined is the well-known model ofultiplier chosen so as to satisfy the energy constraint
the Gaussian intersymbol-interference (I1SI) channel defined by

T
1 1 1
k —
B S SIS u)
Yt = Z hize—i + 2 (56) <n t na na
_=0 ~andGisa(k+1)x (k+1) matrix whos€4, j)th entry is given
where(ho, ..., ki) = 0 is the vector of unknown ISI coeffi-
cients and z; } is zero-mean Gaussian white noise with variance
&2 (known or unknown). The problem of channel decoding with 1 Z 1 o
. . . . . — Tt—ilt—j — Z Ut —Ut—j -
unknown ISI coefficients has been extensively investigated, and n dn 4

there are many approaches to its solution, most of which are
on the basis of the GLRT. As mentioned earlier, the results br low-rate codebooks of size larger thzra similar idea can
[5] imply that universal decoding, in the random coding sensgill be used withP;(#) being approximated using the union
is possible for this class of channels. Therefore, the compdiPund, whichis given by the pairwise error probability as above,
tive-minimax decoder, proposed herein, as well as its asympultiplied by the codebook siz&/. However, this should be
totic approximatior¥, is universal as well in the random codingdone with some care as the pair of codewofdS «’) that
error exponent sense. achieves the minimum distance,,[>_, k(i _; — 7 _;)]?, may
In addition to the random-coding universality, it is especiallfepend on the filter coefficients. For higher rates, where the
appealing, in the case of the ISI channel, to examine the pEfion bound is not tight in the exponential scale, more sophis-
formance of our decoder when it is directed to asymptotic mificated bounds must be used.
imaxity w.r.t. a specific code. In other words, we wish to im- Itisinteresting to note that the existen_c_e of auniversal decoder
plement the same decoder as in (54), but with the denominafbthe error exponent sense for a specific orthogonal code, can
being replaced by the probability of error associated with a spge established using (27). For example, consider the channel de-
cific code. fined byy; = 6x;+ 2, where{z; } are zero-mean, i.i.d. Gaussian
To demonstrate the decoding algorithm explicitly in this casEandom variables, anflis an unknown constant. Suppose that

let us consider, for the sake of simplicity, a codebdatf two » = {a, —a} for some known constant > 0, and the code-
A o 1 bookconsists of two orthogonal codeworslg,—= (9, ..., z0)

codewordsg® andz?, and letu = (uq, ..., u,) = &° — . L h )
If the ISI channel were known, then the probability of error a ndzy = (a1, .-, .x’?)' Itcan eaS|I)_/ b_e seen that for eveyy=
-+, Yn), the minimax and maximin values at the numerator

sociated with optimum ML decoding would have been of the’l’ 4 o
exponential order of and denominator of (27) are the same. THidg, < |A| = 2

and the existence of a universal decoder is established. This ex-
2 ample can be extended to the case of a larger orthogonal code,
exp{ — Z Z hjug; /(802) and for any symmetric sét. Also, it can be observed that in this
" ; case, the GLRT is a universal decoder. Interestingly, when the
codewords are not orthogonal the minimax and maximin values
where the numerator in the exponent is the Euclidean distarzge not equal, and this technique cannot be used to determine
between the two codewords after having passed the ISI filighether or not a universal decoder exists. In this case, as shown
(neglecting some edge effects at the beginning of the block). lietthe Appendix, there is a uniformly better decoder than the
us suppose also that one knoagriori that the ISl filter is of GLRT [14]. Unfortunately, even that decoder is not universal in
limited energy, i.e.Ef:O h? < S,whereS > 0is given. Then, the error exponent sense for every specific code.
our approximate competitive-minimax decoder (foe= 1), in
this case, picks the codewartl = (1, ..., z7,),i =0, 1, that V. CONCLUSION AND FUTURE RESEARCH

minimizes the expression _ . . -
In this paper, we proposed and investigated a novel minimax

k approach to composite hypothesis testing with applications to
min % Z Y — Z hﬂ;;ﬂ. problems of classification and to universal decoding. The main
hoy ey hie | 20° 5 =0 idea behind this approach is to minimize (or, to approximate the
minimizer of) the worst case loss in performance (in terms of
1 k error probability) relative to the optimum ML test that assumes
iy Z hjue—; (57) knowledge of the parameter values associated with the different
t |j=0 hypotheses. The main important property of the proposed deci-
sion rule is that, under certain conditions, it is universal in the
subject to the constrainf.F_ A7 < S. This is a standard error exponent sense whenever such a universal decision rule at
quadratic minimization problem and the minimizing vectoall exists. When it is not universal in the error exponent sense,
8 = (ho, ..., hy) of ISI filter coefficients is given by solving it means that such a universal decision rule does not exist. We
the following set of linear equations: studied the properties of the proposed competitive-minimax de-
. cision rule, first in the general level, and then in some more spe-
(G+AD0 =g (58) cific examples. One of the interesting properties of the proposed
5¢f. Example 3 and Discussion in Section llI-A. decision rule is that, in general, it might be randomized and this

2

2
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6+/nFy /2 and the distance frorf0, /nP; ) to the same lines

is #\/nPy,/2. Itis easy to see then (by rotating the coordinate
system by 49 that the error event giverf is equivalent to the
event that eithef/ > 6\/nP,/2 or V > 6\/nF,/2 (exclu-
sively): = 0, 1, whereU andV are independent, zero-mean
Gaussian random variables, each with variamteThe proba-

bility of error is then given by
nho
202

1 nP
GLRT gy _ ~ 01 _90p2
pevio - oo (2 ) 20
7’LP1 2 7’LP1
is different from the classical solutions to the hypothesis testing 2Q <9 \/ 2,2 ) —2Q <9 T,Q)
problem.

Future research will focus on further studying the propertig¥éhich is of the exponential order of
of our proposed decision rule, mostly in applications of practical exp{—n8% min{ Py, P.}/(45°)}.

interest. Specifically, in the context of universal decoding, more .= . , b h 4o b h h
understanding is left to be desired regarding considerations oft IS interesting to observe that one can do better than the

code design for universal decoding. Tradeoffs between perfgl‘l-‘RT wheng is unknown, by using a decoder that selects the

. . . 2 ; .
mance and ease of implementation, as discussed in the pa ssagéfor whichmine 2= (21— 0y:)* is smaller (see [14]),
will also receive more attention in the future. amely, by projecting the vector formed by the first two coordi-

nates of eacl’ in the direction of the first two coordinates of
y. In this case, the boundary between the two decision regions
is a pair of straight lines through the origin whose distances to
In this appendix, we demonstrate the suboptimality of the:0 »9) and to(«!, z1) are the same (the slopes of these lines
GLRT in a very simple example. Consider the additive Gaussiaﬂg im) E|ementary geometrica| considerations, sim-
channel ilar to the above (and the union bound) lead to the result that
the error probability, in this case, is of the exponential order of
_ , . exp{—n#>PoP1/[20%(Py + P1)]}, which is strictly better than
whered is an unknown gain parameter, afd },>1 are i.i.d., hat of the GLRT for every nonzero value®fnd for every or-
zero-mean, Gaussian random variables with variarfceSup- thogonal code of two codewords, provided tiat P
pose that our codebook consists of two codewords of length Finally, to complete the picture, consider the ML decision

ox’}

6x%

Fig. 1. Geometric illustration of the GLRT for two orthogonal codewords.

1
+ 5 (A2)

APPENDIX

yt:9$t+zt7 t:]., 2, (Al)

given by rule. Since the Euclidean distance betwedar! and 6z' is
2° =22, ..., 2%) = ( nPs, 0,0, ..., 0) 6+/n(Fy + P1), the error probability of ML decoding is of the
exponential order otxp{—n6*(Py + P1)/(8c2)}, which is
and strictly better than both previously mentioned exponents, again,
g =(z, ..., 2) = (07 nb, 0, ..., 0) provided thatP, # Pi.

where P, and P, designate the transmission powers associ- NOt€ that, in a random coding regime, whefgand I, are
ated with the two codewords, which may not be the samdandom variables, these exponential error bounds should be av-
Now, the GLRT picks the codeworsf, i = 0, 1, that mini- eraged w.r.t. the joint ensemble&f and 7 , and so, the random

mizesming 37, (v, — 61)2, which is equivalent to deciding coding error exponent of the GLRT might be strictly inferior to

according tomine Ele(yt — 92%)2, since all coordinates of that of the latter universal decoding rule.
both codewords vanish fér> 3. Thus, the problem is actually
in two dimensions. Referring to Fig. 1, the GLRT projects the
vector (w1, ¥2) onto the directions of the two-dimensional vec- The authors are grateful to the anonymous reviewers for their
tors formed by the first two coordinates #£f andx! (namely, helpful comments.

(1, 0) and (0, 1), respectively), and decides according to the

ACKNOWLEDGMENT

smaller between the distances frém, v-) to the vertical axis
and to the horizontal axis of the coordinate system. In other[l]
words, the GLRT decides in favor af® or #! according to
whether|y1| < |ye| Of |y1| > |y2|. Thus, the boundaries be- [2]
tween the two decision regions are straight lines through the[3]
origin at slopes of:45’. Accordingly, the distances froi -

(9, 29) and@ - (=1, #3) to these lines dictate the error proba- [4]
bility (refer to the dashed lines in Fig. 1). Specifically, the dis- 5
tance from(6v/nP,, 0) to each of the 45boundary lines is

6Clearly, every orthogonal code of two codewords can be transformed, by an[6]
appropriate orthonormal transformation, to this form. If the original code is not
orthogonal, the first coordinate #f might be nonzero as well, yet the extension  [7]
of this example of the suboptimality of the GLRT is still valid.
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