MULTIFREQUENCY SIGNAL STRUCTURE FOR RADAR SYSTEMS

Inventor: Nadav Levanon, Ramat Gan (IL)

Assignee: Ramot University Authority for Applied Research & Industrial Development Ltd., Tel Aviv (IL)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 09/564,650
Filed: May 3, 2000

Int. Cl. G01S 7/282
U.S. Cl. 342/202, 342/203, 342/189
Field of Search 342/202, 201, 342/203, 204, 189

References Cited

U.S. PATENT DOCUMENTS
3,806,816 A * 4/1974 Kohayashi 375/327
4,804,961 A * 2/1989 Hane 342/125
4,853,701 A * 8/1989 Drabowitch 342/139
5,376,939 A * 12/1994 Urkowitz 342/134
5,862,182 A 1/1999 Awatari et al. 375/279
5,963,163 A 10/1999 Kemke et al. 342/109
6,021,165 A * 2/2000 Ohkubo et al. 375/344
6,252,535 B1 * 6/2001 Koher et al. 341/155
20010000660 A1 * 5/2001 Koher et al. 341/6

OTHER PUBLICATIONS
Golomb, S.W., “Two Valued Sequences with Perfect Peri

ABSTRACT

A multifrequency phase-coded signal structure is presented for use in a system like a radar or sonar or detecting a remote target. The signal structure comprises at least one pulse signal in the form of a mutually complementary set of M sequences, each sequence being composed of M phase-modulated bits. Each two adjacent sequences are modulated on subcarriers separated by a frequency f₀ such that f₀=1/τₘ, τₘ being a bit duration, and a the subcarriers are transmitted simultaneously.

17 Claims, 24 Drawing Sheets
M=5, MCPC (P4 based) 3 5 2 1 4

AUTOCORR [dB]

Delay/μs

Fig. 2
Fig. 3
Fig. 4
Fig. 6
Fig. 10
Fig. 11
Train of M complementary pulses, M=5, MCPC (P4 based) 3 5 2 1 4 Weight power = 0

Fig. 12
Fig. 13
Train of M complementary pulses, $M=5$, MCPC (P4 based) 3 5 2 1 4 Weight power = 0.38

Fig. 14
Fig. 15
Fig. 16
Fig. 17A

Fig. 17B
Train of M complementary pulses, \(M=4 \), MCPC (Binary) 1 3 4 2. Weight power = 0.13

Fig. 18
Train of M complementary pulses, \(M=4 \), MCPC (Binary) 4 1 3 2 Weight power = 0.33

Fig. 19
Fig. 20
$M=13$, Ipatov (M bit at M carriers) Weight power = 0.12, 5 12 3 1 10 8 11 4 9 13 7 2 6

Fig. 21
Fig. 22
Fig. 23
MULTIFREQUENCY SIGNAL STRUCTURE
FOR RADAR SYSTEMS

FIELD OF THE INVENTION

This invention is generally in the field of radar and similar ranging techniques for identifying remote targets, and relates to a signal structure to be transmitted towards a remote target which is to be identified.

BACKGROUND OF THE INVENTION

Radar and sonar systems identify targets and the range of targets by transmitting energy towards the target, and measuring the time between the transmission and reception of an echo from the target. A system of such kind typically comprises such main constructional parts as a signal generator/transmitter, an echo receiver, a filtering means, and a signal processing means. The filtering means typically include a Doppler filter aimed at identifying moving targets and distinguishing among targets moving with different radial velocities.

It is a common goal of such systems to improve the system resolution. Resolution is determined by the relative response of the radar to targets separated from the target to which the radar is matched. In other words, a target is set to be resolved if its signal is separated by the radar from those of other targets in at least one of the coordinates used to describe it.

The high speed and long range of modern airborne vehicles place increasing range demands on radar systems used for tracking. The long-range requirement typically requires relatively high transmitted energy (to detect small targets), which implies a relatively high peak transmitted power or a longer duration transmitter pulse. The latter reduced range resolution, i.e., the ability to distinguish among targets that are at similar ranges.

Pulse compression techniques are known to improve the range resolution in spite of the longer pulse duration. A technique involving frequency dispersion by transmitting a variable frequency “chirp” allows the use of pulse compression filters at the receiver to reduce the effective pulse duration to thereby restore range resolution.

The main problem associated with pulse compression is the appearance of range sidelobes in addition to the main range lobe. The time position, or range, of the main lobe is the position that is tested for the presence of a target and for estimating the parameters of that target (i.e., reflected energy or power closing speed, fluctuations in echo power and closing speed, etc.). The presence of range sidelobes on the compressed pulse results in interfering echoes which originate at ranges other than the range of the main lobe. This interference can cause erroneous estimates of the echo characteristics in the range increment covered by the main lobe.

One of the known techniques for suppressing range sidelobes is to apply phase coding to the transmitted pulse, so that the coding appears in the received echo pulse, and in applying code-matched filtering to the compressed received pulses.

According to another known technique of the kind specified, complementary phase sequences are imposed on the transmitted signal. This technique is disclosed for example in U.S. Pat. No. 5,151,702. Here, the transmitted pulses are organized into mutually complementary sets. More specifically, pairs of complementary phase sequences are transmitted sequentially, sequentially Doppler filtered, and the filtered pulse sets are, in turn, compressed by filtering matched to the coding. U.S. Pat. No. 5,376,939 discloses a radar system in which transmission takes place simultaneously at two different frequencies, spaced far apart, and in which each of the transmissions is coded with one of two mutually complementary codes.

Generally, “complementary codes” are basically characterized by the property that the autocorrelation vector sum is zero everywhere except for the zero shift. Two pulses are “mutually complementary” in that, after pulse compression by matched filtering, the sidelobes are equal but of opposite sign, while the main lobes add producing an enhanced main lobe with no sidelobes.

U.S. Pat. No. 5,963,163 discloses a technique for frequency-modulated continuous wave (FMCW) radar detection with removal of ambiguity between the distance and the speed. According to this technique, the radar sends out at least alternately two parallel and discontinuous frequency modulation ramps that are slightly offset by a frequency variation. The frequency switches from one ramp to the other at the end of a given duration. The distance from a detected target is estimated as a function of the difference in phase between a received signal corresponding to the first ramp and a received signal corresponding to the second ramp. The speed of the target is obtained from the estimated distance and the ambiguity straight line associated with the target.

It is known that range (delay) resolution is inversely related to the radar signal bandwidth. The quest for higher bandwidth usually follows shorter bit duration in digital phase modulated signals, or wider frequency deviation in analog frequency modulated signals. In radio communications, where it is advantageous to increase bit-rate without shortening the bit duration, one solution is the use of a modulation technique known as Orthogonal Frequency Division Multiplexing (OFDM). The main principles and advantageous features of OFDM technique suggested for Digital Audio Broadcasting and other applications are disclosed, for example, in the article “Digital Sound Broadcasting to Mobile Receivers”, L. Flech, Halbert-Lassalle, B. R., and Castelbain D., IEEE Trans. Consum. Elec., 1989, 35, (3) pp. 493-503, and in U.S. Pat. Nos. 5,862,182 & 6,021,165.

OFDM broadcasts have multiple subcarrier signals, on which data are transmitted in parallel. The basic idea of OFDM is to replace transmitting serially M short modulation symbols each of duration t_s by transmitting M long symbols, each of duration t_s such that t_s=M_t, wherein these M long modulation symbols are transmitted in parallel on M different subcarriers. In OFDM, the subcarriers are separated by 1/t_s which ensures that the subcarrier frequencies are orthogonal and phase continuity is maintained from one symbol to the next.

As for the radar systems, simultaneous use of several subcarriers there was recently disclosed in the following article: Jankiraman, M., B. J. Wessels, and P. Van Genderen, “System Design and Verification of the PANDORA Multifrequency Radar”, Proc. of Int'l. Conf On Radar Syst., Brest, France, 17-21 May 1999, Session 1.9. Here, FMCW radar achieves bandwidth of 384 MHz by using eight Linear-FM (LFM) channels, each sweeping 48 MHz. Together with guard bands, the bandwidth totals 776 MHz. A multifrequency signal is characterized by varying amplitude. Amplifying such a signal requires linear power amplifiers (LPA), which are relatively inefficient. The technique disclosed in this article is directed towards power combining and amplification.
A modern replacement of the analog LFm signal is a digital phase-coded signal, for example the polyphase codes P1, P2, P3 and P4 disclosed in the following publication: Kretschmer, F. F. and Lewis, B. L., “Doppler Properties of Polyphase Coded Pulse Compression Waveforms’, IEEE Trans. Aerosp. Electron. Syst., 1983, 19, (4), pp. 521–531. These signals are such that their phase sequences are samples from the phase history of a LFm signal. These codes can be obtained from considering the sampled phases of the step-chirp and chirp baseband waveforms. These codes can be digitally compressed by using fast Fourier transform (FFT) directly or by a fast convolution technique.

SUMMARY OF THE INVENTION

The present invention provides a novel multifrequency signal structure for use in the radar or the like target detection system. The main idea of the present invention is based on the inventor’s investigation showing that lower autocorrelation sidelobes are reached when M sequences, modulated on the M subcarriers, are different from each other and constitute a complementary set. The inventor calls such a signal structure as Multifrequency Complementary Phase Coded (MCPC) signal of size M×M.

The signal structure according to the invention utilizes M subcarriers simultaneously. The subcarriers are phase modulated by M different sequences that constitute a complementary set. Such a set can be constructed, for example, from the M cyclic shifts of a perfect phase-coded sequence of length M (e.g., P4 signal). The subcarriers are separated by the inverse of the duration of a phase element tø, yielding the above-mentioned ODFD feature, well known in communications. The signal exhibits a thumbtack ambiguity function with delay resolution of tø/M.

The ambiguity function $|X(r,\nu)|$ is known to be defined as follows:

$$|X(r,\nu)| = \int_{-\infty}^{\infty} u(t)e^{-j2\pi\nu t}dt$$

wherein τ is the time delay between the reference (stored in the receiver) and received signals; ν is Doppler shift; t is the time coordinate; $u(t)$ is complex envelope of the signal; $u^*(t)$ is its complex conjugate; and $j=(-1)^{1/2}$.

The complex envelope $u(t)$ of a real signal $s(t)=g(t)\cos[2\pi f_c t+\phi(t)]$, wherein $g(t)$ is real envelope, $\phi(t)$ is phase, and f_c is carrier frequency, is defined as follows:

$$u(t)=g(t)\cos(\phi(t)\pm \pi/2)$$

The autocorrelation of $u(t)$ is determined as follows:

$$r(t) = \int_{-\infty}^{\infty} u(t')u(t-t')dt'$$

wherein $|r(t)|=|X(r,0)|$.

The power spectrum is relatively flat, with a width of M_t. The signal structure can be constructed by power combining M fixed-amplitude signals. The resulting signal, however, is of variable amplitude. The peak-to-mean envelope power ratio can be maintained below 2. A train of complementary pulses and a weight function along the frequency axis can be used for further sidelobe reduction.

Power spectral density $P_d(f)$ of a finite-duration signal with complex envelope $u(t)$ is determined as follows:

$$P_d(f)=|U(f)|^2$$

wherein $U(f)$ is the Fourier transform of $u(t)$, that is:

$$U(f) = \int_{-\infty}^{\infty} u(t)e^{-j2\pi ft}dt$$

There is thus provided according to the present invention a multifrequency phase-coded signal structure to be used in a system for detecting a remote target, the signal structure comprising at least one pulse signal in the form of a mutually complementary set of M sequences, each sequence being composed of M phase-modulated bits, wherein each two adjacent sequences are modulated on subcarriers separated by a frequency f_c such that $f_c=1/t_0$, t_0 being a bit duration, and wherein all the subcarriers are transmitted simultaneously.

The term “signal structure” utilized herein signifies that the entire number of M sequences within the structure, modulated on the M subcarriers, are transmitted simultaneously as a common pulse signal.

An extension of the “signal structure” is a coherent train of M pulses separated in time, wherein each pulse in the train is designed as described above, thus achieving complementary in time as well as in frequency. To this end, for example, each pulse in the train may exhibit a different order of the same complementary set of sequences, such that a set of complementary phase sequences is obtained in each subcarrier frequency. In other words, such a signal structure presents a matrix, whose columns are the pulses separated in time and rows are the subcarrier separated in frequency. The phase elements in each row and in each column constitute a complementary set.

Frequency weighting can be applied by assigning different amplitude to each subcarrier in the case of the single pulse, or by maintaining, over all the pulses, same amplitude in the subcarriers with the same frequency, in the case of the so-called “extended structure”. Different amplitude values may be assigned in accordance with the symmetry condition. This means, that if 5 subcarriers are used, then the amplitude of 1st subcarrier is equal to that of the 5th subcarrier, and the amplitude of the 2nd subcarrier is different from that of the 1st and 5th subcarriers, but equal to that of the 4th subcarrier.

The complementary set may be constructed based on a phase sequence in the form of a polyphase code signal, such as P4 or P3. The phase modulation may also be 2-valued, for example utilizing Golomb code signal, or Ipatov code signal.

The above signal structure can be used in a radar system of any known kind, provided its transmitter unit is capable of simultaneously generating M subcarrier frequencies which define together the multifrequency signal designed as described above, and its receiver is matched to his signal structure.

Generally speaking, when ordering the complementary set over the M frequencies, at least one of the following conditions should be satisfied:

1. Low autocorrelation sidelobes RMS (root-mean-square or effective value), S_{aut}. The RMS of the autocorrelation $r(t)$ sidelobes of an MCPC signal is as follows:

$$S_{\text{aut}} = \frac{1}{M_d} \int_{-\infty}^{\infty} |r(t)|^2 dt$$

2. Low peak autocorrelation sidelobes, S_{peak}, which is determined as follows:

$$S_{\text{peak}} = \max(r(t)) \cdot t_0$$
BRIEF DESCRIPTION OF THE DRAWINGS

In order to understand the invention and to see how it may be carried out in practice, a preferred embodiment will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:

FIG. 1A schematically illustrates the characteristics of a conventional 25-bit P4 signal;
FIG. 1B schematically illustrates the characteristics of one possible example of a M×M MCPC signal (M=5) according to the invention;
FIG. 2 graphically illustrates the autocorrelation function of the MCPC signal of FIG. 1B;
FIG. 3 graphically illustrates the autocorrelation function of the conventional 25-element P4 signal of FIG. 1A;
FIG. 4 graphically illustrates the power spectrum of the MCPC signal of FIG. 1B;
FIG. 5 graphically illustrates the power spectrum of the conventional 25-element P4 signal of FIG. 1A;
FIG. 6 is a graph of the ambiguity function of the MCPC signal of FIG. 1B;
FIG. 7 is a graph of the ambiguity function of the 25-element P4 signal of FIG. 1A;
FIG. 8 illustrates autocorrelation functions of another example of M×M MCPC signal (M=9), and of the 25-element P4 signal;
FIG. 9 illustrates power spectrums of the 9×9 MCPC signal and of the 25-element P4 signal;
FIGS. 10 and 11 show real envelopes of the 5×5 MCPC signals with the sequence orders \{3 5 2 1 4\} and \{3 4 5 1 2\}, respectively;
FIGS. 12 and 13 illustrate autocorrelation functions of a train of 5 MCPC pulses without and with frequency weighting, respectively;
FIG. 14 illustrates the ambiguity function of the train of 5 MCPC pulses with frequency weighting;
FIGS. 15 and 16 illustrate the autocorrelation function and the ambiguity function, respectively, of a 23×23 MCPC signal based on Golomb’s 2-valued sequences;
FIGS. 17A and 17B show partial autocorrelation function of the 23×23 MCPC signal with and without frequency weighting, respectively;
FIGS. 18 and 19 illustrate ambiguity functions of a train of 4 MCPC binary pulses for two different complementary sets, respectively;
FIGS. 20 and 21 illustrate the autocorrelation function and the ambiguity function, respectively, of a 13×13 MCPC signal based on Ipatov binary signals;
FIGS. 22 and 23 illustrate the real envelope and the ambiguity function, respectively, of a conventional 25-element Huffman signal;
FIG. 24 illustrates the ambiguity function of a conventional 5-element Costas signal; and
FIG. 25 illustrates a cross-ambiguity function between two permutations of a 23×23 MCPC signal based on Golomb sequences.

DETAILED DESCRIPTION OF THE INVENTION

Following are several examples of the MCPC signal according to the invention and the comparison of their performances to the above-indicated P4 signal, Huffman signal and Costas signals.

The phase sequence of P4 and P3 signals are described, respectively, by the following equations:
\[
\phi_m = \pi \frac{(m-1)^2}{M} \quad m = 1, 2, \ldots, M \tag{1a}
\]
\[
\phi_m = \pi \frac{(m-1)^2}{M} \quad m = 1, 2, \ldots, M \quad M \text{ even} \tag{1b}
\]
wherein \(\phi_m\) is phase of the mth bit.

P4 and P3 signals exhibit ideal periodic autocorrelation, namely, zero periodic autocorrelation sidelobes. Deducing from simultaneous transmission of LFM pulses would have led us to suggest repeating the same phase sequence on all M subcarriers. However, phase coded signals yield an additional degree of freedom in the form of cyclic shift. It is known from the article “Complementary Sets Based on Sequences with Ideal Periodic Autocorrelation”, Popovic, B. M., Electron. Lett., 1990, 26, (18), pp. 1428–1430, that all the different cyclic time shifted versions of any sequence having an ideal periodic autocorrelation function, form a complementary set.

A complex valued sequence \(X_n\), whose kth element is \(s(k)\), forms a complementary set if the sum \(Z(p)\) of the a periodic autocorrelation function \(R_k\) of all sequences from the set is equal to zero for all nonzero time shifts p, that is:
\[
Z(p) = \sum_{0 \leq k < M} s(k) s^*(k + p) = \sum_{0 \leq k < M} R_k(0) \quad p \neq 0, p \neq 0 \tag{2}
\]
wherein denotes complex conjugate, p is the (positive) time shift, and \(R_k(0)\) is the energy of the sequence \(X_k\).

When the set has only two sequences (a complementary pair), the two sequences (of equal length M) must have aperiodic autocorrelation functions whose sidelobes are equal in magnitude but opposite in sign. The sum of the two autocorrelation functions has a peak of 2 M and a sidelobe level of zero.

In order to take advantage of this autocorrelation property in radar signals [Farnet, E. C. and Stevens, G. H., “Pulse Compression Radar”, Paladin Handbook, 2nd edition, Skolnik, M., Ed., (McGraw-Hill, 1990), Ch. 10], the sequences must be separated, for example in time (two different pulses). With large time separation, even small Doppler shift causes large phase shift, and the sequences quickly lose the property of cancelled autocorrelation sidelobes.

The use of multiple subcarriers provides another possibility of separation—frequency. Let us investigate the properties of such a signal using a simple complementary set constituted of five shifts of a P4 signal of length 5. The basic phase sequence is obtained by using M=5 in the above equation (1a). It is shown in the top row of a Table 1 below
showing a set of five complementary phase coded sequences. The remaining rows are all the remaining cyclic shifts.

<table>
<thead>
<tr>
<th>Set of 5 complementary phase coded sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence 1</td>
</tr>
<tr>
<td>Sequence 2</td>
</tr>
<tr>
<td>Sequence 3</td>
</tr>
<tr>
<td>Sequence 4</td>
</tr>
<tr>
<td>Sequence 5</td>
</tr>
</tbody>
</table>

Following the OFDM approach, the M (M=5) sequences will be transmitted on M subcarriers, separated by $f_s/1/\lambda$, where λ_i is the duration of each phase element (bit). The complex envelope of the transmitted signal is therefore

$$u(t) = \sum_{n=1}^{M} W_n \exp(j2\pi f_n t + \phi_{n,m})$$

wherein $\phi_{n,m}$ is the nth phase element of the mth sequence, and θ_i is an arbitrary phase shift added by the transmitter hardware to each carrier (known to the receiver), and W_n is the amplitude weight assigned to the corresponding subcarrier. The values of W_n are in general equal to 1, unless frequency weighting is applied. The above equations (3) and (4) describe the complex envelope of MxM MCPC signal.

Referring to FIGS. 1A and 1B, the 5x5 MCPC signal (M=5) is compared to the P4 signal (N=25). FIG. 1A schematically illustrates a 25-bit P4 signal, and FIG. 1B illustrates a 5x5 MCPC signal. The P4 signal is constructed from N phase modulation bits, each of duration λ_i. The typical autocorrelation of such a P4 signal exhibits a narrow main lobe at zero delay, a first null at λ_i, and low sidelobes extending as far as the signal duration N_λ. The power spectral density of P4 resembles a $\sin^2(2\pi f) / (2\pi f)^2$ function. The first null is at $f=1/\lambda_i$, and the spectrum peak sidelobe level is -26 dB.

FIG. 1B shows M (M=5) sequences modulating M subcarriers. The bit duration λ_i in each sequence was chosen to be M times longer than λ_i. This will yield an autocorrelation main lobe width similar to that of the P4 signal with M^2 (i.e., 25) bit. The MCPC signal exhibits a more efficient spectrum usage. Indeed, as depicted in FIG. 1B, the power spectrum is nearly rectangular with cutoff at $f=\text{M}(2\lambda_i)$.

The ambiguity function and its zero-Doppler cut (the magnitude of the autocorrelation) of $u(t)$ depends on the permutation of the five sequences along the five subcarriers ($2\lambda_i$, f_s, 0, -f_s, -2λ_i). FIG. 2 illustrates the autocorrelation (magnitude) resulting from a preferred permutation (i.e., low sidelobe RMS). The first null appears at $\lambda_i/5$. This means that by using five subcarriers, autocorrelation is created resembling that of a single-frequency signal, which, over the same total duration, has 5 times as many nulls. The nulls of the autocorrelation function at multiples of λ_i result from the combination of the orthogonality ($f_s=1/\lambda_i$) and the complementary set.

FIG. 3 illustrates the autocorrelation function of a P4 signal of length 25. The phase sequence of the 25-element P4 signal uses 13 distinct phase values. This compares with only 3 distinct values in Table 1.

Two other interesting aspects to compare the autocorrelation functions of FIG. 2 (P4-based MCPC signal) and FIG. 3 (25-element P4 signal), are the occupied spectrum and the Doppler sensitivity. FIGS. 4 and 5 illustrate the power spectral densities (PSD) of, respectively, the MCPC signal obtained from the Fourier transform (FT) of the autocorrelation function shown in FIG. 2 and the 25-element P4 signal obtained from the FT of the autocorrelation function shown in FIG. 3. In general, the MCPC signals exhibit a more narrow and flat spectrum (of the complex envelope) extending up to the maximal frequency f_{max} which is:

$$f_{\text{max}} = \frac{M}{2\lambda_i}$$

The bandwidth BW of the band-pass signal around its center frequency will therefore be:

$$BW = \frac{M}{\lambda_i}$$

As for the sensitivity to Doppler shift, it is described by the ambiguity function. FIGS. 6 and 7 illustrate the 1st and 2nd quadrants for, respectively, the 5x5 MCPC signal and the 25-element P4 signal. Comparing these two graphs, it is evident that the ambiguity function of the MCPC signals does not exhibit the ridge seen in the ambiguity function of the P4 signal (also typical of LFM). Zooming will reveal that there is no rapid increase of the sidelobe level with small Doppler shift.

The performances of the MCPC signal were calculated assuming no hardware inserted phase shifts and no frequency weighting, namely, in the above equation (3) we assumed $\phi_{n,m}$=0 and W_n=1, . . . , M. Phase shifts other than zero will slightly modify the spectrum and the sidelobe patterns of the ambiguity function. The resulting effect will be similar to that of using a different order of the sequences.

Reference is now made to FIGS. 8 and 9, enabling to compare between MxM MCPC signal for M=9 and a 25-element P4 signal (i.e., N=25). FIG. 8 illustrates autocorrelation function (in decibels) of the MCPC signal (solid curve) and autocorrelation function of P4 signal (dashed curve). FIG. 9 shows power spectrums of MCPC and P4 signals by, respectively, solid and dashed curves.

From a spectral-width point of view it is more reasonable to compare the 25-element P4 signal with a 9x9 MCPC signal. The sequence order of the MCPC signal is that order which yields the lowest RMS sidelobe level found by an exhaustive search (valid as long as $\phi_{n,m}$=0, n=1, . . . , M). As shown in FIG. 8, both autocorrelation functions have a similar peak-sidelobe level of -20 dB, yet a much narrower

$$\lambda_i = \frac{M}{2\lambda_i}$$

$$BW = \frac{M}{\lambda_i}$$

$$f_{\text{max}} = \frac{M}{2\lambda_i}$$

$$BW = \frac{M}{\lambda_i}$$
mainlobe of the MCPC signal. The ratio of the first delay
nullen is
\[\frac{\tau_{delay_MCPC}}{\tau_{delay_PC}} = \frac{N}{M^2} = \frac{25}{81} \approx 0.3 \] (7)

It is evident from Fig. 9, that the 25-element P4 signal
occupies the same spectrum as the 9\times9 MCPC signal.

Studying MCPC signals of other sizes reveals a clear
sidelobe level drop as M increases. For M\geq13, empirical
relationship of the sidelobe RMS value (SL_{RMS}) in decibels
is 20 \log_{10}(SL_{RMS})=-1(1.3M+17.7). The best found permutations
were used to obtain the relationship. However, for
M>11 the large number of permutations (11!\times4.10^7)
excludes an exhaustive search. The large number of permuta-
tions could be exploited when many similar radar units
must coexist in physical proximity, e.g., in automotive radar
applications.

Let us now consider such important parameter as peak-
to-mean envelope power ratio (PMEP). The MCPC signal
is characterized by varying envelope. If the signal generator
contains a power amplifier, then it becomes desirable to
reduce the PMEP as much as possible. The orthogonality
of the MCPC signal implies that over a bit duration, one
subcarrier does not affect the others. Hence, if each subcar-
rier of unit power, then the mean power of the M subcarriers
must be M. Clearly, the instantaneous peak power
during a bit can be at most M^2. It can therefore be
conclude that in general:

\[PMEP = \frac{1}{M} \] (8)

The inventor has found out numerically that when the
MCPC is based on all the cyclic shifts of a P4 signal, M\geq4,
and the sequence order is also a cyclic shift, namely:

\[\{k, k+1, \ldots, M-1, M, 1, 2, \ldots, k-1\} \text{ or } \{k, k-1, \ldots, 2, 1, M, \ldots, k+1\} \] (9)

then:

\[PMEP = \frac{1}{2.015} \] (10)

The above result in (10) has been pointed out in the
following publication Boyd, S., “Multitone Signals with
Low Crest Factor”, IEEE Trans. Circuits, Systems,
1986, 33, (10), pp. 1018–1022. There, a case of a multitone
symbol in which the phase sequence (along the M
frequencies) follows a P3 phase sequence was considered,
being called “Newman phases”.

FIGS. 10 and 11 demonstrate the lower PMEP for the
above order of sequences (9), showing the real envelopes
of 5\times5 MCPC signals based on P4 with the sequence orders \[3 5 2 1 4 \] and \[3 4 5 1 2 \], respectively. The latter one meets the criteria in (9). The corresponding PMEP values are
4.37 and 1.73.

The autocorrelation sidelobes may be further reduced by
using a coherent train of M MCPC pulses complementary in
time, as well as in frequency. This happens when each pulse
in the train exhibits a different order of sequences such that
a set of complementary phase sequences is obtained in each
frequency.

The above feature is illustrated in Fig. 12 showing the
autocorrelation function of a train of 5 MCPC pulses (the
order of sequences is indicated in the figure). It can be seen
in Fig. 12 that the sidelobe-reduction applies to all but the
sidelobes within the first bit. This should be expected
because a complementary set yields zero autocorrelation
 sidelobes only for \(|r[k]|^2 \). The delay axis in Fig. 12 is limited
to the duration of a pulse (i.e., \(M_{\text{p}} \)). The autocorrelation
within that delay is not affected by the pulse interval T as
long as T is larger then twice the pulse width, namely
T>2M_{\text{p}}. What is affected by the pulse interval is the ambiguity
function for non-zero Doppler.

The dramatic improvement in sidelobe reduction for
\(T_{\text{p}}<\pi/\Delta f_{\text{c}} \), by a train of complementary MCPC pulses
justifies a method for further sidelobe-reduction in the
remaining delay range of \(M_{\text{p}} \). This can be achieved by
applying weights along the frequency axis.

Frequency weighting is a well-established method for
reducing autocorrelation sidelobes in linear FM radar signals
(Farnet, E. C. and Stevens, G. H., “Pulse Compression
(McGraw-Hill, 1990), Ch. 10. This technique appears to be
not very effective in a single MCPC pulse, because it yields
meaningful sidelobe reduction only over the limited delay
range \(|t|<M_{\text{p}} \), but does not help over the larger remaining
delay range of \(t>M_{\text{p}} \). However, having found out that a
complementary train of MCPC pulses dramatically reduces
sidelobes in that larger delay range \(t>\pi/\Delta f_{\text{c}} \), it becomes
obvious that the combination of the use of a complementary
pulse train and frequency weighting can reduce autocorre-
lation sidelobes over the entire delay range \(|t|<M_{\text{p}} \).

In conventional constant-amplitude radar signals, weight-
ing is usually implemented only at the receiver, in order not
to loose the constant-amplitude property of the transmitted
signal. This is effectively a deviation from matched filter
processing, and results in a small signal-to-noise ratio (SNR)
loss. In the case of MCPC signal, it is already of variable amplitude
(but of fixed amplitude at each subcarrier). Hence,
applying different amplitude to each subcarrier adds no
difficulty. The different amplitude at each subcarrier is
expressed by the \(W_n \) term in equation (3).

Despite the extensive knowledge regarding weighting
windows, our numerical trials are limited to a simple family
of weighting described as follows:

\[W_n = \begin{cases} \cos\left(\frac{\pi n}{2M} - \frac{\pi}{2}\right), & n = 1, \ldots, M \end{cases} \] (11)

It should be noted that setting \(a_0=0.53836 \), \(a_0=0.46164 \)
and \(\alpha=0.5 \) is equivalent to adding a Hamming weight window
only at the receiver side. It has been found by the inventor,
that values of a slightly different from 0.5 yield smaller peak
sidelobes. The weight \(W_n \) now multiplies the signal of the
nth subcarrier (within the sum in the above equation (3)).

Identical frequency weighting according to the above equa-
tion (11) was added to all the pulses in the M MCPC
complementary pulse train \(M=5 \) exemplified in Fig. 12.
FIG. 13 illustrates the resulted magnitude of the autocorre-
lation function.

The ambiguity function of a complementary train of M
MCPC pulses, with or without frequency weighting,
depends on the pulse interval T. FIG. 14 illustrates the
ambiguity function obtained for an arbitrary case in which
the pulse interval is 4 times the MCPC pulse duration,
namely: \(T=4M_{\text{p}} \), and the weighting is according to the above equation (11).
Due to the periodicity in time within a pulse train, the response in Doppler exhibits peaks at multi-
plies of \(\nu=1/T=0.25/M_{\text{p}} \), the first of which is seen in Fig. 14.

In the above examples, the MCPC complementary set
is constructed based on P4 phase sequence, which is a
polyphase code. However, another 2-valued phase
sequences that exhibit perfect periodic autocorrelation can
serve to construct a complementary set. One such alternative
is the sequences described in the following publication:
Golomb, S. W., “Two-valued sequences with perfect peri-

One example of such a sequence is based on Barker code
of length 7 [+ + + + + + +], in which the two phase values
are not 0 and 180°, but 0 and 138.59° (i.e., equal to arcsin(−0.5)).
Codes of this type exist for lengths 3, 7, 11, 15, 19, 23, 31,
35, 43, 47, 59, ... FIGS. 15 and 16 illustrate the autocor-
relation (magnitude) and the ambiguity function,
respectively, for a 2x3 M C P C single pulse, based on all
the cyclic shifts of the corresponding two-valued perfect
sequence. The RMS sidelobe value of the two-valued signal
is usually 15% higher than for a polyphase signal of the
same size. FIGS. 17A and 17B show partial autocorrelation
function of the 2x3 M C P C signal with and without
frequency weighting, respectively. Adding frequency weight
of the above signal alters the sidelobes, mostly within the
first bit, as demonstrated in the figures that zoom on the first
two bits.

It is also interesting to compare the autocorrelation of the
two-valued signal with one in which the phase values were
changed to 0 and 180° (not a complementary set any more,
but easier to implement). Degradation in RMS value by an
about 25% (relative to the ideal two-valued code) is typical.
As already pointed out, in all M C P C signals based on
complementary sets the autocorrelation is identically zero
at multiples of τ0. This property is lost in a non-complementary
set and is one reason for the higher sidelobe RMS value.
Implementing two-valued sequences is especially simple if
the two are binary values (−1, +1). There are only few
square or nearly-square binary complementary sets. Some
examples, known from the article “Complementary Sets of
Theor., 1972, 18, (5), pp. 644–652, are listed in Table 2
below.

TABLE 2

<table>
<thead>
<tr>
<th>Complementary binary sets</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
</tr>
<tr>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
</tr>
<tr>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
</tr>
<tr>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
</tr>
<tr>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
</tr>
<tr>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
<td>+ +</td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td></td>
</tr>
</tbody>
</table>
signal, there exist M! different permutations of ordering the M sequences along the M subcarriers. The many permutations could allow nearly interference-free operation of several MCPC radar instruments in physical proximity. This could be useful in automotive radar applications. When a receiver is matched to one M×M MCPC signal, and a different M×M MCPC signal is received with delay and frequency offset (due to different oscillator frequency or Doppler), the output of the receiver as function of time-shift and frequency-shift is called the cross-ambiguity function. The desired property of cross-ambiguity is low peaks everywhere.

FIG. 25 shows an example of the cross-ambiguity function between the 2×2 MCPC signals (based on Golomb’s 2-value signal of FIG. 17) and another permutation thereof, selected randomly. It should be noted that no coincidence (the same number at the same location) between the two orders guarantees a null at the origin of the cross-ambiguity function. For an M×M signal, there could exist simultaneously M different orders with no coincidence between any two.

The advantages of a MCPC multifrequency radar signal according to the invention are thus self-evident. Similar to the known P3 and P4 signals, MCPC is a digitally phase modulated signal, but unlike P3 and P4 signals, MCPC exhibits a thumbtack ambiguity function and requires fewer phase values. Similar to Costas signal, MCPC signal utilizes many subcarriers, but unlike Costas it utilizes all the frequencies all the time. Although the MCPC is characterized by variable real envelope, it can be generated by power combining several fixed-envelope signals. This implementation option is not available for a Huffman coded signal, which is another signal with variable real envelope. While MCPC is a pulse signal, it inherits its favorable a-periodic autocorrelation from the periodic autocorrelation of the signal it is based on. Hence, the wealth of knowledge on signals with perfect periodic autocorrelation can be utilized for an a-periodic signal. Among signals with perfect periodic autocorrelation we can find long two-valued phase coded signals, and mismatched binary signals, which are easier to implement than polyphase signals. Being a multi-frequency signal, MCPC yields easily to frequency weighting useful for autocorrelation sidelobe reduction. Further side lobes can be reduced by using a train of MCPC pulses, if designed to be complementary both along each pulse and along each frequency. Additionally, an M×M MCPC signal has M! different permutations. The cross-ambiguity between any pair exhibits relatively low peaks, which suggests low mutual interference between nearby radar instruments.

What is claimed is:

1. A transmitter unit for generating and transmitting a desired multifrequency phase-coded signal structure to be used in a system for detecting a remote target, the signal structure comprising at least one pulse signal in the form of a mutually complementary set of M sequences, each sequence being composed of M phase-modulated bits, wherein each of two adjacent sequences are modulated on subcarriers separated by a frequency f, such that f=1/λ, being a bit duration, and wherein all the subcarriers are transmitted simultaneously.

2. The transmitter unit according to claim 1, wherein said signal structure comprises a coherent train of M said pulse signals, the pulses being separated in time.

3. The transmitter unit according to claim 2, wherein each pulse in the train exhibits a different order of sequences, such that a set of complementary phase sequences is obtained in each frequency among the pulses and in each pulse among the frequencies.

4. A transmitter unit according to claim 1, wherein the subcarriers are of equal amplitudes.

5. The transmitter unit according to claim 1, wherein the amplitude of each subcarrier is different from that of at least some other subcarriers, such that every two subcarriers have the same amplitude.

6. The transmitter unit according to claim 5, wherein the amplitude values of the subcarriers satisfy a symmetry condition, that is, the subcarriers have the same amplitude.

7. The transmitter unit according to claim 3, wherein the subcarriers are of equal amplitudes.

8. The transmitter unit according to claim 3, wherein the amplitude of each subcarrier is different from that of at least some other subcarriers, such that every two subcarriers have the same amplitude.

9. The transmitter unit according to claim 1, wherein the complementary set is constructed based on a phase sequence in the form of a polyphase code signal.

10. The transmitter unit according to claim 9, wherein the polyphase code signal is P4, determined as follows:

φ(m) = π /M (m-1)² - π(m-1), m = 1, 2, ..., M

where φ(m) is phase of the m-th bit.

11. The transmitter unit according to claim 9, wherein the polyphase code signal is P3, determined as follows:

φ(m) = π /M (m-1)² - π(m-1), m = 1, 2, ..., M

where φ(m) is phase of the m-th bit.

12. The transmitter unit according to claim 1, wherein the bits in each sequence are two-valued phase-modulated.

13. The transmitter unit according to claim 12, wherein the complementary set is constructed based on a phase sequence in the form of Golomb code signal.

14. The transmitter unit according to claim 12, wherein the complementary set is constructed based on a phase sequence in the form of Ipatov code signal.

15. The transmitter unit according to claim 1, wherein the generation of said desired signal structure utilizes one of M! Different permutations.

16. A radar system for detecting a remote target, the radar system comprising the transmitter unit of claim 1 for simultaneously generating M subcarrier frequencies defining together the desired phase-coded multifrequency signal structure, and a receiver matched to said signal structure.

17. A method for generating and transmitting a desired multifrequency phase-coded signal structure to be used in a system for detecting a remote target, the method comprising the steps of:

generating a mutually complementary set of M sequences each composed of M phase-modulated bits, wherein each two adjacent sequences are modulated on subcarriers separated by a frequency f, such that f=1/λ, being a bit duration, and

transmitting all the subcarriers simultaneously, thereby defining at least one pulse signal of said desired structure.