The Delay-Redundancy Tradeoff in Lossless Source Coding

Ofer Shayevitz

UCSD

ITA Workshop, February 2009

Joint work with: E. Meron, M. Feder and R. Zamir (TAU)
Background

- Discrete Memoryless Source (DMS) \(P \)
- Lossless coding scheme
- Average end-to-end delay constraint \(d \)
- The (average) redundancy \(R \) - gap between the average code-length and the entropy \(H(P) \)
- Traditionally - *dictionary* based encoders, *delay* identified with *block/phrase length*
 - B2V codes (e.g. Huffman): \(R = O(d^{-1}) \) [classic][Szpankowski `00]
 - V2B codes (e.g. Tunstall): \(R = O(d^{-1}) \) [Savari `97]
 - V2V codes: \(R = O(d^{-4/3}) \) [Khodak `69][Bugeaud et al]
- The decay is polynomial!
 - Holds for the more stringent maximal delay constraint
Idealized arithmetic coding
- Attains zero asymptotic redundancy
- The maximal delay is unbounded
- However, the average delay is bounded!
 [Gallager`91],[Shayevitz et al `06]

The apparent disparity is due to
- Dictionary encoders are resource-oriented and not redundancy-oriented
- Definition of the delay

Question: What is the redundancy incurred by imposing a **maximal** end-to-end delay constraint?
Setting

- A DMS P over an alphabet X
- Sequentially emitting symbols X_1, X_2, \ldots
- Encoder \mathcal{E}:
 - A sequence of mappings $\mathcal{E} = \{X^n \mapsto \{0, 1\}^*\}_{n=1}^\infty$
 - Causal – $\mathcal{E}(x^n)$ is a prefix of $\mathcal{E}(x^n y)$
 - Integrity property – $\mathcal{E}(x^n)$ is the maximal common prefix of $\{\mathcal{E}(x^n y)\}_{y \in X}$
 - Meets a (maximal) delay constraint d if $\mathcal{E}(x^n)$ uniquely determines x^{n-d} for any $x^n \in X^n$, $n > d$

- Lossless encoder, decoder is implicitly defined
Setting – cont.

- The (average, asymptotic) redundancy

\[\mathcal{R}_\varepsilon(P) = \limsup_{n \to \infty} \frac{1}{n} \mathbb{E}(\varepsilon(X^n)) - H(P) \]

- The redundancy-delay function for the source \(P \)

\[\mathcal{R}(d, P) = \inf_{\varepsilon \in \mathcal{F}_d} \mathcal{R}_\varepsilon(P) \]

where \(\mathcal{F}_d \) is the family of all encoders satisfying a delay constraint \(d \)
Main Results

- Explicit upper bounds on the redundancy-delay function, via a modified arithmetic coder
- Redundancy decays *exponentially* with delay!
 - The encoder does not “reset” after emitting bits
 - The state is always past dependent
- Provides a lower bound on the redundancy-delay exponent
 \[E_{rd}(P) = \lim_{d \to \infty} -\frac{1}{d} \log \mathcal{R}(d, P) \]
- Tighter lower bound via typicality
- Upper bound on \(E_{rd}(P) \) for almost all sources
Preliminaries
Interval-Mapping Encoders

- “Sufficient” in terms of delay-redundancy tradeoff
- Growing source sequences x^n are mapped into disjoint shrinking intervals $I(x^n) \subseteq [0, 1)$

\[
I(x^ny) \subset I(x^n), \quad I(x^ny) \cap I(x^nz) = \emptyset \quad y \neq z
\]

- Time-varying arithmetic coding
- $E(x^n)$ is the binary sequence representing the minimal binary interval containing
The Forbidden Points Constraint

- For any encoder interval $I(x^n)$ there exists a countable set $S_I(x^n) \subset I(x^n)$ of forbidden points.

- The encoder meets a delay constraint d if and only if

$$I(x^{n+d}) \cap S_I(x^n) = \emptyset, \quad \forall x_{n+1}^{n+d} \in X_{n+1}^{n+d}$$

- The forbidden points are concentrated near the edges of the interval.

- “Size” of concentration region depends on the position and length of the encoder’s interval.
An Upper Bound on $E_{rd}(P)$
Basic Proof Elements

- Consider *any* interval-mapping encoder
 - Argument extends to arbitrary encoders
- At any time point, how can the encoder map the next \(d \) symbols?
- Two competing strategies:
 - **Short range**: *Be faithful to the source* – Likely to generate a large concentration region for the next encoder’s interval \(\rightarrow \text{Redundancy} \)
 - **Long range**: Map to intervals with a small concentration region – Typically cannot be done while being faithful to the source \(\rightarrow \text{Redundancy} \)
- Upper bound results from this core tension
Basic Proof Elements – cont.

- The redundancy-delay exponent is upper bounded by
 \[E_{rd}(P) \leq 8 \log p_{\text{min}}^{-1} \]
 for almost all sources \(P \)

- \(p_{\text{min}} = \min(P) \) is the fastest “zoom-in” rate

- Cannot hold for all sources – For dyadic sources we can attain zero redundancy with zero delay

- Unfortunately, the zero measure set which the result does not cover is larger...
 - For example, includes all binary sources \(P = (p, 1-p) \)
 for which \(p = (1 + 2^k)^{-1} \) for some integer \(k \geq 0 \)

- Convergence to the exponent is not uniform
A Lower Bound on $E_{rd}(P)$
Idealized Arithmetic Coding (AC)

- Interval-mapping encoder with a time-invariant partition
- Relative lengths of subintervals equal symbol probabilities
- Zero asymptotic redundancy
- Some source sequences converge to forbidden points \rightarrow Maximal delay is *unbounded*
- Analyzing the probability of avoiding all forbidden points in finite time [Shayevitz et al `06]:

\[
\mathbb{P}(D(x^n) > d) \leq 4p_{\text{max}}^d (\log p_{\text{max}}^{-1} + O(1))
\]

Where $p_{\text{max}} = \max(P)$

- p_{max} corresponds to the slowest "zoom-in" rate
A Finite Delay AC Variant

- Must intervene in the normal AC process
 - Append 2 fictitious symbols to the source’s alphabet
 - Can be mapped to intervals of size ε, so that at least one does not contain a forbidden point
 - The encoder tracks the delay
 - When breeched, inserts the suitable fictitious symbol and the delay is nullified!

- What is the cost in redundancy?
 - *Mismatch* in assigned lengths/probabilities due to fictitious symbols $\log(1 - 2\varepsilon)^{-1}$
 - Fictitious expected code-length of $\mathbb{P}(D > d) \log \varepsilon^{-1}$
 - Balance by optimizing over ε
The resulting achievable redundancy provides an upper bound on the redundancy-delay function:

$$\mathcal{R}(d, P) \leq c \cdot p_{\text{max}}^d (1 + d \log p_{\text{max}}^{-1})^2$$

Thus, a lower bound on the redundancy-delay exponent is given by

$$E_{rd}(P) \geq \log p_{\text{max}}^{-1}$$
Tightening the Lower Bound

- Via AEP/large deviations

\[
E_{rd}(P) \geq \max_{\mu > 0} \min \left(H(P) - \mu , \min_{Q \in A_{\mu}} 2D(Q \| P) + H(Q) \right)
\]

\[
A_{\mu} = \{Q : D(Q \| P) + H(Q) < H(P) - \mu \}
\]

- Requires a randomized mapping, to avoid large redundancy under non-typical events
Lower Bounds for Binary Sources
Discussion

- Exponential over polynomial
- Finite horizon n
 - Delay can be much shorter than block/phrase length
 - Best redundancy is $O(n^{-1})$
 - Can meet a delay constraint $d = O(\log n)$ with comparable redundancy
 - Reminiscent observation by [Weinberger et al `92]
- Precision vs. redundancy
 - Superior performance over dictionary encoders, at the cost of a finer precision for keeping the encoder’s state
 - Still, only a finite precision is required to obtain the exponential decay!
Further Research

- **Upper bound**
 - Simplify proof
 - Tighten the bound, eradicate the 8 factor?
 - Extend to all non dyadic sources

- **Lower bound**
 - Is common randomness necessary for the tightened bound?
 - Can we do even better?