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Abstract 

This chapter provides a comparative discussion on natural and artificial 
systems. It focuses on multi-objective problems as related to the evolution 
of systems either naturally or artificially; yet, it should be viewed as rele-
vant to other forms of adaptation. Research developments, in areas such as 
evolutionary design, plant biology, robotics, A-life, biotechnology, and 
game theory, are used to support the comparative discussion. A unified ap-
proach, namely Multi-Competence Cybernetics (MCC) is suggested.  This 
is followed by a discussion on the relevance of a Pareto-approach to the 
study of nature. One outcome of the current MCC study is a suggested 
analogy between species and design concepts. Another resulting sugges-
tion is that multi-fitness dynamic visualization of natural systems should 
be of a scientific value, and in particular for the pursuit of understanding of 



natural evolution by way of thought experiments. It is hoped, at best, that 
MCC would direct thinking into fruitful new observations on the multi-
fitness aspects of natural adaptation. Alternatively, it is expected that such 
studies would allow a better understanding of the similarities and dissimi-
larities between the creation of natural and artificial systems by adaptive 
processes.  

1 Introduction 

Comparing natural and artificial systems has been the focus and drive of 
the fathers of cybernetics. Such a comparative approach has also served as 
a major stimulator in the development of the field of Evolutionary Compu-
tation (EC). Observing the bio-inspired field of EC it is straightforward to 
realize the strong link with the field of Mathematical Programming (MP). 
Many developments in EC could be viewed as advancements in MP as re-
lated to both Single- and Multi- Objective Optimization (SOO and MOO, 
respectively). The similarity between SOO, as implemented in EC, and 
that of natural evolution is quite apparent.  

Wondering about the similarities between natural evolution and optimal-
ity has been extensively discussed in the literature, and the comparison be-
tween optimality and adaptation has been a subject of an ongoing debate 
(e.g., [1]). As outlined in section 2.3, most of the available discussions on 
optimality as related to natural evolution can be viewed as referring to 
SOO rather than MOO. Considering the significance of MOO in the de-
velopment of artificial systems, the above observation seems striking. 
Therefore, it is justified to explore the relations between MOO and natural 
evolution. This chapter provides a discussion on this topic using research 
developments in areas such as: evolutionary design, plant biology, robot-
ics, A-life, biotechnology, and game theory. It should be noted that the fo-
cus of this chapter is on adaptation as related to evolution, yet some as-
pects of the discussion should be relevant to other forms of adaptation.  

The following contains four sections. Section 2 provides the background 
needed for the suggested comparison. In section 3, several observations are 
made with respect to the suggested comparison. In addition, section 3 pro-
vides a definition of Multi-Competence Cybernetics (MCC) and it explains 
the notion of multi-fitness. Section 4 includes a short comparison between 
natural and artificial design, as well as a recently suggested comparison 
between design concepts and species as related to MCC. Section 5 pro-
vides a short list of MCC questions that might shed some light on future 



MCC research topics. Finally, Section 6 summarizes and concludes this 
chapter. 

2 Background 

This section provides some overview of issues that are relevant to the 
comparative discussion and suggestions of this chapter.  

2.1 Introduction to Cybernetics 

Existing definitions and scope 

The traditional definition of cybernetics, as “the science of communica-
tion and control in the animal and the machine,” is attributed to Norbert 
Wiener [40]. The fathers of cybernetics, such as Wiener, studied analogies 
and metaphors between animals and machines starting at the level of a 
neuron up to and including the level of societies. It should be pointed out 
that there are a host of different definitions of cybernetics as listed by the 
American Society for Cybernetics (see: www.asc-
cybernetics.org/foundations/definitions.htm). Of a special interest to the cur-
rent discussion are the non-traditional definitions such as: “the art of se-
curing efficient operation” (by L. Couffignal), “...[the] mathematical and 
constructive treatment of general structural relations, functions and sys-
tems” (by F. von Cube), “the art and science of manipulating defensible 
metaphors” (by G. Pask), and “the art and science of human understand-
ing” (by H. Maturana). It is clear from this collection that cybernetics can 
be viewed from different and much broader perspectives than that of the 
original one. Modern cybernetics involves three types of systems, as 
schematically depicted in figure 1. 

 

Figure 1: The scope of modern cybernetics 
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As suggested in figure 1, and in accordance with Pask's definition of cy-
bernetics, the scope of cybernetics involves comparisons between the dif-
ferent systems. This issue is briefly described in the following. 

The two view-points of cybernetics 

Cybernetics includes two interesting viewpoints. In fact, Holland [18] 
implicitly refers to them in his discussion on the role of genetic algorithms, 
by stating that: "It should be emphasized that the plans (algorithms) set 
forth have a dual role.” Referring to the upper part of figure 1, the first 
view of cybernetics is aimed at studying natural systems to support the de-
velopment of better man-made systems (with arrow to the right), whereas 
the second view-point involves using new ideas, which are generated as a 
part of the development and the analysis of artificial systems, to possibly 
find new explanations to nature (left-pointing arrow). When considering 
the first viewpoint of cybernetics, it should be noted that the common en-
gineering design process is substantially different from the way evolution 
creates its biological products. Yet, the desire to imitate or at least to be in-
spired by nature is strong and has been proven to be fruitful from engineer-
ing standpoint (e.g., soft computing methods, bio-inspired robotics).  

Although most of the work in cybernetics could be viewed as focusing 
on the first viewpoint, the second view should not be ignored. Given the 
success of bio-inspiration some sort of similarity must exists, and a major 
question is whether the similarity is applicable to also support the second 
view of cybernetics. As an example of the second viewpoint consider the 
use of EC in explaining natural evolution as done in [11]. EC has made an 
extensive use of metaphors and analogies from its early days, and this has 
provided a rich vein for its continual development. Yet, there are several 
difficulties when considering the use of EC to study natural systems. In the 
more general sense, the difficulties of using the second view-point of cy-
bernetics are related to: a. controversies concerning Artificial Life (A-life) 
studies in general, b. controversies concerning the association of adapta-
tion with optimality, and c. difficulties in testing theories of evolution. In 
this chapter a forth issue is added and discussed, namely, difficulties in try-
ing to relate the notion of multi-objectiveness to the common terminology 
of biology. In the next three sections (2.2, 2.3, 2.4) some aspects of the 
three types of difficulties are briefly discussed, whereas the forth issue is 
dealt with in section 3. 



2.2 Cybernetics and A-life 

The scientific exploration of nature and its evolution is an ongoing 
process that involves observations, theories, and occasionally some ex-
periments. Acceptable theories, which are based on observations, are al-
ways subject to the possibility of being replaced or just extended. Darwin-
ism has already been extended into neo-Darwinism as the scientific 
knowledge expanded. In spite of the fact that the basic ideas of Darwin 
still prevail, the pursuit for a better and more complete understanding of 
natural evolution is far from over. The study of evolution has inherent dif-
ficulties due to the time scale involved, the lack of complete information 
about the past, the complexity of natural systems, and the difficulties of 
performing experiments.  

The second viewpoint of cybernetics might help to somewhat compen-
sate for these inherent difficulties. A related approach is that of the Evolu-
tion of Artificial Creatures (EAC). EAC is a research topic of relevance to 
fields such as Robotics, Mechatronics, and Cybernetics. It is an experimen-
tal setup for research in A-Life; a field that attempts to investigate living 
systems through the simulation and synthesis of life-like processes in arti-
ficial media. In spite of its controversial nature A-life research approach 
has about two decades of recorded research achievements with a growing 
research community and related conferences. One way to view A-life stud-
ies is to consider it as thought experiments as suggested in [13]. This 
means, according to Di Paolo et al. [13], that: “although simulations can 
never substitute for empirical data collection, they are valuable tools for 
re-organizing and probing the internal consistency of a theoretical posi-
tion.” Such a scientific justification to A-life helps to resolve, to some ex-
tent, the controversial aspect of this approach. 

2.3 Cybernetics, Adaptation, and Single-objective Optimization 

Securing efficient operation, as stated in the proposed definition of cy-
bernetics by Couffignal (see section 2.1), suggests a close relation of cy-
bernetics to optimization of systems. It also hints at a close relation with 
control and with adaptation of systems. Efficiency is usually associated 
with some measure with respect to a goal or an objective. Holland [18] 
lists three major components in the adaptation of a system, namely the en-
vironment, the adaptation plan to induce improvements, and a performance 
measure to be associated with the environment. When referring to artificial 
systems Holland [18] states: “Here the plans serve as optimization proce-
dures....” In support of his uniform treatment of adaptation, Holland pro-



vides illustrations from different fields. In all of his illustrations, when re-
ferring to optimization, it appears that the reference is to SOO (including 
the weighted sum of performances). Holland’s suggestion seems logic in 
view of the similarity between the notion of fitness of an organic individ-
ual and that of the notion of performance of an artificial individual. This 
fundamental aspect of evolving natural (artificial) systems, namely fitness 
(performance), serves to measure which organic (artificial) individual has 
a better chance to "survive" (selected as a candidate in an adaptation step 
for optimality).  

It seems suitable to continue this review, on the resemblance between 
adaptation and optimality, with some historical aspects of the use of the 
famous and confusing term, namely, survival of the fittest. Fittest fuzzily 
implies optimization and optimum, and therefore it requires clarification. 
The notion of survival of the fittest has been in the center of on going de-
bates, which are dated back to the time of Darwin. At the extreme it has 
been the focus of some theological discussions. In such debates it has been 
claimed to be a tautology; namely, that it means survival of those better at 
survival, hence it is meaningless. Gould [16] suggests that the rebuttal by 
Darwin is most compelling. According to Gould: “Darwin insisted, in 
principle at least, that fitter organisms could be identified, before any en-
vironmental test, by features of presumed biomechanical or ecological ad-
vantage.” The term survival of the fittest has also played a role in discus-
sions on what is known as social Darwinism, and in particular with respect 
to the justification of controversial ideologies such as racialism. These 
kinds of debates may have caused certain resentment to the term, and 
probably contributed to the need to better express what adaptation is all 
about. In fact, although many researchers in the field of EC are still using 
the term survival of the fittest, most contemporary biologists almost exclu-
sively use the alternative term of natural selection, and acknowledge its 
complex nature1. With this respect, biologists tend to agree that natural se-
lection plays a role in the evolution of traits, as an adaptation process, but 
may fail to agree about the significance of its role with respect to other 
evolutionary forces (e.g., [30]).  

Both fitness and performance are typically considered as scalars. Usu-
ally, performance, as applied to optimization, is understood as a value, 
which is measured with respect to some objective or to a weighted sum of 
objectives. With respect to the latter it should be noted that the weighted 
sum of objectives should be considered as a SOO approach. Fitness, is 
                                                      

1 Apparently, Spencer [37], and not Darwin, coined the term survival of 
the fittest.  The interested reader is referred to Wikipedia where an histori-
cal trace of the origin of the term can be found.  



aimed at describing the natural capability of an individual of a certain 
genotype to reproduce, namely to be able to transfer at least a part of its 
genetic material to the next generation. Fitness of a genotype, in biology, is 
commonly measured either in absolute or relative terms. In the former 
measuring method fitness is a ratio of the number of individuals after se-
lection to those before, as related to a particular genotype.  To measure ab-
solute fitness is usually difficult, hence the idea of a relative fitness has 
emerged. In both methods, fitness is a scalar. Wright [41] suggested study-
ing natural evolution by visualizing the distribution of fitness values as if it 
was a landscape. For this purpose a distance measure between genotypes is 
needed. The concept of a fitness landscape, or adaptive landscape, involves 
the set of all possible genotypes, their degree of similarity, and their re-
lated fitness values. A similar visualization is commonly used in SOO, 
where the values of the performance of all solution candidates are visual-
ized as a landscape. In maximization problem the aim is to find the peak or 
peaks of the landscape. When taking an adaptationist viewpoint, and using 
the metaphor of landscape as described above, evolution might be viewed 
as a local optimization rather than a global one. For example, Orzack and 
Sober [30] defined adaptationizm as: “the claim that natural selection is 
the only important cause of the evolution of most nonmolecular traits and 
that these traits are locally optimal.” Although their view of adaptationism 
is somewhat extreme, the general understanding is that natural selection is 
similar to local optimization. In fact, as pointed out by Parker and May-
nard Smith [31], optimization and game theories have been widely used, 
particularly by field biologists, to analyze evolutionary adaptation. Yet, as 
it appears from the description of Parker and Maynard, in such studies op-
timization criterion rather than criteria is associated with fitness. One 
should not confuse between the notion of payoffs, which is used in such 
studies, and that of criteria, since that (as stated in [31]) “payoffs are ex-
pressed in units of the criterion to be maximized.”    

Taking all of the above arguments into account one should claim that 
there is a similarity between adaptation and optimality, and in particular 
with respect to SOO. When viewed closely, it appears that most discus-
sions, which deal with adaptation versus optimization and do not explicitly 
refer to SOO and/or MOO, should be considered as implicitly referring to 
SOO. With this respect, as already pointed out in the introduction (section 
1), it should be noted that this chapter deals primarily with adaptation in 
the sense of evolution. 

So far the discussion has focused on the similarity between fitness of an 
organic individual and performance of an artificial individual, as related to 
adaptation and optimization. When focusing on shape and structure, in na-
ture and the artificial, it appears valid to further discuss the similarity in 



terms of physical terms, such as energy, rather than in biological terms  
(such as the number of individuals after selection). Bejan [6] has investi-
gated such a similarity with respect to tree-like structures, and has general-
ized his observations into a theory. According to his constructal theory: 
“For a finite-size system to persist in time (to live), it must evolve in such a 
way that it provides easier access to the imposed currents that flow 
through it.” The constructal theory, which has emerged from the design of 
engineered systems, assumes that geometric forms that appear in nature are 
predictable through optimization under constraints. Furthermore, similar to 
studies on adaptation and optimization, the discussion in [6] refers to SOO. 
The only apparent exception is the citation from the work of Nottale [29] 
on fractals, which states: “One of the possible ways to understand fractals 
would be to look at the fractal behavior as the result of an optimization 
process…Such a combination…may come from a process of optimization 
under constraint, or more generally of optimization of several quantities 
sometimes apparently contradictory…” Interestingly, this citation is left, 
by Bejan [6], without a discussion on the possible role of MOO in the con-
structal theory. Recently [7], MOO approach to the design of heat ex-
changers has been discussed in conjunction with the constructal theory. 
Yet, no reference has been made with respect to heat exchangers in nature. 

In summary, although of a controversial character, there are studies on 
the similarities between natural and artificial systems as related to optimi-
zation. Most of such studies, which use optimization theory to explain evo-
lutionary adaptation, either explicitly or implicitly refer to SOO. There are, 
however, some exceptions, which are discussed in section 3. 

2.4 Validation of Adaptation Theories 

The second viewpoint of cybernetics, which has been described in sec-
tion 2.1, may help producing new theories and explanations about nature. 
Yet, any borrowed idea, from engineering design or alike, needs valida-
tion. Recalling the idea of the role of A-life as thought experiments, as dis-
cussed in section 2.2, it is worthwhile to note that Parker and Maynard 
Smith [31] have used a similar argument. They have justified optimality 
theory in evolutionary biology by saying that: “Optimization models help 
us test our insight into the biological constraints that influence the out-
come of evolution. They serve to improve our understanding about adapta-
tions, rather than to demonstrate that natural selection produces optimal 
solutions.” In some sense, the use of optimization models in the study of 
natural adaptation could be view as a part of A-life. In any case if model 
predictions match the actual observations then one may hope to have made 



the right assumptions about the natural process and its modeling. Clearly, 
models by themselves cannot validate a theory and empirical evidence is a 
must. Unfortunately, it is well known that empirical research on natural 
evolution has many limitations, and has not resulted with a well-accepted 
evolution theory, but rather with a variety of opinions and debates (e.g., [1, 
30, 35]). While evolution theories and their extensions are difficult to sub-
stantiate by empirical evidence, it is noted that thought experiments, on 
ideas such as presented in this chapter, might lead to future planning of 
evolutionary experiments. As noted by Sarkar [35], with respect to empiri-
cal adaptationism, such tests might become increasingly plausible with the 
advent of large sets of complete genomic sequences. 

2.5 Multi-objective Problems in Engineering Design 

The following provides background on engineering design in the spirit 
of the second viewpoint of cybernetics. Namely, ideas from engineering 
design, which are presented here, are to be borrowed (in sections 4 and 5) 
for the pursuit of understanding nature. 

General 

Product development commonly involves tradeoffs among contradicting 
objectives (e.g., accuracy vs. cost). The significance of such tradeoffs to 
creative design has been highlighted in the TRIZ method, which resulted 
from a comprehensive study of patents by Altshuller, as described in [36]. 
Traditionally multi-objective problems (MOPs) have been treated by a 
SOO-like approach using either a weighted sum of the objectives or a goal 
attainment method. Such problem definitions and solution techniques 
could be viewed as range-dependent approaches. Modern processing tech-
nologies provide a means to consider parallel search methods which are 
suitable for range-independent MOPs that may involve a search towards a 
Pareto-front and the associated non-dominated solutions (see the introduc-
tion to this volume).  

EC tools are known to be suitable for supporting engineering design 
(e.g., [8]). Their attractiveness for engineering design has been strength-
ened by the recent developments of reliable and generic Multi Objective 
Evolutionary Algorithms (MOEAs), and by the introduction of interactive 
EC methods for engineering design (See recent reviews by Coello [10], 
and by Parmee [32], respectively). Pareto-based search has also been im-
plemented for engineering design and other applications by non-EC meth-
ods (e.g., [21]). Yet, evolutionary multi-objective search and optimization 



techniques are becoming the most popular methods to solve MOPs in gen-
eral and in particular for engineering design [10]. The majority of such 
studies concerns the search of particular Pareto-optimal designs from the 
set of alternative designs. Recently a non-traditional MOP approach, in-
volving set-based concepts, rather than particular designs, as the focus of 
the search and selection, has been developed at Tel-Aviv University aim-
ing at the support of engineers. The brief description of the concept-based 
approach, which is given below, follows a recent review by Moshaiov and 
Avigad [25]. There are two main reasons for the outlining of the concept-
based approach below. First, this background provides a typical spectrum 
of engineering considerations that are quite common to the use of multi-
objective search and optimization in design. Second, as pointed out in 
Moshaiov [23, 24], species and design concepts might be similar, at least 
in some metaphorical sense. In fact, this observation served as a trigger for 
the work presented here, which summarizes and continues the suggestions 
of [23, 24]. 

An overview on the concept-based approach 

The concept-based approach involves the search and selection of con-
ceptual designs. The major motivation for the development of the concept-
based approach is rooted in the significance of conceptual design to the 
survivability of companies (e.g., [38]). The concept-based approach is not 
restricted to MOPs. Yet, its development efforts have concentrated on 
MOPs due to the nature of engineering design, which commonly involves 
tradeoffs among contradicting objectives [25].  

The concept-based approach deviates from the traditional representation 
in which each concept has a one-to-one relationship with a point in the ob-
jective space. In general a conceptual solution should be viewed as a cate-
gory of solutions. Hence, in contrast to the traditional approach, in the 
concept-based approach a conceptual solution is represented by a set of 
particular solutions. This allows performance variability, which results 
from the particular solutions that are associated with a conceptual solution. 
The set-based concept representation provides a stage for a synergistic 
human-computer interaction. In the concept-based approach computers are 
utilized to extensively search the decision space at the level of particular 
solutions, whereas humans articulate their preferences at the level of con-
ceptual solutions. Such preferences may be articulated not only at the level 
of concepts, but also at the level of sub-concepts (e.g., [4]). In addition to 
such inherent concept-related preferences, concept-based MOPs may in-
volve range-related preferences. Both types of preferences could be im-
plemented either a-priori, or interactively during the search. The recent re-



view paper, by Moshaiov and Avigad [25], lists a variety of EC studies and 
contributions, which have been made at Tel-Aviv University on the con-
cept-based approach. Among the studied concept-based topics are: a dy-
namic goal approach, a Pareto approach, a structured EC approach with 
sub-concepts, interactivity by preferences of concepts and sub-concepts, 
subjective-objective fronts, various concept robustness issues, concept se-
lection by variability and optimality, extension to an epsilon-Pareto ap-
proach, generalization to path planning, application to simultaneous me-
chanics and control design, and various computational aspects. 

It should be noted that in engineering design the selected solution might 
not necessarily be from the Pareto-optimal set (e.g., [4, 32]). Yet, an un-
derstanding of the concepts' relative performances along and in the vicinity 
of the front is significant to concept and solution selection (e.g., [26]). This 
is illustrated in figure 2a. Assume that the figure contains the performances 
of all solutions of two concepts. Both concepts (designated by stars and 
circles) play a role in the front. Yet, when a look beyond the front is taken, 
the "star concept" of figure 2a might be more robust than the circle one. 
This may happened when the solutions of the first two ranks are to be dis-
regarded due to some uncertainties. Alternatively, human preferences 
might result in the excluding of one or both concepts and the selection of 
another concept (not shown) that is not on the concept-based front but 
rather on the subjective-objective front, as described in [4].  
 
 

 
                    Figure 2a: Two concepts           Figure 2b: Three concepts 

Recently, Avigad and Moshaiov [3] argued that concept selection meas-
ures should not be dependent solely on the concept-based Pareto but rather 
be selected by an approach that takes into consideration variability and op-
timality of the concepts. This is illustrated in figure 2b. Here, the perform-
ances, in a bi-objective space, of three concepts are depicted as circles, 
stars, and black dots, respectively. In this min-min problem the concept-
based Pareto-front consists of solutions from the first and second concepts 
(circles and stars), and yet one should not ignore the third concept since 



that in comparison with each of the other concepts it has a better variability 
with respect to the objectives. In engineering design, such variability might 
be important due to the variability of market demands (e.g., [5]). The vari-
ability and optimality issue adds up to the interactivity and concept robust-
ness issues that motivated the use of an epsilon-Pareto approach for con-
cept-based problems [24, 26].  

In summary, the concept-based approach deals with the search and se-
lection of conceptual designs by way of a set-based representation of each 
concept in a multi-objective space. In this chapter, the concept-based ap-
proach is used for a comparison between design concepts and species (see 
section 4.3). The comparative discussion of section 4.3 follows the cyber-
netic principles and ideas that are described below.  

3 Introduction to Multi-competence Cybernetics 

This section discusses the notion of Multi-Competence Cybernetics 
(MCC). It starts with general observations concerning MOO as related to 
nature (section 3.1). Next, in section 3.2 the term MCC is introduced and 
justified as a replacement for the term Multi-objective Cybernetics (MOC), 
which has been originated and used by the author in [24]. Finally, section 
3.3 provides some insight to the notion of multi-fitness. 

3.1 General Observations 

Observing the main stream literature on natural evolution, as related to 
the comparison of adaptation with optimality, it is striking to note the lack 
of a consistent and extensive discussion on the similarities and dissimilari-
ties with respect to MOO. The "astonishment" is due to the recognition 
that MOPs play a major role in engineering design (as described in section 
2.5), and that nature has produced what can be considered as remarkable 
designs. An intriguing question has to be raised, namely, given that natural 
adaptation is possibly related to SOO could a similar relation exists with 
respect to MOO? Several related observations are made in the following: 

 
• Pareto-related ideas were not available at the time of Darwin's origin 

of species. Yet the following point is quite surprising.  
• There is no reference on a multi-objective evolutionary theory; 

optimality theory in evolutionary biology seems to involve the use of 
a criterion and not a mixture of criteria (e.g., [31]).  

• The notion of objectives is controversial with respect to nature 



• An equivalent notion to tradeoffs of objectives might be that of 
tradeoffs of functions and forms, or tradeoffs in behavior.  

• There is no well-known general theory of evolution that relates 
fitness with tradeoffs of functions and forms (or alike).  

• The term tradeoffs has been used with respect to optimal theory of 
natural evolution, however it has been referred to the counteracting 
costs and benefits of strategy changes with respect to a criterion and 
not in a multi-criterion case (e.g., [31]). 

• There is, however, evidence for a suggestion to use MOO in studying 
biological systems, and of its practical results (e.g., [14, 27]). 

• Adopting TRIZ, as suggested in [9], to a biological patents' database, 
might shed light on possible analogies as related to tradeoffs. 

• There is an increasing evidence of studies that could be viewed as 
belonging to multi-objective A-life, and/or to the related topic of 
multi-objective robotics (e.g., [39] and [26] respectively) 

• Studies on multi-objective robot path planning, such as that of [26], 
involve the contradicting objectives of fast versus safe. Such 
characteristics appear essential for survival in nature.    

• Multi-objective optimization is used in bioinformatics and 
computational biology (see a recent review in [17]), yet much of this 
could be viewed as engineering-related activities. 

• Studies on multi-objective machine learning, such as in [19] and in 
chap? of this volume, are strongly related to multi-objective aspects 
of neural networks. Hence might be important to an MCC discusion 
on learning and control aspects of adaptation.  

• There is evidence of the use of multi-criteria decision making in 
ecological planning (e.g., [34]), and of the use of multi-objective 
optimization in bio-processing (e.g., [20]). Yet, such activities could 
be viewed as bio-engineering-related activities, and do not necessarily 
provide evidence to any human-independent natural process in the 
sense of Dawkin's blind watchmaker.   

• MOEA is useful for control (as revealed in reviews such as that of 
Coello [10]). Yet, it could be viewed as engineering-related activities.  

• There is evidence on the existence of multi-objective game theory 
(e.g., [15, 22, 28]). Although practiced primarily for operation 
research it could be viewed as relevant to biology.  

• Multi-objective game theory has been implemented in games that 
have some metaphorical value with respect to biology (e.g., [22]).  

• Human behavior clearly shows the significance of contradicting 
objectives and conflict resolution in natural systems (societies). This 
is apparent in studies on multi-objective game theory (e.g., [28]). 



• MOEA is used for understanding nature (e.g., [33]). Yet, such studies 
do not tell much about natural evolution but rather on the human 
inference process in the process of understanding it. 

 
The above list of observations includes a compilation of evidence as re-

lated to MOO and nature in the spirit of the second viewpoint of cybernet-
ics. It provides some evidence that MOO might support understanding of 
nature at least in the form of thought experiments (see section 2.2). This 
falls within the idea expressed by Parker and Maynard [31], namely that: 
“optimization models…serve to improve our understanding about adapta-
tion.” To support the extension from SOO to MOO one must try to under-
stand the possible role of MOO in understanding nature. This is explained 
in the following. 

3.2 Defining Cybernetics and Multi-competence Cybernetics 

Modern cybernetics is viewed here as the study of competence of 
natural and artificial systems within the scope of analogies and metaphors. 
It follows the definitions of von Cube, and Pask, and constitutes a shift 
from the terminology of Couffignal (see section 2.1). Namely, securing ef-
ficient operation is replaced with the term competence. The former termi-
nology appears to be adequate to only the first viewpoint of cybernetics 
that focuses on the design of the artificial, whereas the latter seems to be 
more appropriate to both points of view. Namely, the chosen terminology 
does not imply the involvement of a designer. Competence should be un-
derstood here, in the context of artificial systems, as the designer's objec-
tive that reflects the designer perception on what type of competence of the 
system is to be used when comparing design alternatives. On the other 
hand, in the case of natural systems, competence should be viewed as fit-
ness in the sense that no purpose should be implied by the term. Yet, as 
pointed out by Parker and Maynard Smith [31], with respect to optimality 
theory in evolutionary biology, the optimization criterion is often an indi-
rect measure of fitness. The suggested broad view on cybernetics refers to 
the study of the competence of systems, including natural and artificial 
ones. Hence, Holland's work [18] on adaptation in natural and artificial 
systems should be viewed as a study within the field of cybernetics.  

The transformation from the traditional definition of cybernetics, as the 
science of communication and control in the animal and the machine, to 
the above one, appears to have a rationale. Understanding communication 
and control should not be separated from understanding morphology and 
mechanics, as pointed out by modern research on the evolution of artificial 



creatures (see sub-section 2.2). In fact, evolution appears to suggest a 
mixed view on the how and what is governed and governing.  

 Following the above definition of cybernetics it is suggested to define 
Multi-Competence Cybernetics (MCC) as the study of multi-competence 
of natural and artificial systems within the scope of analogies and meta-
phors. Here, the focus is not on debates such as: optimality versus adapta-
tion, and adaptationism versus pluralism. Rather, a unified view is sug-
gested on adaptation in natural and artificial systems that extend ideas such 
as presented in [18] to incorporate the notions of multi-objective adapta-
tion in artificial systems and multi-fitness adaptation in nature. In other 
words, the MCC suggestions made here do not aim at adding to any con-
troversy but rather to provide a framework of thinking when comparing 
natural and artificial systems. The proposed unified view could be substan-
tiated by empirical, logical, and simulation-based arguments, using the ac-
cumulation of evidence, which is presented in sub-section 3.1. The pro-
posed MCC approach is further explained in the following.  

3.3 Justifying the Notion of Multi-fitness and its Visualization 

The proposed extension from cybernetics to MCC may look trivial but it 
requires a justification and clarifications. When artificial systems are con-
cerned the notion of multi-competence seems clear as it translates to multi-
objective. The natural counterpart of the notion of multi-competence as 
multi-fitness is however not as trivial to justify. In other words, in spite of 
the fact that comparing the notion of fitness with the notion of perform-
ance, or with that of objective, is not rare, the suggested notion of multi-
fitness and the related notion of Pareto-front would appear strange, unfa-
miliar, and even unacceptable to most biologists  (For an exception see 
[14]).  

By its definition fitness is to be measured under the same survival con-
dition. One could argue that there are different types of survival threats and 
that they can appear in nature either separately or together. In fact, some 
generic classical threats are well known. For example, shortage of food 
could be a survival threat and so is a predator. Certain traits or strategy 
may fit one type of a threat but not necessarily all types of threats. This 
means that the notion of fitness cannot be separated from the type of sur-
vival threat. In other words there could be different types of fitness as re-
lated to the different generic threats. To further illustrate the issue of multi-
fitness it should be noted that threats on a particular individual might 
change from one type to the other during the individual’s lifetime. The 
changes may also apply to different individuals of a population in a differ-



ent order. The time scale of such changes may span over generations and 
not just over the lifetime of the individual. An individual or a species may 
also change the environment, which adds another dimension to the above 
discussion. This can be further illustrated and discussed using the termi-
nology of game theory and winning criterion. The game of survival is not 
just one game, it is a series of games. The rules of wining are not fixed and 
they may vary with time and space. The criterion (type of threat) may 
change from one game to the other, and one could also perceive that even 
one game may have multi-criteria (e.g., [15, 22, 28]), namely different 
threats that are happening simultaneously.  

One could therefore think of the multi-competence problem in nature as 
the study of the trajectories of individuals and species in a multi-fitness 
space. As pointed out by Parker and Maynard Smith [31] fitness can be 
expressed either directly or indirectly. Taking a form and function ap-
proach to the indirect expression of fitness, the above discussion could be 
compared with that of [14] and [27]. According to [14] the study of form-
function relations of branched structures could be advanced by the use of 
multi-objective optimization. In [27], simulated adaptive walks are used to 
study the early evolution of the morphologies of ancient vascular plants, in 
a multi-fitness fashion, using multi-tasks and their related fitness land-
scapes. Clearly, both direct and indirect expressions of fitness suggest that 
a multi-fitness (multi-competence) dynamic visualization of natural sys-
tems should be of a scientific value, and in particular for the pursuit of un-
derstanding of natural evolution by way of thought experiments and A-life 
studies. It may also be significant for the analysis of empirical data. Such 
visualization is perceivable up to 3-D but its extension might pose a diffi-
culty. This is similar to the visualization problem that occurs in multi-
objective design (e.g., [21]). While saying all of this, one should realize 
that it is not so clear to what a degree the notion of Pareto-front is signifi-
cant for the understanding of evolution. This issue is further discussed in 
section 4.2 following some further description of the general aspects of 
MCC.   

4 Fundamentals of Multi-competence Cybernetics 

As suggested in section 3, understanding analogies and metaphors be-
tween the natural and the artificial, as related to MOPs, seems important. 
Yet, such an attempt is inherently difficult and often speculative. The 
prime merit of the following is perhaps in raising some questions and 
pointing at potential approaches that have resulted from the research on the 



concept-based approach in engineering design. Speculation could be 
avoided by focusing on possible analogies as a means for possible inspira-
tion and for the production of useful metaphors. This could trigger thought 
experiments that should not be understood as an attempt to necessarily 
pose any new theories on nature.  

The common process of engineering design defers substantially from 
evolutionary design. Yet, here the interest is primarily on design by artifi-
cial evolution as compared with that of nature. In the following section 4.1 
some general aspects of comparing these design processes are discussed. 
Next, section 4.2 provides an MCC discussion on the notion of Pareto-
front. Finally in section 4.3, an MCC comparison is carried out with re-
spect to the possible similarities of design concepts and species.  

4.1 General Aspects 

Many topics that have been mentioned in the background (section 2), 
and especially as related to the concept-based approach, reflect typical is-
sues in engineering design. In particular they relate to evolutionary multi-
objective design. Among such typical issues are:  

 
1. The generic nature of design tools, and in particular EC-based 

ones 
2. The closeness to A-life aspects  
3. The structured nature of the representations of engineering 

solutions 
4. The uncertain and subjective nature of design goals and 

objectives 
5. The interest in the non-dominated set and the objective 

tradeoffs 
6. The lack of sufficient modeling of performances 
7. The subjectivity of concept-related preferences 
8. The inherent variability of conceptual solutions  
9. The interest in solutions that are robust and the different types 

of robustness 
10. As above with respect to robust concepts 
11. The need to extend the Pareto approach for the general concept 

selection problem  
12. The need for an efficient search 
 
The above issues are typical to engineering design; yet, one may claim 

some similarities with nature at least as related to the possibility of though 



experiments. The first three items do not pose any serious dissimilarity 
problem. Items 4-5 appear related to the dynamics and variability of the 
survival conditions in nature (see section 3.3 and also the discussion in the 
next paragraph). Items 6-7 are related to the difficulties of modeling that 
appears to be a common problem in both natural and artificial systems. 
Items 8-11 relate to the MCC comparison between concept and species, 
which is discussed in section 4.3. Finally item 12 demonstrates a major 
difference between natural and artificial evolution that is related to the 
purpose aspect of engineering, which does not exist in nature. Some of the 
above issues are further discussed below. 

Engineering design is a purpose-directed process and not a result of the 
work of a blind watchmaker. It involves dynamic goals and the exact pref-
erence of objectives is uncertain and may vary during the design and 
among the designers. In nature, since that the environment changes with 
time, and threats are dynamic, evolution is a dynamic process and fitness 
and the multi-fitness problem is dynamic as well (see section 3.3). In the 
case of conceptual design the desire to obtain the full spectrum of non-
dominated solutions is related to the issue of the uncertainty of objectives 
(e.g., due to variability of market demands [5]). This may resemble a de-
sire to predict natural evolution under the uncertainty of the trajectories of 
evolution, or in environments with variable conditions. This issue is fur-
ther discussed below.  

4.2 Is Pareto Relevant to the Study of Nature?   

Comparing individuals or species in a multi-competence space does not 
necessarily mean that the notion of a Pareto-front is relevant to the under-
standing of nature. Yet, as already pointed out some evidence exists that 
demonstrates the significance of a Pareto approach to the understanding of 
natural systems (e.g., [14, 27]). One should realize that the use of the idea 
of non-dominated solutions in engineering design is either a result of post-
poning the decision on the objective preferences or of trying to compare 
performances of different solutions under different situations without a 
preference on a particular situation. In such cases the efforts of obtaining 
the front allows a better understanding of the design tradeoffs. When deal-
ing with nature one should be careful in making Pareto-related statements. 
It is arguable that a Pareto-front can be useful in the analysis of natural so-
lutions, yet such an analysis should assume that there is no particular tra-
jectory of scenarios. In spatio-temporal evolution scenarios a dynamic 
weighted sum approach, or a dynamic prioritization approach, might be 
more relevant than the Pareto approach. Such alternatives to the Pareto ap-



proach do not necessarily mean that the performances of individuals and 
species are not bounded in some sense by a global Pareto-front. Under-
standing the applicability of the notion of non-dominated sets in natural 
evolution might help to also shed some light on its possible contribution to 
natural diversity. Of a particular interest might be the use, in the MCC con-
text, of fuzzy and multi-objective game theory (e.g., [28]). This may help 
incorporating the fact that the “assignment of fitness values in nature” by 
way of contradicting competences might be only fuzzily understood by 
humans. 

4.3 Comparing Concepts and Species 

Understanding that an analogy between design concepts and species 
might exist had an important impact on the development of different con-
cept-based MOEAs (see [2]). The following provides some background to 
this observation. In biology the term species commonly refers to the most 
basic biological classification comprising of individuals that are able to 
breed with each other but not with others (except from rare cases). In na-
ture, a niche can be viewed as a subspace in the environment with finite re-
sources that must be shared among the population (society) of that niche, 
while competing to survive. In evolutionary algorithms the term speciation 
(or "niching") commonly refers to an automatic technique to overcome the 
tendency of the population to cluster around one optimal solution in a 
multi-modal function optimization. Speciation techniques help maintaining 
diversity to prevent premature convergence, while dealing with multi-
modality. Speciation could be viewed as an automatic process, or an opera-
tor, that gradually divides the population into sub-populations (species). 
Each of these sub-populations deals with a separate part of the problem 
(niche of the search space). Commonly niche refers to an optimum of the 
domain and the fitness represents the resources of that niche. The common 
process of speciation is also a niching process as it finds the niches, while 
dividing the population into the niches.   

Species that are either competing or cooperating are viewed as co-
evolving. Competitive co-evolution has been computationally employed 
with single as well as with multi-populations. In contrast to niching, where 
species are automatically formatted, in co-evolution of competing species, 
the species are commonly predefined (although their populations' relative 
size may be subject to automatic changes). This situation resembles that of 
the concept-based approach, in which the association of sets of particular 
solutions with concepts is predefined. The last observation clearly indi-
cates a possible analogy between concepts and species. Both are repre-



sented by sub-sets of the populations. Beyond the mathematical similari-
ties, it seems intuitive to view different species as different design con-
cepts of nature.  

A crucial part of the algorithm, in [4] and in similar studies, is the pen-
alty functions that are used for the fitness. These include a front-based 
concept-sharing penalty and an in-concept front niching penalty. The 
front-based concept sharing is applied to preserve concept diversity, and to 
prevent a good concept from hindering the evolution of other potential 
concepts within a front. The in-concept front niching preserves the diver-
sity of particular solutions within each concept belonging to a particular 
non-dominated front (rank). In a recent investigation [2] the algorithm, 
such as in [4], has been modified to improve the analogy by eliminating 
crossover operations between concepts. In [2] a crowding approach has 
been implemented to penalize the fitness. In developing the penalties and 
the algorithms, the focus has been on engineering design and the wish to 
find a good representation of the optimal concepts. With the elimination of 
crossover operations between concepts in [2], it appears that the process of 
the simultaneous multi-objective concept-based evolution could be viewed 
as the evolution of species towards and along a Pareto front.  

While supporting the development of computational mechanisms to si-
multaneously evolve species/concepts towards and along a Pareto front, by 
a metaphorical EC approach, a host of questions should be raised as to the 
applicability of such comparisons with respect to improving the under-
standing of nature. The main question from the second viewpoint of cy-
bernetics is to what a degree it would be possible to advance the potential 
analogy between design concepts and species to obtain better understand-
ing of evolution. Furthermore, it is still questionable if new metaphors 
might arise from taking a MOO view rather than a SOO view on nature. 
Clearly, the existing concept-based algorithms have been developed for 
engineering design applications and not as simulators of natural selection. 
Yet, as described in section 3, multi-competence situations in the sense of 
multi-fitness or multi-functionality do exist in nature. Very basic survival 
situations in nature could involve tradeoffs in behaviors such as fast (to ob-
tain food) versus safe (to avoid dangers), which has been the subject of a 
concept-based robotic-related study in [26]. Incorporating spatio-temporal 
evolution scenarios into the concept-based approach might create a new 
way of studying natural evolution in the sense of the second viewpoint of 
cybernetics. The following is an open question for future research. Would 
it be possible to say that, regardless of different scenarios, nature evolve 
species towards optimality in a multi-objective sense, just as humans are 
trying to create conceptual designs that are satisfying in some Pareto 
sense?  



Engineering design often involves satisfying solutions that are not nec-
essarily Pareto-optimal. Similarly, it is expected that natural selection in-
volves “design solutions” that could be viewed as advancing towards a 
Pareto-front, but are not optimal in the Pareto sense. With this respect it 
appears logical to try not only an epsilon-Pareto approach but also a fuzzy 
Pareto approach.   

Of a particular interest for future research is to investigate potential 
analogies and metaphors as related to current studies on the robustness of 
concepts (e.g., [5]), which should not be confused with robustness of par-
ticular solutions (e.g., [12]). This topic encompasses different types of ro-
bustness with respect to different types of uncertainties, and requires the 
introduction of measures not only for multi-objective optimality of con-
cepts, but also for their robustness. With this respect, methods of compari-
sons, in the multi-objective sense, of particular solutions and of concepts 
(sets), as well as their rationale, might also serve as an MCC research 
playground when such questions are asked with respect to species. A more 
questionable idea is to try and compare the interactivity aspects of the con-
cept-based approach with evolutionary issues of mixed systems (see figure 
1). Finally, it should be noted that, due to the fact that the concept-based 
approach is a set-based approach, analogies might be explored not only 
with respect to species but also with respect to other biological categories.  

5 Hypothetical MCC Questions  

The study of multi-objective optimality and robustness of conceptual so-
lutions, which is motivated by engineering, could be carried out using a 
multi-objective concept-based EAC. In such design studies the EC ap-
proach allows evolution that is purpose-directed. Similarly EAC can be 
used as an A-life set-up to try and explore the role of MOO in the natural 
evolution of species with a blind watchmaker approach. Performing such 
independent studies might be complemented with related MCC questions. 
The above discussion in section 4 raises some interesting MCC questions. 
Among such speculative questions are: 

 
1. Is Pareto-optimality relevant to natural selection in any sense? 
2. As above with respect to local versus global front. 
3. Given the dynamic aspects of the survival conditions in nature, 

could it be possible to compare it as similar to the varying 
market demands in engineering? 



4. Does robustness of concepts have a biological counterpart of 
robustness of species? 

5. As above in relation to descendents of a biological ancestor? 
6. Could evolving Pareto-optimal/robust design concepts be related 

to game-based theories of evolution? 
7. Would it be  possible to use ecology and bio-technology multi-

objective planning to support an MCC-based studies of natural 
evolution? 

8. What are the consequences of a Pareto approach to natural 
evolution with respect to discussions on natural diversity? 

9.  What would be the implications of the use of fuzzy multi-
objective game theory in MCC studies? 

 
 
The above list of MCC questions could certainly be extended. Of a par-

ticular interest are related-questions about other forms of adaptation in na-
ture as well as questions associated with evolutionary developmental biol-
ogy. Such issues are left for future research. 

6 Summary and Conclusions 

This chapter introduces Multi-Competence Cybernetics (MCC). The 
current study focuses on a comparative discussion concerning the multi-
competence evolution of systems in nature and the artificial. Research de-
velopments, in areas such as evolutionary design, plant biology, robotics, 
A-life, biotechnology, and game theory, are used to justify the proposed 
MCC approach. Several questions are raised, which are related to a long-
standing controversy on adaptationism and optimality. Among such ques-
tions is that on the relevance of a Pareto approach to the study of nature. 
At the risk of a controversial discussion this chapter suggests a comparison 
between species and engineering design concepts and hints at possible 
analogies with respect to their multi-competence. Another resulting sug-
gestion is that multi-fitness dynamic visualization of natural systems 
should be of a scientific value, and in particular for the pursuit of under-
standing of natural evolution by way of thought experiments. In addition, 
future MCC research directions are proposed. It is concluded that MCC is 
a justified framework of thinking that has a ground in past and present 
findings both in engineering design research and biology. Yet, its scope, as 
demonstrated here, is bound to be controversial, which makes it both an in-
triguing and exciting research area. It is hoped, at best, that MCC would 



direct thinking into fruitful new observations on the multi-fitness aspects 
of natural adaptation. Alternatively, it is expected that such studies would 
allow a better understanding of the similarities and dissimilarities between 
the creation of natural and artificial systems by adaptive processes. 
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