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Abstract—We address the problem of delay in an arithmetic whenever the delay exceed some predetermined threshold.
coding system. Due to the nature of the arithmetic coding process, Another possibility is coding of finite length sequences, so that
source sequences causingrbitrarily large encoding or decoding 5 refix condition is satisfied at the expense of a slightly higher

delays exist. This phenomena raises the question of just how large
is the expected input to output delay in these systems, i.e., once aredundancy, and blocks can be concatenated [4]. Nevertheless,

source sequence has been encoded, what is the expected numbét is still interesting to analyze the classical sequential setting
of source letters that should be further encoded to allow full in terms of expected delay.

decoding of that sequence. In this paper, we derive several new |n hjs |ecture notes [5], Gallager has provided an upper
upper bounds on the expected delay for a memoryless source,p o ind for the expected delay in arithmetic coding for a
which improve upon a known bound due to Gallager. The bounds . . .
provided are uniform in the sense of being independent of the Memoryless source, which was later generalized to coding over

sequence’s history. In addition, we give a sufficient condition for COst channels [6]. Gallager’s bound is given by
a source to admit a bounded expected delay, which holds for a

stationary ergodic Markov source of any order. log(8¢%/6) A
log(1/a)

a\é/herea and 5 are the maximal and minimal source letter

obabilities respectively. Notice that this bound is indepen-

rate, while significantly reducing the extensive memory usal gynt of the sequences hlstory, as shall be the case W'th all the
é)rgnds presented in this paper. In Theorem 1 (section Ill) we

characterizing non-sequential schemes. The basic idea under- bound for th ted del ) b
lying this technique is the successive mapping of growin%enve a new upper bound for the expected delay, given by

source sequences into shrinking intervals of size equal to the 4a(1 - a+log(1/a)) A

probability of the corresponding sequence, and then repre- ED) <1+ 1—ay =D (a)

senting those intervals by a binary expansion. Other coding

schemes reminiscent of Elias’ arithmetic coding have beerhich depends only on the most favorable source letter.

suggested since, aimed mostly to overcome the precisiBollowing that, we show that the dependence on the least fa-

problem of the original scheme [2][3]. vorable letter in Gallager's bound is unnecessary, and provide
Delay in the classical setting of arithmetic coding stem@ection 1V) a uniformly tighter version of the bound given

from the discrepancy between source intervals and binagy Dyg() 2 D, (e, @). In Theroem 2 (section V) we derive
intervals, which may prohibit the encoder from producingnother boundD, () uniformly tighter thanD; (), which is

bits (encoding delay) or the decoder from reproducing sourggg shown to be tighter tham,,,(a) for most sources, and
letters (decoding delay). On top of its usual downside, delgyoser only by a small multiplicative factor otherwise.

also increases memory usage, and therefore a large delay mayy; technique is extended to sources with memory, and in
turn the main advantage of arithmetic coding on its head. Afieorem 3 (section VI) we provide a new sufficient condition

it turns out, for most sources there exists infinite number gf; 5 source to have a bounded expected delay under arithmetic
source sequences for which the delay is infinite, where e ing. Specifically, this condition is shown to hold for any

sequence usually occurs with probability zero. A well knOWEtationary ergodic Markov source over a finite alphabet.
example demonstrating this phenomena is that of a uniform

source over a ternary alphabgt, 1,2}. The source sequence
111... is mapped into shrinking intervals that always contain
the point 1, and so not even a single bit can be encoded.Consider a discrete source over a finite alphabet
This observation leads to the question of just how large & = {0,1,...,K — 1} with positive letter probabilities
the expected delay (and consequently, the expected memfwy, p1,...,px—1}. A finite source sequence is denoted by
usage) of the arithmetic coding process for a given source, atifl = {xm, Tmt1,-..,2n} With 2 = 21, while an infi-
if it is bounded at all. nite one is denoted by*>°. An arithmetic coder maps the
The problem of delay can be practically dealt with bgequencesz™, z"*+!,... into a sequence of nestesburce
insertion of a fictitious source letter into the stream to “rentervals Z(z") > Z(z"*!) D ... in the unit interval that
lease” bits from the encoder or letters from the decodemnverge to a poiny(z>°) = NS, Z(z™) . The mapping is

E(D) < Dy(av, )

I. INTRODUCTION

Arithmetic coding has been introduced by Elias [1],
simple means to sequentially encode a source at its entr

II. ARITHMETIC CODING IN A NUTSHELL



defined as follows:
fi(@) =

f@") =
Z(z") =

Notice that |Z(z")|

Now, consider the middle point»(b*), which is always

i—1 contained insideZ(2") as otherwise another bit could have
> pis f@h) = filan) been encoded. lin(b*) is contained inZ(z"*%) (but not

§=0 as an edge), then condition (4) cannot be satisfied, and the
f@™ N + fi(z,) Pr(z"Y) encoder cannot yield even one further bit. This observation

n n n can be generalized to a set of points which, if contained in
P

F(@"), f@") + Pr(a™)) Z(z"+?), z™ cannot be completelgecodedFor each of these

= Pr(2™) and that source intervalspoints the encoder outputs a number of bits which may enable

corresponding to different sequences of the same length #ie decoder to produce source letters, but not enough to fully
disjoint. Following that, a random source sequer& is decodez”. The encoding and decoding delays are therefore
mapped into a random interval(X™), which asn grows treated here simultaneously, rather than separately as in [6].
converges to a random variabl(X*°) that is uniformly We now introduce some notations and prove a Lemma,

distributed over the unit interval. required for the proof of Theorem 1. Lét,b) C [0,1)
For any sequence of binary digit§ = {b;,b2,...,b;} we be some interval, ang some point in that interval. In the
define a correspondiniginary interval definitions that now follow we sometime omit the dependence

on a, b for brevity. We say thap is strictly containedn [a, b)

k
T(O%) = [0b1d, . 540, 0.bab, . bil) @) it € [a.b) butp £ a. We define thdeft-adjacentof p wrt.
and the midpoint of7 (b*) is denoted bym(b*). [a,b) to be
The process of arithmetic coding is performed as follows. A N L
The encoder maps the input letters into a source interval £(p) = min {x €la,p) : IkeZ", x=p—2 }

according to (1), and outputs the bits representing the small
binary interval 7 (b*) containing the source interval(z").
This process is performed sequentially so the encoder produces

&Rt thet-left-adjacentof p w.r.t. [a,b) as
t

—~—
further bits whenever it can. The decoder maps the received Oy 2Uolo--ol)(p), (O 2p

bits into a binary m_te.rval, and ou_tputs source Iette_rs thﬁfotice that?(®)
correspond to the minimal source interval that contains that
binary interval. Again, this process is performed sequentially

(p) — a monotonically witht. We also define
Ae right-adjacentof p w.r.t [a,b) to be

so the decoder produces further source letters whenever it can. ,(p) 2 nax {x elpb): IkeZ z=p+ Q—k}

Ill. M EMORYLESSSOURCE

andr(®)(p) as thet-right-adjacentof p w.r.t. [a,b) similarly,

In this section, we provide a new bound for the expectgghere nowr()(p) — b monotonically. For anyy < b — a,
delay of an arithmetic coding system for a memoryless sourgge adjacents-setof p w.r.t. [a,b) is defined as the set of all
as a function of the probability of the most likely source lettejdjacents that are not "too close” to the edgegaob):

L A +
a = max py. S5(p) :{xe[a—i—&b—é):ﬂteZ u {0},
All logarithms in this paper are taken to the base of 2. _ () G
Theorem 1: Assume a sequencenafource letterse™ has =000 Ve =r (p)}

been encoded, and ld? be the number of extra letters thatNotice that foré > p — a this set may contain only right-
need to be encoded to allow" to be fully decoded. Then  adjacents, fos > b —p only left-adjacents, fos > 252 it is
empty, and for§ = 0 it is infinite.

d
Pr(D > d) < 4a” (1 + dlog(1/)) ) Lemma 1. The size &f5(p) is bounded by
independent ofz™. The expected delay is correspondingly < b — al
bounded by [S5(p)| < 1+ 2log 0 ®)
Proof: Itis easy to see that the number of t-left-adjacents
4a(1 — a + log(1
E(D) <1+ ol —a+log(l/a)) 2 Di(a).  (3) of p that are larger tham + & is the number of ones in the

(1-a)? : . - . o
Let us first outline the idea behind the proof. The Seb_mary expansion ofp — a) up o resolution. Similarly, the

encex” has been encoded into the binary sequeblce humber of t-right-adjacents of that are smaller thah— ¢ is
que v - ! . : ky que the number of ones in the binary expansion(bf- p) up to
which represents the minimal binary interval(b*) satisfying i o LA _
I(z™) C J(b*). The decoder has so far been able to decof@Solutiond. Defining []™ = max([z],0), we get:

only m < n letters, wherem is maximal such thay7 (b*) C p—a,, b—p. 4
Z(z™). After d more source letters are fed to the encoder,| s =< [log 5 17+ [log 5 1
a2t s encoded intd* wherek’ > k is maximal such that 2 +log @=)b=p) 5 p_4ph_p
Z(z™+4) C J(b*'). Thus, the entire sequenad is decoded lb—a
. . 1 + log 5 , 0.W.
if and only if bl
, —a
Z(z"t) C JOF) C Z(a™). (4) < 1+2log— (6)



as desired. B Lemma 1 and equations (9),(10) were used in the transitions.
Proof of Theorem 1Assume the source sequenc® has Taking the derivative of the right-hand-side of (11) wd.ie

been encoded into the binary sequeriée and letY = find thats = 2a4|Z(2™)| minimizes the bound. We get:
Y (z*°). Given 2™, Y is uniformly distributed overZ(z™), 1
and thus for any interval” Pr(D >d|2") < 204 <1 + 2log ) + 6t
_[TnZEn)| (7] a
r(YeT < @ = 4a“(1+ dlog(l/a))
- )] )] d()i d. Now, th t ofgi b

: . ntd . an is proved. Now, the expectancy Bfgivenz™ can be
The size of the interval (") for d > 0 is bounded by bounded accordingly

|I(m”+d)’ = Pr(z"t%) =Pr(z ZI‘HJC”)Pr(x") oo oo

= Prapfile)Z6m) < oYz @) Bl = D dPD=d[a") =) Pr(D>d|a")
d=1 =
Combining (7) and (8), we have that for any point Z(z") o0
< 1+ Pr(D>d|z"
Pr (p € I(X"M)] 17") < Pr (|Y —p| < [Z(")|a ] :17”) ; ( [#")
d n >
< ZAE_ ©) < 144Y a?(1+ dlog(1/a))
|I(x )| d=1
where the probabilities are taken w.r.t. to “future” source 4a(1 _a+10g(1/a))
letters. For any interval C Z(z") that shares an edge with = 1+ FErSE (12)
Z(z™) we have that . .
J and (3) is proved. Notice that both of the bounds above are
Pr(T NZ(X™) £ ¢) < a’|Z(z")| + |7 — oty 7] uniform so the dependence aft can be removed. u
|Z(z")] |Z(z")]
(10) Ix")

.L.E 1)l 16"} <)l |2’ _L.
760l || 2 a? 170¢) e [ 76"
(HLIIY bl

the_ intervaII(a:")._Given z™, the_z_probability_that the gle_lay ) ) mb9=p  rp)

D is larger thand is the probability that (4) is not satisfied, k ‘/

which in turn is equal to the probability that the intersection So\ S5

SoNZ(X"+) is not empty. This fact is explained as follows. . _ . _

As already shown, ifn(b¥) is strictly contained irfZ(X"+4) Fig. 1. Source interval illustration

then the encoder emits no further bits, and the delay is larger

than d. Otherwise, assum&(X"*+%) lies on the left side of .

m(b*). Obviously, if Z(X7*) C [¢(m(b)), m(b*)), thenz™ Ga_1||ager_[5] prc_JV|ded an upper bound for the e_xpected delay

is fully decoded since (4) is satisfied. Howeverffin(b%)) 1N arithmetic coding of a memoryless source, given by

is strictly contained inZ(X"*+9) then (4) is not satisfied;” log(8¢2/8) A

cannot be decoded and the delay is larger tliamhe same (D) < W = Dy(a, )

rationale also applies to(m(b*)). Continuing the argument N

recursively, it is easy to see that' can be decoded if and wherea = max py andﬁ = min pg. Notice that our bound

only if no point of S is strictly contained iz (X"*4). Dy (@) in (3) depends only on the most likely source letter,
Now, notice thatSs C Sy, and thatSy\Ss is contained in while Gallager’s boundD,(«, 3) depends also on the least

two intervals of lengthd both sharing an edge witli(z™) likely source letter. Moreover, holding: constant we find

(the situation is illustrated in Figure 1). Lettin@z denote a thatD,(«, 6)—>oo This phenomena is demonstrated in the

general binary interval, we bound the delay’s tail probablllty‘ollowmg exa[mple

For anyé > 0, let S5 denote the adjaceidtset of m(b*) w.r.t.

IV. IMPROVING GALLAGER’S BOUND

Pr(D > d —  pr(T(Xx"t cT n Example: Consider a ternary source with letter probabilities
r(D>d|2") r(Z( )ifB’V‘YBn_ (") [2") (p, 52, 552). Both bounds for that source are depicted in
= Pr(SonZ(X ") #¢[a") < Figure 2 as a function of, together with a modified bound

< Pr (55 NZ(X"Td) # ¢ ] :v") + derived in the sequel. As can be seen, Gallager's bound is

+ Pr ((50\55) NZ(X™) £ ¢ ’ xn) better fpr most values gf, but becomes worse for smal|
due to its dependence on the least probable source letter. In

< 2a% S5 +2 <ad + 5n> < fact, the boundlivergeswhenp — 0, which is counterintuitive
E(x )l since we expect the delay in this case will approach that of
< 24d (1+210g |Z(x )|> n a uniform binary source (for whictD(a, 5) is finite). In-
0 contrast, the new bound which depends only on the most likely

9 (o 0 11 letter tends to a constant when— 0, which equals its value
T |Z(zm)] Dfor the corresponding binary case.



Intuition suggests that least likely letters are those thhibtice that the modified Gallager bouid,, (o) = Dy(a, @)
tend to accelerate the coding/decoding process, and that iheniformly lower D,(«, §), and coincides with it only for
dominating factor influencing the delay should be the moshiformly distributed sources.
likely source letters. Motivated by that, we turn to examine Example (continued): The modified Gallager bound for the
the origin of the term3 in Gallager’s derivations. ternary source converges fgr — 0, as illustrated in Figure

Gallager's bound for the expected delay is derived VR |t is also easy to verify that it converges to the same value
a corresponding bound on thieformation delay i.e., the it takes for a uniform binary source.
difference in self-information between a source sequence and
an extended source sequence needed to ensure that the origing ‘ ‘
sequence is completely decoded. We remind the reader that the o ound
self information of a sequence® is just — log (Pr(z")). We 18} ~Modffed Galagers Bound
now follow the derivations in [6], replacing notations with our
own and modifying the proof to remove the dependence on s 1
(8. Notice that [6] analyzes the more general setting of cost |
channels which reduces to that of [5] and to ours and by settlng i ' )
N =2,C = ¢; = ¢jpae = 1 (in the notation therein).

ConS|der a source sequence encoded by a binary sequericé’
b%. A bound on the expected self-information of that sequencg ,
with the last letter truncated is given by [6, equations 10,11]°

E(I(z"®~1)|o%) < k + log(2e) (13) s

where n(k) is the number of source letters emitted by the
source, andl (z"(*)~1) is the self-information of the corre- .
sponding source sequence without the last letter. Using the 4 ‘ ‘ ‘ ‘ ] ‘ ‘ ‘ ‘
relationI(z™) < I(z"~') +1log(1/3), we get a bound on the ' - o o
self-information of the sequence [6, equation 14]:

n(k)\|nk

E([(I )’b ) < b+ log(2¢/5) (14) The ratio of our bound to the modified Gallager bound
This is the only origin of the tern3. In order to obtain a bound s depicted in Figure 3, together with two tighter bounds
on the expected information delay, there seems to be no escg@®duced in the following section. Comparing the bounds,
from the dependence ah However, we are interested in theye find thatD; () is at most~ 2.4 times worse tha®, (),
delay in source letters. We therefore continue to follow [6] bignd is even better for small (below 0.069) values ofa. For
use (13) in lieu of (14) to bound the information delay up tg, — ( the ratio tends to unity, since both, (o) andD,,,,(av)
one letter before the last needed for decoding. This approagiproach 1, the minimal possible delay for a source that is
eliminates the dependence on the least likely letter, whichribt 2-adic. Indeed, for a very small it is intuitively clear
appears last may increase the self-information considerafgt even when a single extra letter is encoded, the source

but meanwhile contribute only a single time unit to the delajnterval decreases significantly which enables decoding of the
Consider a specific source sequence A bound on the preceding source interval with high probability.

expected number of bits(n) required to decode that sequence
is given by [6, equation 15]:

E(k(n)|z") < I(2™) + log(4e) (15)

Now, let b*(") be the binary sequence required to decode  AS We have seerD; (a) is good for small values of (the

Using (13) (instead of (14) used in [5] and [6]) we have thdtrobability of the most likely letter) and becomes worse for
larger values. The source of this behavior lies in a somewhat

E(I(anrD_l)}bk(n)»x ) < k(n) + log(2e¢) (16) 00se analysis of the size &f; for larged, and also since for

where D is the number of extra letters needed to ensure ti¥gea and smalld the bound (2) may exceed unity. A more

encoder emits the necessarn) bits. Using (15) and taking Subtle analysis enables us to improve our bound for large
the expectation w.r.ti(n) we find that and the result is now stated without proof.

Fig. 2. Bounds for the ternary source

V. IMPROVING OUR BOUND

E(I(mn+p_1)’xn) — I(z") < log(8¢?) 17) Theorem 2: Leﬂo = {WJ and defmedl > dy to be
- _ the largest such integer for which every integhr< d < d;
and the modified bound for the delay in source letters followg there are any) satisfies
through by dividing (17) by the minimal letter self-information
log(1/a) and rearranging the terms: 20 (1 4 2dlog(1/a)) > 1
log(8e?)

E(D]a") <14 =2 2D, (o) (18)

log(1/a) The expected delay of an arithmetic coding system for a



memoryless source is bounded by For a memoryless source,(d) = o and the condition
A is satisfied. It is also fulfilled for any source with memory
E (D) < Dy(a) = (19) whose conditional letter probabilities are bounded away from
204+t 4a®t(di(1 - ) +1)log(1/a) 1, and thus such sources admit a bounded expected delay.
l—a (1-a)? This fact was already observed in [6] with the additional
requirement for the conditional probabilities to be bounded
An explicit bound D3 () (though looser for largey) can away from 0 as well (a byproduct of the dependency on the
be obtained by substituting, = do. The ratio of our original |east favorable letter). The condition in Theorem 3 is however
boundD; (), the modified boun@®; () and its looser version more general. As an example, consider a stationary ergodic
D3(a) to the modified Gallager boun®,,,,(«) are depicted first order Markov source. Such a source satisfies
in Figure 3. As can be seef;(«) is tighter tharD,,, («) for n n n n
values ofa. smaller than- 0.71,(a)nd for larger valueg(is)looser pla o ”I )<1, Vz e pntltl (20)
but only up to a multiplicative factor of 1.04. Notice again since otherwise the source would have a deterministic cycle
that all of the bounds coincide fer — 0, as in this case they which contradicts the ergodic assumption. Define:
all tend to 1 which is the best possible general upper bound.

1+d+

2 max p(a" 1] | ™)
re X g xntlx|
o glg o We have from (20) tha§ < 1, and since the source is station-
o D) > ary, ¢ is also independent aof. v(d) is monotonically non-

increasing and thereforg(d) < ftﬁj and is exponentially
decreasing withl, thus satisfying the condition in Theorem 3.
This result can be generalized to any Markov order.

Corollary 1: The expected delay of arithmetic coding for a
finite alphabet, stationary ergodic Markov source of any order
is bounded.

N}
T

VIl. SUMMARY

New upper bounds on the expected delay of an arithmetic
coding system for a memoryless source were derived, as a
function of the probabilityo. of the most likely source letter.

In addition, a known bound due to Gallager that depends
P ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ also on the probability of the least likely source letter was
a ' ' ' ' uniformly improved by disposing of the latter dependence. Our
best bound was compared to the modified Gallager bound,
Fig. 3. The ratio of the different bounds to the modified Gallager boundand shown to be tighter fonn < 0.71 and looser by a
multiplicative factor no larger tham- 1.04 otherwise. The
VI. SOURCES WITHMEMORY bounding technique was generalized to sources with memory,

The discussion of section Il is easily generalized to sourcB&oviding a sufficient condition for a bounded delay. Using
with memory. The only point in the proof that needs to biat condition, it was shown that the bounded delay property
reestablished is the definition af which was the probability holds for a stationary ergodic Markov source of any order.
of the most likely source letter in the memoryless case. Future research calls for a more precise characterization of

Theorem 3: Consider an arithmetic coding system for the expected delay in terms of the entire probability distribu-
source with a probability distributionp(z") over a finite tion, which might be obtained by further refining the bounding

Ratio to the Modified Gallager bound Dmg(a)
-
= u
T T

alphabetX. Let technique presented in this paper. In addition, a generalization
A . to coding over cost channels and finite-state noiseless channels
y(d) =sup max p(a"t|2") in the spirit of [6] can be considered as well.

n xn+d EX'rL+(l
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